JPS5960199A - Infrared radiator - Google Patents

Infrared radiator

Info

Publication number
JPS5960199A
JPS5960199A JP17183682A JP17183682A JPS5960199A JP S5960199 A JPS5960199 A JP S5960199A JP 17183682 A JP17183682 A JP 17183682A JP 17183682 A JP17183682 A JP 17183682A JP S5960199 A JPS5960199 A JP S5960199A
Authority
JP
Japan
Prior art keywords
flying object
infrared
signal
tracking
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17183682A
Other languages
Japanese (ja)
Inventor
久野 治義
山下 元雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17183682A priority Critical patent/JPS5960199A/en
Publication of JPS5960199A publication Critical patent/JPS5960199A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は,航空機を追尾L2てくる飛翔体に誤動作を
生じさせ飛翔体による航空機の追尾を妨害する赤外線放
射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared ray emitting device that causes a flying object that is tracking an aircraft L2 to malfunction, thereby interfering with the tracking of the aircraft by the flying object.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

周知のように赤外線を追尾する飛翔体は航空機の噴炎(
 jet plume )を追尾するものである。
As is well known, flying objects that track infrared rays are aircraft jets (
jet plume).

即ち飛翔体は航空機のインコヒーレントな赤外線の強度
・形状・相対角速度等の情報を利用して追尾している。
That is, a flying object is tracked using information such as the intensity, shape, relative angular velocity, etc. of the aircraft's incoherent infrared rays.

したがって、従来の妨害装置では、例えば赤外強度が大
きく投射後のスピードが航空機と異なる赤外線妨害信号
(以下、フレアと称す)を用いてきた。即ち、例えば飛
翔体の誘導帯におけるフレアの強度をA、航空機の噴炎
の強度をaとすると、飛翔体がAM受信方式を採用して
いる場合フレアによる信号Sfは、 Sf=A(1+kloospt)oosvctであり、
航空機からの信号8pは 8 p=a( 1+に2oos( p t+θ) )o
w(u)e t+θ′)。
Therefore, conventional jamming devices have used, for example, an infrared jamming signal (hereinafter referred to as a flare) that has a high infrared intensity and a speed different from that of an aircraft after being projected. That is, for example, if the intensity of the flare in the guidance zone of the flying object is A, and the intensity of the jet flame of the aircraft is a, then when the flying object uses the AM reception method, the signal Sf due to the flare is Sf = A (1 + kloospt). oosvct,
The signal 8p from the aircraft is 8 p = a ( 1 + 2oos ( p t + θ) ) o
w(u)e t+θ').

θ’ = vcθ/p となる。これらの和を取ると、 +〔交( 1+に,oos (p を十θ))帥θ′〕
2り水(arct+州))となり、これを包絡線検波し
、A>aと仮定すると、 S f + S p=A( 1 + J oo8+) 
t )+8 (1 +に,OOs(p t+θ))on
eθ′が得られる。したがって第1項のフレアによる成
分が第2項より大きいため、飛翔体はこれを追尾する。
θ' = vcθ/p. If we take the sum of these, we get +[cross(1+, oos (p to 10θ))帥θ′]
2 water (arct + state)), and if we perform envelope detection on this and assume that A>a, then S f + Sp = A ( 1 + J oo8+)
t )+8 (1 +, OOs(p t+θ)) on
eθ' is obtained. Therefore, since the component due to the flare in the first term is larger than the second term, the flying object tracks this component.

また、飛翔体がFM受信方式を採用している場合、両信
号Sf、Spは S f=Aoos(#c t +m、 (X)81) 
t )S  p=am(1I)c  t+m2  (X
)Q(p  t +θ」 +θ′ )と表わされ、これ
らの和は、A ’)> aの時S f +S p=A’
 (tloosCwc t +m1 oosp t+C
(m、cos(p t+θ)+θ’ −ml 001]
p t ) )となる。したがってaの影響は非常に小
さく飛翔体はフレアを追尾する。このように従来では飛
翔体の追尾を妨害することが可能であった。
In addition, if the flying object adopts the FM reception method, both signals Sf and Sp are S f = Aoos (#ct + m, (X)81)
t )S p=am(1I)c t+m2 (X
)Q(p t +θ''+θ'), and the sum of these is S f +S p=A' when A') > a.
(tloosCwc t +m1 oosp t+C
(m, cos(pt+θ)+θ'-ml 001]
p t )). Therefore, the influence of a is very small, and the flying object tracks the flare. In this way, it has conventionally been possible to obstruct tracking of a flying object.

しかし、近時飛翔体の性能が向上し、紫外線と赤外線の
二色フィルタを使用したり、角速度又は強度メモリー等
を使用して追尾情報を多く取入れることによりフレアの
追尾を避けられるようになった。このため、航空機は飛
翔体の追尾の検出、フレアの投出を行っても飛翔体の追
尾を完全に妨害することが困難となった。
However, in recent years, the performance of flying objects has improved, and it is now possible to avoid flare tracking by using two-color filters for ultraviolet and infrared rays, and by incorporating more tracking information using angular velocity or intensity memory. Ta. For this reason, even if the aircraft detects the tracking of the flying object and throws out flares, it becomes difficult to completely obstruct the tracking of the flying object.

〔発明の目的〕[Purpose of the invention]

この発明は上記事情に基づいてなされたもので、その目
的とするところは飛翔体の追尾処理に誤動作信号を与え
ることにより、飛翔体の追尾を妨害することが可能な赤
外線放射装置を提供しようとするものである。
The present invention has been made based on the above circumstances, and its purpose is to provide an infrared radiation device capable of interfering with the tracking of a flying object by giving a malfunction signal to the tracking process of the flying object. It is something to do.

〔発明の概要〕[Summary of the invention]

この発明は、チョッパによって赤外線を断続してFM変
調するとともに、このFM変調された信号周波数を飛翔
体の信号処理周波数帯域内に設定することにより飛翔体
に誤動作信号を与えるものである。
In this invention, infrared rays are intermittently FM-modulated by a chopper, and the FM-modulated signal frequency is set within the signal processing frequency band of the flying object, thereby giving a malfunction signal to the flying object.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例について;・図面を参照して
説明する。
An embodiment of the present invention will be described below with reference to the drawings.

先ず、この発明の原理について説明する。航空機の噴炎
からの赤外放射強度なa、FM変調を行なった妨害信号
をA (]、−1−oos (1#、 t+βcOB 
l#2 t ) )(但し、WI:搬送波周波数 OJ、:変調周波数 β:変π)M指数) とすると、飛翔体の受信方式は、AM方式である場合、 % (l −4−ktnsptcoIIILI/ct 
)FM方式の場合、 %(1+ωs (虎ct +mc、oSp t ) )
である。
First, the principle of this invention will be explained. The infrared radiation intensity from the aircraft jet is a, and the FM-modulated interference signal is A (], -1-oos (1#, t+βcOB
l #2 t ) ) (WI: carrier frequency OJ, : modulation frequency β: variable π) M index) If the reception method of the flying object is the AM method, then % (l −4−ktnsptcoIIILI/ ct
) In the case of FM method, %(1+ωs (tiger ct + mc, oSp t ))
It is.

fil A M受信方式の場合 飛翔体が検出する信号は [a +A(i+cos(jJ/、 t+βcosLL
’t t ) ) )= −”’ (1+koosp 
t cosLNct )+輻q(W、’j+β009 
W2 t )2 A −1−−ooIII(w、 t+βcos w2 t 
) ・cx+s p t oosu c tとなる。こ
こで、第1項は飛翔体が希望する信号成分、第2項はW
、を適当に選んで第1項と同じ帯域に持って来ることに
よって妨害信号となる成分、、第3項は、一般に帯域外
の成分である。上式を各周波数成分に分解して、#けば
、+(帯域外) +2) F M受信方式の場合 この場合も同様に Ca+A (1+oos (W、 t+βcOIlvJ
2t))〕X’ (1−1−Oos(IJ/ct+mo
osui))=−”−A (l −4−arpa (W
c t + moos ’p t ) )+医oos 
(Wit+バー2t) 4−4ooq (u)、 t+βoosVJ2n ) 
−003(Wct −1−moospt )十−Σ J
 v (1) 00B((”I+νw2 ) ’ +2
 ’2ν=− +(帯域外) となり、第1項が信号成分、第2項が妨害信号成分であ
る、ここで、 147C=1600Hz 、 p=1333gHz 、
 m=211’H=2000Hz  、 w2 =20
011z、β=3  A=10aの場合のT部波数ス被
りトラムを第1図に示す。
fil A In the case of the M reception method, the signal detected by the flying object is [a + A (i + cos (jJ/, t + β cos LL
't t ) ) )=-”' (1+koosp
t cosLNct )+radiusq(W,'j+β009
W2 t )2 A −1−−ooIII(w, t+βcos w2 t
) ・cx+sp t oosu c t. Here, the first term is the signal component desired by the flying object, and the second term is W
The third term, which becomes an interfering signal by appropriately selecting and bringing it into the same band as the first term, is generally a component outside the band. Decomposing the above formula into each frequency component, # + (outside band) +2) In the case of FM reception system, Ca+A (1+oos (W, t+βcOIlvJ)
2t))]X' (1-1-Oos(IJ/ct+mo
osui))=-”-A (l-4-arpa (W
c t + moos 'p t ) ) + medicine oos
(Wit+bar2t) 4-4ooq (u), t+βoosVJ2n)
-003 (Wct -1-moospt) 10-Σ J
v (1) 00B(("I+νw2) '+2
'2ν=-+(outside band), the first term is the signal component and the second term is the interference signal component, where 147C=1600Hz, p=1333gHz,
m=211'H=2000Hz, w2=20
011z, β=3 and A=10a, the T-section wave number overlapping tram is shown in FIG.

但し1、実線は第1項の成分、lIl&線は第2項の成
分である。
However, 1. The solid line is the component of the first term, and the lIl& line is the component of the second term.

ところで、通常の飛翔体は光学系をジャイロ・マウント
[7である。このジャイロと定食の回転数は1:1の対
応をしている、通常の供給電源の40’ OHzでは、
2極、4枠で決まる回転数はそれぞれ400 Hz 、
 200 H2どなる。レティクルの分割数は大きさ、
製造上、光学系のゲケ等から24分割(12cycle
 )が1胃無である。
By the way, the optical system of a normal flying object is a gyro mount [7]. There is a 1:1 correspondence between the rotation speed of this gyro and the set meal, at a normal power supply of 40' OHZ,
The rotation speed determined by 2 poles and 4 frames is 400 Hz, respectively.
200 H2 roars. The number of divisions of the reticle depends on the size,
Due to manufacturing reasons, the optical system is divided into 24 parts (12 cycles).
) has no stomach.

検知器のi/f&(音低減のためのチョッピング周波数
は約1500〜25001(zであZ、。
The detector's i/f & (chopping frequency for sound reduction is approximately 1500-25001 (z).

以上から、レティクルのチョッピング周波数は15 (
10〜2500 Hzの間にあり、コノ搬送周波数に対
し、AM受信方式では±200 )12、FM受信方式
では変調指数により±4 +1011zのバンド幅(指
数2)をもつ。
From the above, the chopping frequency of the reticle is 15 (
It is between 10 and 2500 Hz, and has a bandwidth (index 2) of ±200 Hz for the AM reception system and ±4 + 1011 z (index 2) for the FM reception system, depending on the modulation index, relative to the carrier frequency.

そこで、次に最適な妨害信号の変調方式を求めてみる。Therefore, we will next find the optimal modulation method for the interference signal.

妨害信号は A(1+(9)(W、 l+β蓋vJ、t))である、
vJI は想定される飛翔体のチョッピング周波数の範
囲の中央にある事が望ましいから、’s =2000 
Hz となる。飛翔体、の受信帯域をwC±Bとすると、妨害
信号の電力は N=、□懺C心帳。ヤB である。これはv(、Bによって変化するが、その最低
値即ち最小妨害電力を最大にするのが最適な変調である
。そこで、Bを一定としてwCを1500 Hzから2
500 Hzに変化させた時のNの最低値Nm1nを求
めると第2図に示すよう(二なる。
The interference signal is A(1+(9)(W, l+β lid vJ, t)),
It is desirable that vJI be in the center of the expected range of chopping frequencies of the flying object, so 's = 2000.
Hz. If the receiving band of the flying object is wC±B, then the power of the interfering signal is N=, □C. It is YaB. This varies depending on v(, B, but the optimal modulation is to maximize its lowest value, that is, the minimum disturbance power. Therefore, with B constant, wC is changed from 1500 Hz to 2
The lowest value Nm1n of N when changing to 500 Hz is determined as shown in Fig. 2 (2).

この図において’t ’= 200 Hzの場合、 N
m1nのピークはB=200 、400 Hzともβ=
2.5の所にあり、I)J2=133%Hzの場合には
B= 200 Hzではβ=4.5、B = 4 (l
 OI−]zでけβ=4.6となっている。ビーブ値は
’t = 2 (10Hzの方が大きい。以りより妨害
信号の最適な変gli!は、 Wl=2000IIz 賄= 2 (l Ol−1z β=2.5 と決定される。この時受信入力におけるS/Nm1nは
、B 〜400 H2で。
In this figure, when 't' = 200 Hz, N
The peak of m1n is β= both at B=200 and 400 Hz.
2.5, I) For J2 = 133% Hz, for B = 200 Hz, β = 4.5, B = 4 (l
OI-]z and β=4.6. The beeb value is 't = 2 (10Hz is larger. From this, the optimal variation of the interfering signal is determined as Wl = 2000 IIz = 2 (l Ol - 1z β = 2.5. The S/Nm1n at the receiving input is B ~ 400 H2.

a+A =2.0(−τ−)2 となる。ここでA=108とすると、 S /Nm1n = 3.9 dBとなる。a+A =2.0(-τ-)2 becomes. Here, if A=108, S/Nm1n=3.9 dB.

次に、上記原理に基づ〈実施例について説明する。Next, an example will be described based on the above principle.

第3図において、31は赤外線放射源である。In FIG. 3, 31 is an infrared radiation source.

この放射源31は例えばプロパンガスを利用した熱源3
2およびこの熱源32の近傍に設けられたセラミック板
3,7からなり、前記熱源32によってセラミック板3
3が熱せられ、このセラミック板33より赤外線が放射
される。このセラミック板33にはチョッパ34が対向
して設けられる。このチョッパ34は例えば第・4図に
示す如く円周方向に沿って中心から円周方向に徐々に幅
が広くなる赤外線透過部348、赤外線遮断部342が
交互に配設されてなり、このチョッパ34を回転1−る
ことにより前記発生された赤外線が断続(チョップ)さ
れる。このチョップされた赤外線はiT視遮断フィルタ
35を介して放射される。この赤外線放射装置は例えば
航空機に搭載される。
This radiation source 31 is a heat source 3 using propane gas, for example.
2 and ceramic plates 3 and 7 provided near this heat source 32.
3 is heated, and infrared rays are emitted from this ceramic plate 33. A chopper 34 is provided facing the ceramic plate 33. For example, as shown in FIG. 4, this chopper 34 is made up of an infrared transmitting section 348 and an infrared blocking section 342 that are arranged alternately along the circumferential direction, the width of which gradually increases from the center to the circumferential direction. By rotating 34 by 1-, the generated infrared rays are chopped. This chopped infrared rays are radiated through the iT visual blocking filter 35. This infrared radiation device is mounted on an aircraft, for example.

上記構成において、チョッパ34を回転すると、第5図
に示す如く、断続した赤外油))が発生され、赤外線を
FM変調することができる。
In the above configuration, when the chopper 34 is rotated, as shown in FIG. 5, infrared oil is generated intermittently, making it possible to perform FM modulation of infrared light.

ここで、fヨツパ34の赤外線透過部34゜および遮断
部34.の/ぐクーンの円周方向の幅は円周方向に徐々
に変化する構成となっている。
Here, the infrared transmitting portion 34° and the blocking portion 34. The width of the groove in the circumferential direction gradually changes in the circumferential direction.

したがって、FM変調伯号のvJ、、u72.βが前述
(7た値となるようにチヨッ/Jの回転数、パターン形
状、分割敬を設定する事により、飛翔体に最適な妨害を
行なう事ができる。
Therefore, the FM modulation number vJ, , u72. By setting the rotational speed, pattern shape, and division ratio of Chiyo/J so that β becomes the value described above (7), it is possible to optimally interfere with the flying object.

」二記実施例によれば、赤外線をチョッパに上ってF’
M変調し、この変調の搬送波周波数およびF M変調周
波数、変調指数を飛翔体の信号処理周波数およびその帯
域内に設定している。したがって、近時における追尾情
報を多く取入れる飛翔体に対して妨害を与えることがで
き、追尾を防止することができる。
According to the second embodiment, the infrared rays go up the chopper and F'
M modulation is performed, and the carrier frequency, FM modulation frequency, and modulation index of this modulation are set within the signal processing frequency of the flying object and its band. Therefore, it is possible to interfere with a flying object that has recently received a lot of tracking information, and to prevent tracking.

〔発明の効果〕〔Effect of the invention〕

以上、詳述したようにこの発明によれば、FM変調され
た赤外線を放射することにより飛翔体の追尾処理に誤動
作を与え飛翔体のプp尾を妨害することが可ず1ヒな赤
外線hk則装置な稈供できる。
As described in detail above, according to the present invention, by emitting FM modulated infrared rays, it is possible to cause a malfunction in the tracking process of a flying object and to disturb the tail of a flying object. A regular culm can be served.

【図面の簡単な説明】[Brief explanation of the drawing]

第11ン1、第2図はそれぞれこの発明の詳細な説明す
るために示す図、第3図はこの発明に係わる赤外線放射
装置の一実施例を示す構成図、第4図は第3図のチョッ
パの格成を示す図、第5図は第4図のチョツノクを介し
て出力される赤外線の一例を示す図である。 3ノ・・・赤外線放射線、34・・・チョッパ。 出願人代理人  弁理士 鈴 江 武 彦第3図 31 第4図
Figures 11-1 and 2 are diagrams for explaining the present invention in detail, Figure 3 is a configuration diagram showing one embodiment of the infrared radiation device according to the present invention, and Figure 4 is the same as that shown in Figure 3. FIG. 5 is a diagram showing the configuration of the chopper, and is a diagram showing an example of infrared rays output through the chopper shown in FIG. 4. 3. Infrared radiation, 34. Chopper. Applicant's agent Patent attorney Takehiko Suzue Figure 3 31 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 赤外線放射源と、放射された赤外線をFM変調する手段
とを具備し、FM変調された信号周波数を飛翔体の信号
処理周波数帯域内に設定することを特徴とする赤外線放
射装置。
An infrared radiation device comprising an infrared radiation source and means for FM modulating the emitted infrared rays, the FM modulated signal frequency being set within a signal processing frequency band of a flying object.
JP17183682A 1982-09-30 1982-09-30 Infrared radiator Pending JPS5960199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17183682A JPS5960199A (en) 1982-09-30 1982-09-30 Infrared radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17183682A JPS5960199A (en) 1982-09-30 1982-09-30 Infrared radiator

Publications (1)

Publication Number Publication Date
JPS5960199A true JPS5960199A (en) 1984-04-06

Family

ID=15930652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17183682A Pending JPS5960199A (en) 1982-09-30 1982-09-30 Infrared radiator

Country Status (1)

Country Link
JP (1) JPS5960199A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485510A (en) * 1987-09-26 1989-03-30 Nissan Motor Underground cable sampling processing mounted on car body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710360A (en) * 1980-05-15 1982-01-19 Kelsey Hayes Co Method and apparatus for separating powdered metallic grain

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710360A (en) * 1980-05-15 1982-01-19 Kelsey Hayes Co Method and apparatus for separating powdered metallic grain

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6485510A (en) * 1987-09-26 1989-03-30 Nissan Motor Underground cable sampling processing mounted on car body

Similar Documents

Publication Publication Date Title
US4259584A (en) Apparatus for transmitting signals
US2350820A (en) Aircraft altitude determining system
JPS55150138A (en) Controller for light beam position
GB1461482A (en) Method of and apparatus for recording and reproducing information
Bell et al. New radio map of Cassiopeia A at 5 GHz
JPS5960199A (en) Infrared radiator
JPS5551351A (en) Sound stereoscopic image pickup system
Smith The geometry of emission from the Vela and the Crab pulsars
JPS536012A (en) Magnetic recorder
SE8602507D0 (en) PROCEDURE AND DEVICE FOR BLINDING OF MAJOR SIGNALS
US3641350A (en) Infrared analyzer for indicating the scintillation spectrum, shimmer and modulation transfer function of the radiation path
US4178505A (en) Device for determining the direction towards a remote object
Pickard Short period variations in radio reception
JPH01180479A (en) Acoustic output circuit
SU1113002A1 (en) Electromagnetic radiation source
Harang et al. An example of heavy absorption in the VHF-band in the arctic ionosphere
US2928088A (en) Direction-finding system with phase comparing and indicating system
SU1076210A1 (en) Method of producing optical disk modulator
JPH0113544B2 (en)
RU2057350C1 (en) Process of detection of mobile objects and dipole radio reflector
JPS5485054A (en) Hologram reconstructor
JPS583091A (en) Electric field type detector
Fusfield High power airborne jammers
JPS60238717A (en) Controlling system
Crutcher et al. BIMA and VLA Observations of S106