JPS5960127A - Combustor for gas turbine - Google Patents

Combustor for gas turbine

Info

Publication number
JPS5960127A
JPS5960127A JP17026382A JP17026382A JPS5960127A JP S5960127 A JPS5960127 A JP S5960127A JP 17026382 A JP17026382 A JP 17026382A JP 17026382 A JP17026382 A JP 17026382A JP S5960127 A JPS5960127 A JP S5960127A
Authority
JP
Japan
Prior art keywords
inner cylinder
annular passage
air
partition wall
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17026382A
Other languages
Japanese (ja)
Inventor
Shinji Fujita
真司 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17026382A priority Critical patent/JPS5960127A/en
Publication of JPS5960127A publication Critical patent/JPS5960127A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To suppress the temperature increase of main combustion zone for lowering the emission of NOX, by defining an annular passage for introducing a primary and a secondary airs between an outer and an inner cylinders of the combustor. CONSTITUTION:An air blown-out from the outlet 22 of compressor flows from the rear part of inner cylinder 12 to the top end thereof, as shown by an arrow mark. A part of this outlet air flows from an inlet opening 20 to a secondary annular passage 19 wherein it passes while cooling the peripheral wall of inner cylinder 12, and enters into the second inner cylinder 12 through a wall surface cooling air port 14 and a diluted air port 15. The remaining part of outlet air enters into a main combustion zone 25 of inner cylinder 12 through a primary air port 16 and a secondary air port tube 21 as a primary air and a secondary air respectively. A fuel injected through a fuel nozzle 17 is mixed with the primary and secondary airs to be burnt. A combustion gas from the main combustion zone 25 is mixed in a downstream diluted zone with an air flowed from the diluted air port 15 and the wall surface cooling air port 14, and then flows into a turbine one-stage nozzle 24 through a transition piece 23.

Description

【発明の詳細な説明】 C発明の技術分野〕 本発明はガスタービン燃焼器に係り、特に外部強制対流
冷却により主燃焼領域の温度低下を図ったガスタービン
燃焼器に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a gas turbine combustor, and more particularly to a gas turbine combustor in which the temperature of the main combustion region is lowered by external forced convection cooling.

〔発明の技術的背景および問題点〕[Technical background and problems of the invention]

従来のガスタービン燃焼器は、第1図に示されるように
燃焼器の外筒1と内筒2とを有し、これらの間には環状
通路3が形成されている。この環状通路3には図示を省
略した圧縮機からの吐出空気4が圧送され、この吐出空
気4は内筒2を冷却しながら周壁面を矢視方向に流れ吐
出空気の一部は希釈空気として希釈空気孔5より内筒2
内に流入し、また吐出空気4の他の一部は壁面冷却空気
として壁面冷却空気孔6より内筒2内に内壁面に泪って
流入する。さらに吐出空気の残部は内筒2の先端部の一
次空気孔7より内筒2内に流入する。
As shown in FIG. 1, a conventional gas turbine combustor has a combustor outer cylinder 1 and an inner cylinder 2, with an annular passage 3 formed between them. Discharged air 4 from a compressor (not shown) is fed into this annular passage 3 under pressure, and this discharged air 4 flows along the peripheral wall surface in the direction of the arrow while cooling the inner cylinder 2, and a part of the discharged air is used as dilution air. Inner cylinder 2 from dilution air hole 5
Another part of the discharged air 4 flows into the inner cylinder 2 from the wall cooling air holes 6 as wall cooling air, flowing against the inner wall surface. Furthermore, the remainder of the discharged air flows into the inner cylinder 2 through the primary air hole 7 at the tip of the inner cylinder 2.

燃料ノズル8から噴射された液体燃料は上記−次空気孔
7からの一次空気と混合されて主燃焼領域9において燃
焼され燃焼ガスとなってガスタービンに送られる。
The liquid fuel injected from the fuel nozzle 8 is mixed with the primary air from the secondary air hole 7 and combusted in the main combustion region 9 to become combustion gas and sent to the gas turbine.

しかしながら、このような従来のガス燃焼器は、吐出空
気4が環状通路3を流れる間に内筒2の周壁面と熱交換
して比較的高温になった後に、−次空気孔7から内筒2
内に入るので主燃焼領域9の高温化を招きサーマルNO
xを発生するという欠点があった。またこの高温化に伴
い内筒も高温となり、内筒の耐久性を損うという問題も
あった。
However, in such a conventional gas combustor, after the discharge air 4 exchanges heat with the peripheral wall surface of the inner cylinder 2 while flowing through the annular passage 3 and becomes relatively high temperature, it is discharged from the secondary air hole 7 to the inner cylinder. 2
Because it enters the inside, the temperature of the main combustion area 9 increases and thermal NO.
There was a drawback that x was generated. Further, as the temperature rises, the inner cylinder also becomes hot, which causes a problem of impairing the durability of the inner cylinder.

他方、従来のガスターヒフ2段燃扇器は1段燃焼域にシ
いて一次空気と燃料との過儂度混合の燃焼を行いこの燃
焼ガスに遷移域において二次空気を混合し、2段燃焼域
で燃料希薄燃焼を行わせるものである。この2段燃焼器
は前述の燃焼器よりも主燃焼領域の温度を低下できるが
、2段燃焼器の主燃焼領域は壁面冷却空気により冷却さ
れず、比較的流量の少ない一次空気によって強制対流冷
却されるだけであるので、冷却が不十分であり、高温化
するという欠点があった。また一段部内筒に耐熱コーテ
ィングを施こしたり若しくは円筒にセラミック壁面を採
用して内筒を断熱化した2段燃焼器も知られている。し
かしこのような2段燃焼器は内筒内部の発熱が外部に放
熱されないためにfはり主し#焼頭域が高温化するとい
う欠点があった。
On the other hand, the conventional gaster-hyf two-stage combustion fan burns a transient mixture of primary air and fuel in the first-stage combustion zone, mixes this combustion gas with secondary air in the transition zone, and then burns the combustion gas in the second-stage combustion zone. This is to perform fuel lean combustion. This two-stage combustor can lower the temperature of the main combustion region more than the combustor described above, but the main combustion region of the two-stage combustor is not cooled by wall cooling air, but is forced convection cooling by primary air with a relatively low flow rate. This has the disadvantage that cooling is insufficient and the temperature rises. There are also known two-stage combustors in which the inner cylinder is heat-insulated by applying a heat-resistant coating to the inner cylinder or by using a ceramic wall surface on the cylinder. However, such a two-stage combustor has the disadvantage that the heat generated inside the inner cylinder is not radiated to the outside, so that the temperature of the scalloped head region becomes high.

〔発明の目的〕[Purpose of the invention]

そこで本発明の目的は主燃焼領域の温度上昇を抑え、N
o□の発生を低減するガスタービン燃焼器を提供するこ
とにある。
Therefore, the purpose of the present invention is to suppress the temperature rise in the main combustion region, and
An object of the present invention is to provide a gas turbine combustor that reduces the generation of o□.

〔発明の概要〕[Summary of the invention]

この目的を達成するために、本発明は燃焼器の外筒と内
筒との間に第1環状通路を形成すると共に、この内筒の
外面を取囲むように隔壁を設け、この隔壁と内筒外面と
の間に第2環状通路を形成し、内筒の先端部付近の上記
隔壁に入口開口を穿設して上記第1環状通路と第2環状
通路とを連通ずるようにしたものである。
In order to achieve this object, the present invention forms a first annular passage between an outer cylinder and an inner cylinder of a combustor, and also provides a partition wall so as to surround the outer surface of the inner cylinder. A second annular passage is formed between the inner cylinder and the outer surface of the cylinder, and an inlet opening is bored in the partition wall near the tip of the inner cylinder so that the first annular passage and the second annular passage communicate with each other. be.

〔発明の実施例〕[Embodiments of the invention]

以下本発明によるガスタービン燃焼器の一実施例を第2
図を参照して説明する。
A second embodiment of the gas turbine combustor according to the present invention will be described below.
This will be explained with reference to the figures.

第2図において、ガスタービン燃焼器の外筒11内には
内筒工2が収容され、この外筒11と内筒12との間に
は第1環状通路13が形成されている。上記内筒工2の
周壁には多斂の壁面冷却空気孔工4および希釈空気孔1
5が穿設され、内筒工2の先端部には一次空気孔16が
燃料ノズル17を取囲むように穿設されている。内筒1
2の外側には、この内筒を取囲むように円筒状隔壁18
が設けられ、第1環状通路工3を内筒I2から隔離して
いる。この円筒状隔壁18と内筒12との間には第2環
状通路19が形成されている。円筒状隔壁18の先端部
にrI′i第1環状通路工3と第2環状通路19とを連
通ずる入ロ開ロ別が穿設されている。上記円筒状隔壁1
8と内筒工2とを大々貫通する二次空気孔−′#21が
周方向に複数1161設けられている。これらの二次窒
気孔菅2It′i上記第1ffl状通路13を、第2環
状通路19に連面することなく、内筒12内部に直接連
通させる。上記内1#12の後端付近の第1環状通路1
3には圧縮機出口四が臨んでいる。また内筒■2の後端
はトランジションピース囚によってタービン1段ノズル
24に接続されている。
In FIG. 2, an inner cylinder 2 is housed in an outer cylinder 11 of a gas turbine combustor, and a first annular passage 13 is formed between the outer cylinder 11 and the inner cylinder 12. On the peripheral wall of the inner pipework 2, there are a polygonal wall cooling air hole 4 and a dilution air hole 1.
A primary air hole 16 is formed at the tip of the inner cylinder 2 so as to surround a fuel nozzle 17. Inner cylinder 1
A cylindrical partition wall 18 is provided on the outside of 2 to surround this inner cylinder.
is provided to isolate the first annular passageway 3 from the inner cylinder I2. A second annular passage 19 is formed between the cylindrical partition wall 18 and the inner cylinder 12. An opening for communicating the first annular passageway 3 and the second annular passageway 19 is bored at the tip of the cylindrical partition wall 18 . The cylindrical partition wall 1
A plurality of 1161 secondary air holes #21 are provided in the circumferential direction, which largely penetrate through the inner cylinder 8 and the inner cylinder 2. These secondary nitrogen hole tubes 2It'i and the first ffl-shaped passages 13 are made to communicate directly with the inside of the inner cylinder 12 without communicating with the second annular passage 19. First annular passage 1 near the rear end of 1#12 above
3 faces the compressor outlet 4. Further, the rear end of the inner cylinder 2 is connected to the turbine first stage nozzle 24 by a transition piece.

次に本発明によるガスタービン燃焼器の作動について説
明する。
Next, the operation of the gas turbine combustor according to the present invention will be explained.

圧縮機出口22から吐出された空気は第1環状通路13
を矢印で示されるように内筒12の後部から先端部に向
かって流れる。この吐出空気の一部は入口開口かから第
2環状通路19内に流入し、内筒120周壁を冷却しな
がら第2塀状通路19を通過し壁面冷却空気孔14と希
釈空気孔15とから内筒12内に流入する。吐出空気の
残部は一次窒気孔16および二次空気孔管21から大々
−次空気、二次空気として内筒12内の主燃焼領域δに
流入する。燃料ノズル17から噴射された燃料は上記−
次空気と二次空気に混合され燃焼される。この主燃焼領
域6で燃焼した燃焼ガスは下流の希$、領域26におい
て上記希釈空気孔15および壁面冷却空気孔工4からの
空気と混合しトランシジョンビーヌ23ヲ通ってタービ
ン1段ノズルムに流入する。
Air discharged from the compressor outlet 22 flows through the first annular passage 13
The water flows from the rear of the inner cylinder 12 toward the tip as shown by the arrow. A part of this discharged air flows into the second annular passage 19 from the inlet opening, passes through the second wall passage 19 while cooling the peripheral wall of the inner cylinder 120, and then flows from the wall cooling air hole 14 and the dilution air hole 15. It flows into the inner cylinder 12. The remainder of the discharged air flows from the primary nitrogen hole 16 and the secondary air hole pipe 21 into the main combustion region δ in the inner cylinder 12 as primary air and secondary air. The fuel injected from the fuel nozzle 17 is as described above.
It is mixed with secondary air and combusted. The combustion gas combusted in the main combustion zone 6 is mixed with the air from the dilution air hole 15 and the wall cooling air hole 4 in the downstream dilution zone 26, and passes through the transition vessel 23 to the turbine first stage nozzle. Inflow.

このように第1環状通路13は円筒状隔壁18によって
内筒12から隔離されているため、−次空気および二次
空気は共に比較的低温のまま内筒12の主燃焼領域部に
流入する。したがって主燃焼領域5の高温化が防止され
る。また、第2環状通路19を通る空気は比較的流量が
多く、それが燃焼器上流側より下流側へ流れるので、内
筒12の周壁が効果的に冷却される。
Since the first annular passage 13 is thus separated from the inner cylinder 12 by the cylindrical partition wall 18, both the secondary air and the secondary air flow into the main combustion region of the inner cylinder 12 at relatively low temperatures. Therefore, the temperature of the main combustion region 5 is prevented from increasing. Further, the flow rate of the air passing through the second annular passage 19 is relatively large, and since it flows from the upstream side to the downstream side of the combustor, the peripheral wall of the inner cylinder 12 is effectively cooled.

〔発明の笈形例〕[Example of the invention]

本発明をガスタービン2段燃焼器に適用した実施例を第
3図乃至第6図を径線して説明する。なお、第2図中の
部材七同一部材には同一符号を付して示し、その説明を
省略する。
An embodiment in which the present invention is applied to a two-stage gas turbine combustor will be described with reference to FIGS. 3 to 6. Note that the same members in FIG. 2 are designated by the same reference numerals, and their explanations will be omitted.

第3図において、円筒状隔壁18は内筒J2の外面を、
上流の1段燃焼域27と中間の遷移域路と、下流の2段
燃謂域四とのすべてにわたって取囲んでいる。二次空気
孔W21は第ii状通路■3と内筒12の遷移域別とを
連通ずる。
In FIG. 3, the cylindrical partition wall 18 covers the outer surface of the inner cylinder J2,
It surrounds the first stage combustion zone 27 upstream, the intermediate transition zone, and the second stage combustion zone 4 downstream. The secondary air hole W21 communicates the II-shaped passage (3) with the transition region of the inner cylinder 12.

第4図は記3図のM4矢視断面図であり、内筒■2の外
周面に第3図に示されていない冷却用フィン30が多硅
突設されている。これらの冷却用フィン30は燃焼器の
軸線方向に旧って延びている。
FIG. 4 is a sectional view taken along arrow M4 in FIG. 3, and cooling fins 30 (not shown in FIG. 3) are provided in multiple protrusions on the outer peripheral surface of the inner cylinder (2). These cooling fins 30 extend in the axial direction of the combustor.

第5図は第3図のv−■矢視断面図であり、4個の二次
空気孔管21の配設位置を明示している。
FIG. 5 is a sectional view taken along the line v--2 in FIG. 3, and clearly shows the positions of the four secondary air hole pipes 21.

なお第3図には上記4個の二次空気孔管21のうちの上
下の管が断面として示されるべきであるが、第2現状通
路19のつながりを示すために、上部の二次空気管の図
示が省略されている。
Although FIG. 3 should show the upper and lower pipes of the four secondary air hole pipes 21 as cross sections, in order to show the connection of the second current passage 19, the upper secondary air pipe illustration is omitted.

第6図は第5図のIV−11/矢視断面図であり、第2
環状通路19内に設けられた整流板31は、二次空気孔
管21の近傍に、厳密には二次空気孔管21の中Iむよ
り下流側に配置され、二次空気孔管21の周辺下流部の
空気流の流速を一様とし二次空気孔管による望気流の乱
れを防止している。
FIG. 6 is a sectional view of IV-11/arrow in FIG.
The rectifying plate 31 provided in the annular passage 19 is disposed near the secondary air hole pipe 21 , more precisely on the downstream side of the secondary air hole pipe 21 , and is arranged in the vicinity of the secondary air hole pipe 21 . The flow velocity of the airflow in the peripheral downstream area is made uniform to prevent disturbance of the desired airflow due to the secondary air hole pipe.

第3図の2段燃焼器の作動を以下に説明する。The operation of the two-stage combustor of FIG. 3 will now be described.

第3図妊おいて、圧縮機出口22からの吐出空気の一部
は第1環状通路13を流通し円筒隔壁18の入ロ開ロ肋
から第2猿状通路19内に流入し内筒12を冷却しなが
ら1段燃焼域υの外側、遷移域別の外I11を流れ、壁
面冷却空気孔J4と希釈空気孔15から2段燃焼域29
に流入する。上記吐出空気の残部は一次空気孔16およ
び二次空気孔管21から内筒12の主燃焼領域部ち1段
燃焼械4と遷移域路とに流入する。燃料ノズル17から
噴射された燃料は1段燃焼域27において一次空気と混
合され、燃料過濃状態で燃焼され、これにより生じた燃
焼ガスは遷移域別で二次空気と混合し燃料希薄燃焼され
2段燃焼域29で希釈空気と混合しターヒフ1段ノズル
別へ流出する。
In FIG. 3, a part of the air discharged from the compressor outlet 22 flows through the first annular passage 13 and flows into the second monkey-shaped passage 19 from the opening rib of the cylindrical partition 18, and flows into the inner cylinder 12. While cooling the air, it flows outside the first stage combustion zone υ and outside the transition zone I11, and from the wall cooling air hole J4 and the dilution air hole 15 to the second stage combustion zone 29.
flows into. The remainder of the discharged air flows from the primary air hole 16 and the secondary air hole pipe 21 into the main combustion region of the inner cylinder 12, that is, the first stage combustion machine 4 and the transition zone passage. The fuel injected from the fuel nozzle 17 is mixed with primary air in the first-stage combustion zone 27 and burnt in a fuel-rich state, and the combustion gas generated thereby is mixed with secondary air in each transition zone to perform fuel-lean combustion. It mixes with dilution air in the second-stage combustion zone 29 and flows out to the first-stage Tahif nozzle.

この際、第4図に示されたように内筒12の外面に冷却
用フィンふ)を突設したことにエリ、第2項状通路19
を流れる空気の熱交換が促進され、内筒12の冷却が一
層効果的に行われる。里だ整流板31は空気流が、二次
空気孔管21によって乱されるのを抑えて内筒12の冷
Bl効果を均一化し、内筒12が局部的に高温化するの
を低減する。
At this time, as shown in FIG.
The heat exchange of the air flowing through is promoted, and the inner cylinder 12 is cooled more effectively. The Satoda baffle plate 31 suppresses the air flow from being disturbed by the secondary air hole pipe 21, uniformizes the cold Bl effect of the inner cylinder 12, and reduces the local temperature rise of the inner cylinder 12.

第7図に燃焼器の中心釉上の温度分布に関し本発明に係
るガスタービン燃焼器と従来のガスタービン燃焼器との
比較例を示す。
FIG. 7 shows a comparative example of the gas turbine combustor according to the present invention and a conventional gas turbine combustor regarding the temperature distribution on the central glaze of the combustor.

紀7図において、横軸Viffi焼器の先端からの距離
であり、縦軸は燃焼器中7D軸上の温度を表わす。
In Figure 7, the horizontal axis represents the distance from the tip of the Viffi burner, and the vertical axis represents the temperature on the 7D axis in the combustor.

実線Aは本発明に1系る2段燃焼器の温度分布を一点釦
線Bは従来のガスタービン2段燃焼器の温度分布を、点
線Cは従来のガスタービン燃焼器の滉度分布を大々表わ
す。このグラフから明らかなように、本発明に係る2段
燃焼器の主燃焼領域の温度は、従来の燃焼器妊比べて格
段に、また従来の2段燃焼器に比べてもかなり低くなっ
ている。□第8図は第3図の2段燃焼器を更に改良した
実施例を示す。
The solid line A shows the temperature distribution of the two-stage combustor according to the present invention, the dotted line B shows the temperature distribution of the conventional gas turbine two-stage combustor, and the dotted line C shows the temperature distribution of the conventional gas turbine combustor. express each other. As is clear from this graph, the temperature in the main combustion region of the two-stage combustor according to the present invention is much lower than that of a conventional combustor, and also considerably lower than that of a conventional two-stage combustor. . □Figure 8 shows an embodiment in which the two-stage combustor shown in Figure 3 is further improved.

遷移域路と2段燃焼域四との位置する内筒12の外面を
取囲むように第2円筒状隔壁32が設けられ、この第2
円筒状隔壁32は内筒工2との間に第3環状通路33を
形成する。この第3環状通路33は壁面冷却空気孔14
によってのみ内筒12内部と連通されている。円筒状隔
壁18は1段燃焼域がの内筒工2外面と上記第2円筒状
隔壁32とを取囲むように設けられ、内筒12および第
2円筒状隔壁32との間に第2環状通路19を形成する
。この第2環状通路19は希釈空気孔■5によってのみ
内筒12の内部と連通されている。隔壁18の先端部に
は入口開口」が穿設されている。この隔壁18と第2隔
壁32と内筒工2とを貫通する二次空気孔管21は第1
環状通路■3と内筒12の遷移域路とを連通ずる。隔壁
18と第2隔壁32とを貫通する第3@状通路用入口管
34は二次空気孔g21よりも上流側に設けられ、第1
@状通路13と第3環状通路33とを連通している。
A second cylindrical partition wall 32 is provided so as to surround the outer surface of the inner cylinder 12 where the transition zone passage and the second stage combustion zone 4 are located.
The cylindrical partition wall 32 forms a third annular passage 33 between the cylindrical partition wall 32 and the inner tubework 2 . This third annular passage 33 is connected to the wall cooling air hole 14.
It is communicated with the inside of the inner cylinder 12 only by. The cylindrical partition wall 18 is provided so that the first stage combustion zone surrounds the outer surface of the inner cylinder part 2 and the second cylindrical partition wall 32, and a second annular partition wall is provided between the inner cylinder 12 and the second cylindrical partition wall 32. A passage 19 is formed. This second annular passage 19 is communicated with the inside of the inner cylinder 12 only through the dilution air hole 5. An inlet opening is formed at the tip of the partition wall 18. The secondary air hole pipe 21 that passes through the partition wall 18, the second partition wall 32, and the inner pipework 2 is connected to the first
The annular passage 3 and the transition zone passage of the inner cylinder 12 are communicated with each other. The third @-shaped passage inlet pipe 34 that penetrates the partition wall 18 and the second partition wall 32 is provided upstream of the secondary air hole g21, and
The @-shaped passage 13 and the third annular passage 33 are communicated with each other.

第3猿状通路用入口管34に流入した吐出空気は、遷移
域路の内筒12と2段燃焼域四〇内筒12とを冷却しな
がら第3環状通路おを流通し壁面冷却空気孔■4から内
筒12内部に流入する。また入ロ開ロ加に流入した空気
は一段燃焼域270内筒12と第2隔壁32を冷却しな
がら第2環状通路19内を流通し希釈空気孔工5から内
筒12内に流入する。このように比較的低温の吐出空気
が第3環状通路用入口管34に流入した後、ただちに遷
移域路と2段燃焼域四〇内筒12を冷却するので、冷却
効果は第3図の例よりも一層向上する。
The discharge air that has entered the third monkey-shaped passage inlet pipe 34 flows through the third annular passage while cooling the inner cylinder 12 of the transition zone passage and the second-stage combustion zone 40 inner cylinder 12, and flows through the wall cooling air hole. ■Flows into the inner cylinder 12 from 4. In addition, the air that has flowed into the inlet opening flows through the second annular passage 19 while cooling the inner cylinder 12 of the first-stage combustion zone 270 and the second partition wall 32, and flows into the inner cylinder 12 from the dilution air hole 5. In this way, after relatively low-temperature discharge air flows into the third annular passage inlet pipe 34, it immediately cools the transition zone passage and the second-stage combustion zone 40 inner cylinder 12, so that the cooling effect is as shown in the example of Fig. 3. Even better than that.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、燃焼
器の外筒と内筒との間に第1環状通路を形成すると共に
、この内筒外面をホ囲むように隔壁を設け、この隔壁と
内筒外面との間に第2環状通路を形成し、内筒先端部付
近の土肥隔壁に入口開口を穿設して上記第133状通路
と第2環状通路とを連通する構成であるから、上記隔壁
の存在により第1環状通路を流れる空気の温度上昇が抑
えられるため、比較的低温の望気を主燃焼領域に供給で
き、そこの高温化を避けNOxの発生数を低減てきる。
As is clear from the above description, according to the present invention, a first annular passage is formed between the outer cylinder and the inner cylinder of the combustor, and a partition wall is provided so as to surround the outer surface of the inner cylinder. A second annular passage is formed between the partition wall and the outer surface of the inner cylinder, and an inlet opening is bored in the soil partition wall near the tip of the inner cylinder to communicate the 133rd-shaped passage with the second annular passage. Therefore, the presence of the partition walls suppresses the temperature rise of the air flowing through the first annular passage, so relatively low-temperature desired air can be supplied to the main combustion region, which avoids high temperatures there and reduces the number of NOx emissions. .

さらに第2環状通路内の空気にエリ内筒壁面を冷却する
ので、円筒壁面自体の高温化を抑えられ、内筒の寿茄を
延すことができる。
Furthermore, since the inner cylinder wall surface is cooled by the air in the second annular passage, the rise in temperature of the cylinder wall surface itself can be suppressed, and the service life of the inner cylinder can be extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガスタービン燃焼器を示した縦断面図、
第2図は本発明によるガスタービン燃焼器の一実施例を
示した縦断面図、第3図は本発明の他の実施例を示した
縦断面図、第4図は第3図の■−■矢視断面図、第5図
は第3図の■−■矢視断面図、第6図は第5図の■−■
矢視断面図、第7図は燃焼器中Ib軸上の温度分布を示
したグラフ、第8図は本発明のさらに別の実施例を示し
た縦断面図である。 11・・・外筒、12・・・内筒、13・・・第1環状
通路、14・・・壁面冷却空気孔、15・・希釈空気孔
、10・・・−次空気孔、18・・・隔壁、19・・・
第2環状通路、か・・・入口開口。 出願人代理人  猪  股     清第4 図 第5図 第7図 認娩巻り漏〃1うn蹄離
Figure 1 is a longitudinal sectional view showing a conventional gas turbine combustor.
FIG. 2 is a longitudinal cross-sectional view showing one embodiment of a gas turbine combustor according to the present invention, FIG. 3 is a longitudinal cross-sectional view showing another embodiment of the present invention, and FIG. ■A sectional view taken along the arrows, Figure 5 is a sectional view taken along the ■-■ arrows in Figure 3, and Figure 6 is a sectional view taken along the ■-■ arrows in Figure 5.
7 is a graph showing the temperature distribution on the Ib axis in the combustor, and FIG. 8 is a longitudinal sectional view showing still another embodiment of the present invention. DESCRIPTION OF SYMBOLS 11... Outer cylinder, 12... Inner cylinder, 13... First annular passage, 14... Wall cooling air hole, 15... Dilution air hole, 10... Secondary air hole, 18... ...Bulkhead, 19...
The second annular passage, or... entrance opening. Applicant's representative Kiyoshi Inomata Figure 5 Figure 7 Diagram 1.

Claims (1)

【特許請求の範囲】 1、先端部に一次空気孔が、その後方部に壁面冷却空気
孔と希釈空気孔が大々穿設された内筒と、この内筒を取
囲む外筒とを具備し、圧縮機からの吐出空気が上記内筒
と上記外筒との間の第1環状通路内を上記内筒の後部か
ら先端部の方へ流通するガスタービン燃焼器において、
上記内筒の外面を取囲むように隔壁を設けこの隔壁と上
記内筒との間に第2環状通路を形成し、上記内筒先端部
付近の上記隔壁に入口開口を穿設して上記第1環状通路
と上記第2環状通路とを連通ずることを特徴とするガス
タービン燃焼器。 2、遷移域と2段燃焼域の内筒を取囲む第2隔壁が上記
隔壁と上記内筒との間に設けられ、この第2隔壁と上記
内筒との間に形成された第3環状通路は上記第1J状通
路と連通ずるが上記第2環状通路とは隔離され、かつ上
記内筒内部とは上記壁面冷却空気孔を介して連通ずるこ
とを特徴とする特許請求の範囲第1項に記載のガスター
ビン燃焼器。 3上記第2環状通路内に、燃焼器の軸方向に延びた冷却
用フィンが多数上記内筒外面から突出していることを特
徴とする特許請求の範囲第1項又は第2項に記載のガス
タービン燃焼器。 4、上記第1環状通路と上記内筒内部とを連通ずる二次
空気孔管が上記第2項状通路と隔離されて設ゆられてい
ることを特徴とする特許請求の範囲第1項又は第2項に
記載のガスタービン燃焼器。 5、上記第2環状通路内の空気流が、その第2環状通路
を貫通する上記二次空気孔管によって乱されるのを防止
する整流装置を設けることを特徴とする特許請求の範囲
第4項に記載のガスタービン燃焼器。
[Scope of Claims] 1. Equipped with an inner cylinder in which a primary air hole is provided at the tip end, and wall cooling air holes and dilution air holes are formed in the rear part of the inner cylinder, and an outer cylinder that surrounds this inner cylinder. and in a gas turbine combustor in which air discharged from the compressor flows through a first annular passage between the inner cylinder and the outer cylinder from the rear part of the inner cylinder toward the front end,
A partition wall is provided to surround the outer surface of the inner cylinder, a second annular passage is formed between the partition wall and the inner cylinder, and an inlet opening is bored in the partition wall near the tip of the inner cylinder. A gas turbine combustor characterized in that a first annular passage and a second annular passage communicate with each other. 2. A second partition wall surrounding the inner cylinders of the transition zone and the second stage combustion zone is provided between the partition wall and the inner cylinder, and a third annular partition wall is formed between the second partition wall and the inner cylinder. Claim 1, wherein the passage communicates with the first J-shaped passage but is isolated from the second annular passage, and communicates with the inside of the inner cylinder via the wall cooling air hole. Gas turbine combustor described in. 3. The gas according to claim 1 or 2, wherein a large number of cooling fins extending in the axial direction of the combustor protrude from the outer surface of the inner cylinder in the second annular passage. Turbine combustor. 4. Claim 1 or 2, characterized in that a secondary air hole pipe communicating the first annular passage and the inside of the inner cylinder is provided to be separated from the second annular passage. The gas turbine combustor according to item 2. 5. A rectifying device is provided to prevent the air flow in the second annular passage from being disturbed by the secondary air hole pipe passing through the second annular passage. The gas turbine combustor described in .
JP17026382A 1982-09-29 1982-09-29 Combustor for gas turbine Pending JPS5960127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17026382A JPS5960127A (en) 1982-09-29 1982-09-29 Combustor for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17026382A JPS5960127A (en) 1982-09-29 1982-09-29 Combustor for gas turbine

Publications (1)

Publication Number Publication Date
JPS5960127A true JPS5960127A (en) 1984-04-06

Family

ID=15901689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17026382A Pending JPS5960127A (en) 1982-09-29 1982-09-29 Combustor for gas turbine

Country Status (1)

Country Link
JP (1) JPS5960127A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277522A (en) * 1985-09-30 1987-04-09 Toyota Central Res & Dev Lab Inc Burner of atomization type
JP2009275701A (en) * 2008-05-13 2009-11-26 General Electric Co <Ge> Method and device for cooling and dilution-adjusting gas turbine combustor liner and transition piece joint part
JP2011163752A (en) * 2010-02-15 2011-08-25 General Electric Co <Ge> System and method for supplying high pressure air to head end of combustor
EP2527739A3 (en) * 2011-05-24 2013-09-18 General Electric Company System and method for flow control in gas turbine engine
JP2013228192A (en) * 2012-04-24 2013-11-07 General Electric Co <Ge> Combustor apparatus for stoichiometric combustion
EP3220049A1 (en) * 2016-03-15 2017-09-20 General Electric Company Gas turbine combustor having liner cooling guide vanes
WO2019088107A1 (en) * 2017-10-31 2019-05-09 国立研究開発法人産業技術総合研究所 Combustor and combustion method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277522A (en) * 1985-09-30 1987-04-09 Toyota Central Res & Dev Lab Inc Burner of atomization type
JPH0454848B2 (en) * 1985-09-30 1992-09-01 Toyoda Chuo Kenkyusho Kk
JP2009275701A (en) * 2008-05-13 2009-11-26 General Electric Co <Ge> Method and device for cooling and dilution-adjusting gas turbine combustor liner and transition piece joint part
JP2011163752A (en) * 2010-02-15 2011-08-25 General Electric Co <Ge> System and method for supplying high pressure air to head end of combustor
DE102011000587B4 (en) 2010-02-15 2024-04-25 General Electric Technology Gmbh Systems and methods for supplying high pressure air to the head end of a combustion chamber
US8919127B2 (en) 2011-05-24 2014-12-30 General Electric Company System and method for flow control in gas turbine engine
EP2527739A3 (en) * 2011-05-24 2013-09-18 General Electric Company System and method for flow control in gas turbine engine
JP2013228192A (en) * 2012-04-24 2013-11-07 General Electric Co <Ge> Combustor apparatus for stoichiometric combustion
EP3220049A1 (en) * 2016-03-15 2017-09-20 General Electric Company Gas turbine combustor having liner cooling guide vanes
JP2017166485A (en) * 2016-03-15 2017-09-21 ゼネラル・エレクトリック・カンパニイ Combustion liner cooling
US10344978B2 (en) 2016-03-15 2019-07-09 General Electric Company Combustion liner cooling
WO2019088107A1 (en) * 2017-10-31 2019-05-09 国立研究開発法人産業技術総合研究所 Combustor and combustion method
JPWO2019088107A1 (en) * 2017-10-31 2020-11-12 国立研究開発法人産業技術総合研究所 Combustor and combustion method

Similar Documents

Publication Publication Date Title
EP0204553B1 (en) Combustor for gas turbine engine
KR930003077B1 (en) Gas turbine combustion chamber
US6546732B1 (en) Methods and apparatus for cooling gas turbine engine combustors
EP1253379B1 (en) Methods and apparatus for cooling gas turbine engine combustors
US4805397A (en) Combustion chamber structure for a turbojet engine
KR950003747B1 (en) Gas turbine
US8516822B2 (en) Angled vanes in combustor flow sleeve
US2916878A (en) Air-directing vane structure for fluid fuel combustor
US6530227B1 (en) Methods and apparatus for cooling gas turbine engine combustors
US20030233832A1 (en) Advanced cooling configuration for a low emissions combustor venturi
US4104874A (en) Double-walled combustion chamber shell having combined convective wall cooling and film cooling
JP2009085222A (en) Rear end liner assembly with turbulator and its cooling method
US6832482B2 (en) Pressure ram device on a gas turbine combustor
KR20010085488A (en) Combustor liner cooling thimbles and related method
JP2009019869A (en) Apparatus/method for cooling combustion chamber/venturi in low nox combustor
JP2005345093A (en) Method and device for cooling combustor liner and transition component of gas turbine
JPH0524337B2 (en)
US2651912A (en) Combustor and cooling means therefor
BRPI1101657A2 (en) angle sealing cooling system
JP2005037122A (en) Method and device for cooling combustor for gas turbine engine
US5133192A (en) Fuel vaporizer
JPS5960127A (en) Combustor for gas turbine
US2813397A (en) Thermal expansion means for combustion chambers
US9322557B2 (en) Combustor and method for distributing fuel in the combustor
JPS621174B2 (en)