JPS5960053A - Control system for internal combustion engine - Google Patents

Control system for internal combustion engine

Info

Publication number
JPS5960053A
JPS5960053A JP57169590A JP16959082A JPS5960053A JP S5960053 A JPS5960053 A JP S5960053A JP 57169590 A JP57169590 A JP 57169590A JP 16959082 A JP16959082 A JP 16959082A JP S5960053 A JPS5960053 A JP S5960053A
Authority
JP
Japan
Prior art keywords
sensor
pressure
cylinder
combustion
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57169590A
Other languages
Japanese (ja)
Inventor
Yoshitaka Hata
秦 好孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP57169590A priority Critical patent/JPS5960053A/en
Publication of JPS5960053A publication Critical patent/JPS5960053A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To enable to correct desired values of control elements such as the ignition timing, rate of exhaust-gas recirculation, etc., by providing sensors for detecting the conditions of combustion in the cylinder of an engine, comparing the output values of these sensor with reference values under the operational conditions at the time, and correcting the desired value of control elements according to the deviation between the output values of the sensors and the reference values. CONSTITUTION:A sensor 21 for detecting the pressure in a cylinder, a sensor 22 for detecting the pressure at the part of the washer of an ignition plug, an ion gas sensor 23 for detecting the propagation time of combustion flame, etc. are used for detecting the conditions of combustion in the cylinder. At a step F1, pressure PTHETA-i in the cylinder at each position of a crank, detected from a pressure signal P given from the sensor 21 and a reference signal and a unit signal theta of the crank position, is stored in memory. At a step F2, the pressure PTHETA-i is compared with PTHETA-i-1. At a step F3, the cank position thetaPmax at the time when the pressure in the cylinder becomes maximum is calculated. Further, at a step F4, thetaPmax is stored in memory. An aimed value T for thetaPmax under the operational conditions at the time is calculated at a step F6 and an ignition timing controlling output is produced at a step F9 by correcting the valve T at a step F8.

Description

【発明の詳細な説明】 本発明は内燃機関の点火時期、EGR量等の制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for controlling ignition timing, EGR amount, etc. of an internal combustion engine.

従来の内燃機関の制御装置としては、例えば第1図に示
すようなものがある。
As a conventional internal combustion engine control device, there is one shown in FIG. 1, for example.

これについて説明すると、エアクリーナ1からエアフロ
メータ2を経て吸入される空気は数多弁3によシ制御さ
れた後、EGR制御弁4を介して導入される還流排気、
及び燃料噴射弁5から噴射供給される燃料と混合し、機
関本体6の燃焼室内に吸入される。そして、点火栓7に
よ多点火されて、着火燃焼した後に、排出され、排気は
三元触媒8によシ浄化される。
To explain this, the air taken in from the air cleaner 1 via the air flow meter 2 is controlled by the multiple valves 3, and then the recirculated exhaust gas is introduced via the EGR control valve 4.
The fuel is mixed with the fuel injected from the fuel injection valve 5 and sucked into the combustion chamber of the engine body 6. Then, after being ignited by the spark plug 7 and ignited and combusted, it is discharged, and the exhaust gas is purified by the three-way catalyst 8.

ここで、排気中の酸素濃度したがって空燃比を02セン
?9Kj!D検出し、コントロールユニット10を介し
て燃料噴射弁5の作動を制御することによシ、空燃比を
一定(理論空燃比14.5 )にフィードバック制御す
る。
Here, the oxygen concentration in the exhaust gas and therefore the air-fuel ratio is 02 sen? 9Kj! By detecting D and controlling the operation of the fuel injection valve 5 via the control unit 10, the air-fuel ratio is feedback-controlled to a constant value (theoretical air-fuel ratio 14.5).

また、ディストリビュータ11に取付けたクランク位置
センサ12の出力、エアフロメータ2の出力、冷却水温
度センサ13の出力等をコントロールユニット10に入
力し、これらよシ検出される機関回転数、吸入空気量(
=負荷)、機関温度等の機関運転条件に基づいて、点火
コイル14の作動、及び負圧制御弁15を介しEGR制
御弁4の作動を制御することによシ、点火時期及びEG
R量を制御する。
In addition, the output of the crank position sensor 12 attached to the distributor 11, the output of the air flow meter 2, the output of the cooling water temperature sensor 13, etc. are input to the control unit 10, and the engine speed and intake air amount (
By controlling the operation of the ignition coil 14 and the operation of the EGR control valve 4 via the negative pressure control valve 15 based on engine operating conditions such as load) and engine temperature, the ignition timing and EGR are controlled.
Control the amount of R.

しかしながら、このような従来の内燃機関の制御装置に
あっては、機関回転数、吸入空気量、機関温度等の情報
を基に、これらに対応させて予め記憶させておいてテー
ブルから点火時期、EGR量の最適値を胱出し、これを
目標値として点火コイル14、負圧制御弁15等に出力
し、点火時期、EGR量を制御する楕成となっていたた
め、各種の運転条件に応じ点火時期、EGR量の目標値
が予め決められてしまい、機関個々の特性、経時変化、
大気圧、大気温度及び湿度等の変化に対応しきれず、言
換れば実際の燃焼状態には対応しきれなかった。また、
予めデータを貯えるため、機関個々のバラツキを見込ん
だ余裕のある設定をしておく必要があシ、各機関の限界
性能ぎシぎシ迄、点火時期、EGR量を変更制御するこ
とはできなかった。
However, in such a conventional internal combustion engine control device, based on information such as engine speed, intake air amount, engine temperature, etc., the ignition timing, The optimal value for the EGR amount is determined, and this value is output as a target value to the ignition coil 14, negative pressure control valve 15, etc., and the ignition timing and EGR amount are controlled. The timing and target value of EGR amount are determined in advance, and the characteristics of each engine, changes over time,
It was unable to cope with changes in atmospheric pressure, atmospheric temperature, humidity, etc., or in other words, it was unable to cope with actual combustion conditions. Also,
In order to store data in advance, it is necessary to make settings with a margin that takes into account variations in each engine, and it is not possible to change and control the ignition timing and EGR amount until the performance limit of each engine is reached. Ta.

本発明はこのような従来の問題点に着目し、これを解決
することを目的としてなされたもので、機関の筒内での
燃焼状態を検出するセンサを設けると共に、該センサの
検出値をそのときの運転条件での基準値と比較しその差
に応じて点火時期、EGRi等の制御要素の目標値を修
正する回路を設けることにより、機関製造上のバラツキ
や経時変化に対しても最適な制御を実現でき、また各機
関の限界性能ぎシぎシ迄点火時期、EGR量を変更でき
るようにしたものである。
The present invention has been made with the aim of solving these conventional problems, and includes a sensor that detects the combustion state in the cylinder of an engine, and also uses the detected value of the sensor. By installing a circuit that compares the reference values under the current operating conditions and corrects the target values of control elements such as ignition timing and EGRi according to the difference, the optimum value can be adjusted against variations in engine manufacturing and changes over time. It is possible to realize control and to change the ignition timing and EGR amount up to the limit performance of each engine.

以下、実施例を説明する。Examples will be described below.

点火時期、EGR量は機関の運転条件、例えば機関回転
数、吸入空気量(=負荷)、機関温度から予め定められ
た値となるようテーブルに記憶された目標値に合わせて
制御出力が出されることによ多制御されるが、前記目槓
値を修正するために、機関の筒内での燃焼状態を検出す
るセンサを設りる。
Ignition timing and EGR amount are control outputs according to target values stored in a table so that they are predetermined values based on engine operating conditions, such as engine speed, intake air amount (=load), and engine temperature. In order to correct the target value, which is often controlled, a sensor is provided to detect the combustion state within the cylinder of the engine.

とのセンサとしては、第2図に示すように、筒内圧力(
燃焼圧力)を検出する筒内圧力センサ21点火栓7の座
金部に共線めした点火栓座金部圧力センサ22、燃焼火
炎至達時間を検出すべく筒内に臨ませたイオンギャップ
センサ23、燃焼室内火炎の光り強さを検出するフォト
ダイオード等の光度センサ(図示せず)、燃焼室内の温
度を検出する温度センサ(図示せず)等を選択使用する
As shown in Fig. 2, the sensor for the cylinder pressure (
An in-cylinder pressure sensor 21 that detects the combustion pressure (combustion pressure); a spark plug washer pressure sensor 22 collinear with the washer of the spark plug 7; an ion gap sensor 23 that faces into the cylinder to detect the combustion flame arrival time; A light intensity sensor (not shown) such as a photodiode that detects the intensity of the flame in the combustion chamber, a temperature sensor (not shown) that detects the temperature inside the combustion chamber, and the like are selectively used.

そして、とのセンサの出力より燃焼状態を判断する炉焼
状態判断ルーチンをコントロールユニット(第1図10
)内に組込み、その判断に基づき、点火時期、EGR量
の目標値、したがって制御出力を修正するようにする。
Then, the control unit (Fig. 10
), and based on the judgment, the ignition timing, the target value of the EGR amount, and therefore the control output are corrected.

燃焼状態センサとして筒内圧力センサ21を使用した場
合の具体例を第3図のフローチャートにしたがって以下
に述べる。
A specific example of using the in-cylinder pressure sensor 21 as the combustion state sensor will be described below with reference to the flowchart of FIG.

筒内圧力センサ21からの圧力信号P、クランク位置の
基準信号及び単位信号θの入力’に9けて、Flにおい
て各クランク位置での筒内圧力Pθ=lをメモリし、こ
れをF2において前回のpθ−1−1と比較し、これを
繰返すことによj5F3において筒内圧力が最大(Pm
ax)となるときのクランク位置θpmaxを算出する
。ここで、θpmaxは例えはTDCからPmax i
でのクランク角度である。尚、筒内圧力の微分値がゼロ
となるクランク位置を検出するようにしてもよ1ハ。
The pressure signal P from the cylinder pressure sensor 21, the reference signal for the crank position, and the unit signal θ are input in 9 digits, and the cylinder pressure Pθ=l at each crank position is memorized in Fl, and this is stored as the previous value in F2. By comparing this with pθ-1-1 of
ax), the crank position θpmax is calculated. Here, θpmax is, for example, Pmax i from TDC
This is the crank angle at . Incidentally, the crank position at which the differential value of the cylinder pressure becomes zero may be detected.

そして、このθpmaxをF4においてメモリし、F5
においてこれを含め前9回の平均値TΣθpmaxを算
出する。
Then, this θpmax is stored in memory at F4, and
Including this, the average value TΣθpmax of the previous nine times is calculated.

他方、機関回転数、負荷等の機関運転条件の入力を受け
て、F6において当該運転条件でのθpmaxの目標値
Tを算出する。
On the other hand, upon receiving input of engine operating conditions such as engine speed and load, a target value T of θpmax under the operating conditions is calculated in F6.

そしてFlにおいて、θpmaxの実際値(平均値)と
目標値Tとを比較し、その偏差を求める。そして、F8
において、テーブルルックアップされた点火時期の目標
値を前記偏差に係数αをかけたもので修正し、これを新
たな目標値として、F9において点火時期制御出力を発
するのである。
Then, at Fl, the actual value (average value) of θpmax is compared with the target value T, and the deviation thereof is determined. And F8
At step F9, the target value of the ignition timing looked up in the table is corrected by multiplying the deviation by a coefficient α, and using this as the new target value, an ignition timing control output is issued at F9.

また、前記F6において当該運転条件でのθpmaxの
燃焼安定限界値K 1 + F2を算出しておき、FI
Oにおいて、θpmaxの実際値(平均値)かに1とに
2の間(K1〈θpmax< F2 )にあるか否を判
断する。
In addition, in the above F6, the combustion stability limit value K 1 + F2 of θpmax under the relevant operating conditions is calculated, and the FI
At O, it is determined whether the actual value (average value) of θpmax is between 1 and 2 (K1<θpmax<F2).

そして、YESの場合は、安定燃焼と判断し、Fllに
おいてテーブルルックアップされているEGR量の目標
値を増量方向に修正し、NOの場合は、不安定燃焼と判
断し、Fl2において減量方向に修正し、これを新たな
目標値として、F1aにおいてEGR量制御出力を発す
るのである。
If YES, it is determined that combustion is stable, and the target value of the EGR amount looked up in the table is revised in the direction of increase. If NO, it is determined that combustion is unstable, and the target value of EGR amount looked up in Fl1 is revised in the direction of reduction. This is corrected and set as a new target value, and an EGR amount control output is issued at F1a.

このように燃焼状態を常に監視し、燃焼最良点に点火時
期を制御しつつ、安定限界までEGR量を増量できるよ
うにすることによシ、燃費向上、排気清浄化を一層効率
良く達成できる。
In this way, by constantly monitoring the combustion state, controlling the ignition timing to the best combustion point, and increasing the EGR amount up to the stability limit, fuel efficiency and exhaust gas purification can be achieved more efficiently.

燃焼安定、不安定の判断を行なう方法としては、θpm
axが所定の範囲内にあるか否かを検出する方法の他、
分散度Vθpmax−TΣ(θpmax−θpmax 
i) ”から判断する方法もある。すなわち、n回の平
均値θpmaxと個々のデータθpmax iを比較し
、その差の2乗の平均値■θpmaxを求め、■θpm
axが所定値を越えたときに燃焼不安定とみなす。尚、
EGR率とepm&Xの変動率との関係は第4図に示さ
れる如く表わされる。
As a method to judge whether combustion is stable or unstable, θpm
In addition to the method of detecting whether ax is within a predetermined range,
Dispersion degree Vθpmax-TΣ(θpmax-θpmax
i) There is also a method to judge from ``.In other words, compare the average value θpmax of n times and the individual data θpmax i, find the average value ■θpmax of the square of the difference, and calculate ■θpm
When ax exceeds a predetermined value, combustion is considered unstable. still,
The relationship between the EGR rate and the fluctuation rate of EPM&X is expressed as shown in FIG.

この他、Pmaxを検出し、これが所定値よ)低下した
ときに燃焼不安定とみなすようにしてもよい。
In addition, Pmax may be detected and combustion may be considered unstable when it falls below a predetermined value.

尚、上記では点火時期、EGR量の制御を主体に述べた
が、空燃比についても修正制御が可能で(7) 、+JJ−^ リ    ノ 二μ 1ノーシーt1リ
ーフ’J+”ノ碍トあることは勿論であシ、燃焼に関連
する制御要素(制御変数)は全て燃焼状態判断に基づく
最適化制御が可能となる。
Although the above discussion focused on controlling the ignition timing and EGR amount, it is also possible to perform corrective control on the air-fuel ratio (7). Of course, all control elements (control variables) related to combustion can be controlled optimally based on combustion state judgment.

以上説明したように本発明によれば、機関の製造上のバ
ラツキや経時変化に対しても最適な制御を実現でき、例
えば最良燃焼点に点火時期を制御しつつ、安定燃焼限界
までEGRを行なって機関の性能を最大限まで引出すこ
とが可能になるという効果が得られる。
As explained above, according to the present invention, it is possible to achieve optimal control even with respect to engine manufacturing variations and changes over time. For example, while controlling the ignition timing to the best combustion point, EGR is performed to the stable combustion limit. The effect is that it becomes possible to bring out the maximum performance of the engine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示すシステム図、第2図は本発明に係
る燃焼状態センサの例を示す機関の断面図、第3図は本
発明の一実施例を示すフローチャート、第4図はEGR
率とθpmlLXとの関係を示す線図である。 2・・・エアフロメータ  4・・・EGR制御弁5・
・・燃料噴射弁  7・・・点火栓  10・・・コン
トロールユニット  12・・・クランク位置センサ1
4・・・点火コイル  15・・・負圧制御弁  21
・・・筒内圧力センサ  22・・・点火栓座金部圧カ
セ(8) /フ  L 8 ”’ −I A / 1Y / / 
−W /ン特許 出 願人 日産自動車株式会社 代理人 弁理士 笹 島 富二雄
Fig. 1 is a system diagram showing a conventional example, Fig. 2 is a sectional view of an engine showing an example of the combustion state sensor according to the present invention, Fig. 3 is a flowchart showing an embodiment of the present invention, and Fig. 4 is an EGR
It is a diagram showing the relationship between the rate and θpmlLX. 2... Air flow meter 4... EGR control valve 5.
...Fuel injection valve 7...Ignition plug 10...Control unit 12...Crank position sensor 1
4... Ignition coil 15... Negative pressure control valve 21
...Cylinder pressure sensor 22...Ignition plug washer pressure holder (8) /F L 8 ''' -I A / 1Y / /
-W/N Patent Applicant: Nissan Motor Co., Ltd. Representative Patent Attorney: Fujio Sasashima

Claims (1)

【特許請求の範囲】[Claims] 回転数、負荷等の機関の運転条件を検出し、各種の運転
条件に応対する予め記憶された点火時期、EGRi−等
の制御要素の最適値を胱出し、これを目標値として制御
するようにした内燃機関の制御装置において、機関の筒
内での燃焼状態を検出するセンサを設けると共に、との
センサの検出値を当該運転条件での基準値と比較しその
差に応じて前記制御要素の目標値を修正する回路を設け
たこ  ′とを特徴とする内燃機関の制御装置。
The system detects engine operating conditions such as rotation speed and load, determines optimal values for control elements such as ignition timing and EGRi that are stored in advance in response to various operating conditions, and controls using these as target values. In a control device for an internal combustion engine, a sensor is provided to detect the combustion state in the cylinder of the engine, and the detected value of the sensor is compared with a reference value under the operating condition, and the control element is adjusted according to the difference. A control device for an internal combustion engine characterized by having a circuit for correcting a target value.
JP57169590A 1982-09-30 1982-09-30 Control system for internal combustion engine Pending JPS5960053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57169590A JPS5960053A (en) 1982-09-30 1982-09-30 Control system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57169590A JPS5960053A (en) 1982-09-30 1982-09-30 Control system for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS5960053A true JPS5960053A (en) 1984-04-05

Family

ID=15889302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57169590A Pending JPS5960053A (en) 1982-09-30 1982-09-30 Control system for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5960053A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104754A (en) * 1983-11-09 1985-06-10 Toyota Motor Corp Exhaust gas recirculation apparatus
US4808146A (en) * 1987-07-22 1989-02-28 S.T.N. Corporation Pad non-rotation mechanism of steering wheel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104754A (en) * 1983-11-09 1985-06-10 Toyota Motor Corp Exhaust gas recirculation apparatus
US4808146A (en) * 1987-07-22 1989-02-28 S.T.N. Corporation Pad non-rotation mechanism of steering wheel

Similar Documents

Publication Publication Date Title
JP3743607B2 (en) Control device for internal combustion engine
US5044337A (en) Control system for and method of controlling an internal combustion engine
RU2633208C1 (en) Controller for internal combustion engine
US5050556A (en) Control system for an internal combustion engine
KR930000005B1 (en) Fuel control apparatus
JP2003120386A (en) Method and apparatus for controlling operation of internal combustion engine
JPH11324784A (en) Gas engine
JPS5960053A (en) Control system for internal combustion engine
JP2005240712A (en) Gas engine
JPS61247839A (en) Fuel ratio control system
JPS62103437A (en) Suction device for engine
JP2578130B2 (en) Engine air-fuel ratio control device
KR19990059935A (en) Fuel injection control method
JPH0586934A (en) Transient fuel quantity corrector for engine
JPS6388276A (en) Engine ignition timing control device
KR100435706B1 (en) Apparatus for controlling fuel injection in vehicle and method thereof
JPH03194153A (en) Fuel supply controller of internal combustion engine with knocking control function
JPH0681696A (en) Control device for internal combustion engine
JPH0874627A (en) Air-fuel ratio control device
JPH04183950A (en) Idle rotation control device for internal combustion engine
JPH0968075A (en) Air-fuel ratio control device of internal combustion engine
JPS6062661A (en) Ignition-timing controller for engine
JPH11229933A (en) Auxiliary chamber type lean combustion gas engine
JPS6388277A (en) Engine ignition timing control device
JPS59136537A (en) Method of controlling air-fuel ratio of internal-combustion engine