JPS5959703A - Polymerization of vinyl monomer - Google Patents

Polymerization of vinyl monomer

Info

Publication number
JPS5959703A
JPS5959703A JP17281382A JP17281382A JPS5959703A JP S5959703 A JPS5959703 A JP S5959703A JP 17281382 A JP17281382 A JP 17281382A JP 17281382 A JP17281382 A JP 17281382A JP S5959703 A JPS5959703 A JP S5959703A
Authority
JP
Japan
Prior art keywords
water
vinyl monomer
polymerization
poly
polymerizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17281382A
Other languages
Japanese (ja)
Other versions
JPH0153881B2 (en
Inventor
Kimie Enmanji
円満字 公衛
Yuji Hizuka
裕至 肥塚
Shohei Eto
江藤 昌平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17281382A priority Critical patent/JPS5959703A/en
Publication of JPS5959703A publication Critical patent/JPS5959703A/en
Publication of JPH0153881B2 publication Critical patent/JPH0153881B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To polymerize a vinyl monomer quickly, by polymerizing the monomer in the presence of a metal porphyrin compound, a water-soluble polymer and water. CONSTITUTION:A vinyl monomer (e.g., ethyl methacrylate) is added to water in which at least one metal porphyrin compound selected from the group consisting of copper chlorophyllin, iron chlorophyllin, and vitamin B12, and at least one water-soluble polymer selected from the group consisting of ribonucleic acid, poly(alpha-amino acid), poly(alpha-alanine), and oligoamide, and the mixture is heated to room temp. -85 deg.C to polymerize the monomer.

Description

【発明の詳細な説明】 この発明は、ビニルモノマーの重合法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for polymerizing vinyl monomers.

従来、ビニルモノマーの熱重合には、例えは過酸化ベン
ゾイル、アゾビスグチロントリル等を重合開始剤として
用い、それが熱で分解して、ラジカルを生成し、そのラ
ジカルによって重合が開始するものが多かった。例えば
、過酸化ベンゾイルは、下図のように分解してラジカル
を発生する。
Conventionally, in the thermal polymerization of vinyl monomers, for example, benzoyl peroxide, azobisgutylontolyl, etc. are used as polymerization initiators, which decompose with heat to generate radicals, and the radicals initiate polymerization. There were many. For example, benzoyl peroxide decomposes to generate radicals as shown in the diagram below.

又、下記の刊行物には、水溶性高分子、銅イオンの存在
ドでメタクリル酸エチル(以−F M M A ト略記
する)の重合が開始することが発表されている。(刊行
物すなわち雑誌基; BullChem Soc、Jp
n、 vo151 、第1456頁1978年発行) 
OI’; 1 lZj ・、a)K水中に浴けている水
溶性高分子と銅イオンと水との界面に存在するモノマー
分子の配位構造を示す。
Furthermore, the following publication discloses that the polymerization of ethyl methacrylate (hereinafter abbreviated as -FMMA) starts in the presence of a water-soluble polymer and copper ions. (Publications or journals; BullChem Soc, Jp
n, vo151, page 1456, published in 1978)
OI'; 1 lZj ., a) Shows the coordination structure of monomer molecules present at the interface between water-soluble polymer, copper ion, and water bathed in K water.

第1図(b)に前記配位構造をとっている銅イオンの水
からMMAの水素転位と、それにより生!戊するラジカ
ルを示す。上記刊行物には、上記のようにラジカルが生
成し、これにより重合が開始するものと報告している。
Figure 1(b) shows the hydrogen rearrangement of MMA from water of the copper ion that has the above coordination structure, and the resulting formation! Indicates a radical that empties. The above-mentioned publication reports that radicals are generated as described above, and this initiates polymerization.

しかし、上記重合法において、単に銅イオンと水溶性高
分子のみの系では、水からの水素引き抜き力が小さく、
重合速度が非常に遅いなどの問題があった。
However, in the above polymerization method, in a system consisting only of copper ions and water-soluble polymers, the hydrogen abstraction force from water is small;
There were problems such as a very slow polymerization rate.

7そこで、この発明者らは、これらの問題を解決するた
めに鋭意研究を重ねた結末、ビニルモノマー、金属ポル
フィリン化合吻、水浴性高分子及び水を存在させること
によりビニルモノマーを速く重合させるビニルモノマー
の重合法を得ることを目的とするものである。
7 In order to solve these problems, the present inventors conducted extensive research, and as a result, they discovered a vinyl monomer that rapidly polymerizes vinyl monomers by the presence of vinyl monomers, metal porphyrin compounds, water-bathable polymers, and water. The purpose is to obtain a method for polymerizing monomers.

すなわち、具体的には、第2図に示すように、ガラス製
アンプルに金4ポルフィリンと水溶性高分子を水に溶解
させたものを入れ、次いでビニルモノマーを加え、減圧
下に脱気後封管し、室温あるいは適当な温度(約85℃
)に加熱することによって重合反応が起こり、高分子量
のポリマーが生成される。
Specifically, as shown in Figure 2, a glass ampoule is filled with gold-4 porphyrin and a water-soluble polymer dissolved in water, then vinyl monomer is added, degassed under reduced pressure, and then sealed. Place the tube at room temperature or at a suitable temperature (approximately 85°C).
), a polymerization reaction occurs and a high molecular weight polymer is produced.

この発明で適用される金属ポルフィリン化合勿としては
、銅クロロフィリン、鉄クロロフィリン、ビタミンB1
2があげられる。水浴性高分子としてH、リボ核酸(R
N A ) 、ポリ(α−アミノ酸)、ポリ(β−アラ
ニン)、オリゴアマイドがりげられる。寸だビニルモノ
マーとしてV、i:、MMA、メタクリル酸エチル、メ
タクリル酸プロピル、メタクリル酸エチルがあげられる
が、いずれもこれらに限定されるものでidない。図に
おいて、(1)ViMMA層、(2)は金桐ポルフィリ
ンと水溶性高分子を含んだ水層である。
Examples of metal porphyrin compounds that can be applied in this invention include copper chlorophyllin, iron chlorophyllin, and vitamin B1.
2 can be given. As water bath polymers, H, ribonucleic acid (R
N A ), poly(α-amino acid), poly(β-alanine), and oligoamide. Examples of vinyl monomers include V, i:, MMA, ethyl methacrylate, propyl methacrylate, and ethyl methacrylate, but the invention is not limited thereto. In the figure, (1) is a ViMMA layer, and (2) is an aqueous layer containing Kanata porphyrin and a water-soluble polymer.

なお、第3図(a)に、銅クロロフィリン、リボ核酸、
水、MMA系で存在する配位構造を、第3図(b) K
重合のメカニズムを示す。すなわち、銅クロロフィリン
とリボ核酸が錯体を作り疎水性領域ができ、水が銅クロ
ロフィリンの銅イオンに配置1する。さらにMMAが鋼
クロロフィリンの分子面に吸着するという構造をとる。
In addition, in FIG. 3(a), copper chlorophyllin, ribonucleic acid,
The coordination structure existing in water and MMA systems is shown in Figure 3(b) K
The mechanism of polymerization is shown. That is, copper chlorophyllin and ribonucleic acid form a complex to form a hydrophobic region, and water is arranged on the copper ion of copper chlorophyllin. Furthermore, the structure is such that MMA is adsorbed on the molecular surface of steel chlorophyllin.

この状態で、水の氷Ig y); M +J Aに転移
されて、ラジカルが発生し、このラジカルがM M A
の重合を開始するのである。
In this state, water ice Ig y); is transferred to M + J A, generating radicals, and this radical is M M A
It initiates the polymerization of

以下実施クリをiJ\すことによりこの発明を詳細に、
1見1夕Jするが、これによりこの発明を限定するもの
ではない。
This invention will be described in detail by carrying out the implementation below.
However, the present invention is not limited thereby.

実施例】 銅タロロプイリンナトリクム100 Nと、リボ核酸0
.02 fを水10yに溶解させたものを第2図に示す
ようなガラス製アンプルに入れ、次いでMMA3yを加
え、減圧Fに脱気後封管し、85℃に加熱し、ポリマー
を得るっ第4図に、加熱時間〔k1r〕と生成ポリマー
の転化率〔%〕の相関を示す。それによると、転化率は
時間に対して直線的に増えているのがわかる。
Example: Copper talolopyrin natrichum 100 N and ribonucleic acid 0
.. A solution of 02f in 10y of water is placed in a glass ampoule as shown in Figure 2, then MMA3y is added, the tube is sealed after degassing under reduced pressure F, and heated to 85°C to obtain a polymer. Figure 4 shows the correlation between the heating time [k1r] and the conversion rate [%] of the produced polymer. It can be seen that the conversion rate increases linearly with time.

実施例2 実施例1における銅クロロフイリンナトリウム量を、各
々O,Cy、1〜.10〜又は100〜古し、加熱時間
は2時間で曲は実施例1と同様にしてポリマーを得る。
Example 2 The amount of sodium copper chlorophyllin in Example 1 was changed to O, Cy, and 1 to 1, respectively. Polymers were obtained in the same manner as in Example 1, with a heating time of 2 hours and a temperature of 10 to 100 g.

第5図に、加えた銅クロロフィリンナトリウム緻〔■〕
と生成ポリマーの転化重囲〕との相関を示す。それによ
ると、銅クロロフイリンナトリクム100■までは、加
えた銅クロロフイリンナトリクムの量に従って転化率が
増えるのがわかる。
Figure 5 shows the added copper chlorophyllin sodium concentration [■]
and the conversion range of the produced polymer]. According to the results, it can be seen that the conversion rate increases with the amount of copper chlorophyllin sodium added up to 100 μl of copper chlorophyllin sodium.

実施例3 実施例1における銅クロロフイリンナトリウム量を、1
.25〜とし、リボ核酸量を各々0.O19,0015
*、 0.02〜又は003〜とし、加熱時間は2時間
で他は実施例1と同様にしてポリマーを得る。第6図に
、加えたんポ核酸縫〔・〕と〕生成ポリーの転化率〔%
〕との相関を示す。それによると加えたリボ核酸の肴に
従って転化率が増えるのがわかる。
Example 3 The amount of sodium copper chlorophyllin in Example 1 was reduced to 1
.. 25~, and the amount of ribonucleic acid was 0. O19,0015
*, 0.02~ or 003~, and the heating time was 2 hours, otherwise the polymer was obtained in the same manner as in Example 1. Figure 6 shows the conversion rate [%] of the added protein polynucleotide [・] and the poly produced.
]. It can be seen that the conversion rate increases according to the amount of ribonucleic acid added.

実施例4 実施例1における加熱温度を、各々70’C175℃、
80°C185℃又は90°Cとし、加熱時間け2時間
で他は実施例1と同様にしてポリマーを得る。第7図に
、加熱温度[’C]と生成ボリーーの転化重囲との相関
を示す。それによると、70℃〜90℃の範囲で、転化
率は温度に対して直線的に増えているのがわかる。
Example 4 The heating temperature in Example 1 was 70'C, 175C,
A polymer was obtained in the same manner as in Example 1 except that the temperature was 80°C, 185°C, or 90°C, and the heating time was 2 hours. FIG. 7 shows the correlation between the heating temperature ['C] and the conversion weight of the produced boly. According to the results, it can be seen that the conversion rate increases linearly with temperature in the range of 70°C to 90°C.

実施例5 実施例II/こおけるI”’Ant各々ay、1y、2
y、3p、5y又は6yとし、加熱漏度は2時間で他は
実施例1(!:同様にしてポリマーを得る。
Example 5 Example II/Kokore I'''Ant ay, 1y, 2 respectively
y, 3p, 5y or 6y, the heating leakage was 2 hours, and the other conditions were Example 1 (!: A polymer was obtained in the same manner.

第8図Vこ、MMA破(2〕と生成ポリマーの収量1z
lとの相関を示す。それによると、転化率は、MMA量
に対して直線的に瑠えているのがわかる。
Figure 8: MMA fracture (2) and yield of produced polymer 1z
It shows the correlation with l. According to the results, it can be seen that the conversion rate varies linearly with the amount of MMA.

実施例6 鋼クロロフィリンナトリクム100〜、リボヌクレイン
酸20〜を水10yに溶かして試験管に入れ、その上に
3yのrl M Aを加え、試1嵌管を脱気陵封じる。
Example 6 Steel chlorophyllin sodium 100 ~ and ribonucleic acid ~ 20 ~ were dissolved in 10 y of water and put into a test tube, 3 y of RL MA was added thereon, and the test tube was sealed for degassing.

85℃で200時間フォーク−バスで保持し、封を切り
多着のメタノール中に投入すると約22のポリマーが得
られた。このポリマーの分子量は約300000であっ
たっ又、この系での重合速度は、前述した刊行物の銅イ
オンと水と水溶性高分子の糸での速度よりも約3倍速い
ことがわかった。
The mixture was kept in a fork bath at 85° C. for 200 hours, and the seal was opened and poured into a large amount of methanol, yielding about 22 polymers. The molecular weight of this polymer was approximately 300,000, and the polymerization rate in this system was found to be approximately three times faster than that in the copper ion, water, and water-soluble polymer threads of the aforementioned publication.

実施例7〜lO ビニル化合物、金属ポルフィリン、水溶性高分子の系で
、各成分を適当に組合せて、実施例6と同様に反応を行
なった。
Example 7-IO A reaction was carried out in the same manner as in Example 6 using a system of a vinyl compound, a metal porphyrin, and a water-soluble polymer, by appropriately combining each component.

実施例6〜10および比較例の反応条件および結果を衆
1に示す。
The reaction conditions and results of Examples 6 to 10 and Comparative Examples are shown in Table 1.

以上説す1したとうり、この発明は、ビニルモノマー、
金属ポルフィリン化合物、水溶性菌分子及び水を存在さ
せることによりビニル七ノマーヲ運く重合させるビニル
七ツマー重合法をイ4することができる。
As explained above, the present invention provides a vinyl monomer,
In the presence of a metalloporphyrin compound, water-soluble bacterial molecules, and water, a vinyl heptamer polymerization method can be carried out in which vinyl heptamers are carried and polymerized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)rr従来の重合法における各成分の配位構
造図、第1図(b) tI′iL来の重合法におUる重
合のメカニズムを示す図、第2図はこの発りJの反応を
行なうガラス製アンプルの正面図、第3図(a)はこの
発明における各成分の配位構這図、第3図(b)I’よ
との発明における重合のメカニズムをホス図、第4図は
この発明による生成ポリマーの転化率と加熱時間の関係
を示す相関図、第5図はこの発明による生成ポリマーの
転化率と加えだ銅クロロフイリンナl−’Jクム虚の関
係を示す相関図、第6図はこの発明による生成ポリマー
の転化率と加えたリポ核酸量の相関を示す相関図、第7
図はこの発明による生成ポリマーの転化率と加熱時間の
相関を示す相関図、第8図はこの発明のポリマーの収量
と加えたMMA量七の相関を示す相関図である。 図において、(1)はM M A )@、(2)は水層
である。 辰  エ 第4図 〃u熱時間〔hr] 第す図 4同り00フイリソナFリウA 童[4n4J第(′)
図 1O「 1月ネ壮酸量[制 第′l°図 加煎逼皮[’C] 第8図 HMA量[別 千 粘“、浦 正 書(自発) 11゛許庁長゛1ハ;ノ!ツ ]、’Bf’lの表示    ′4111r;i(j昭
 57−1728131’62 発明の8(4、 とニルモノマーの重合法 3、F1回:をすると ・ICf+との関係   ti許出摩1人11;  所
     東市部丁イ(田区丸の内″、1112番3シ
)名 称(+1(lI)   −1菱電機株式会社代表
台片由仁八部 4代理人 住 所     東京都丁・代111区丸の内爪j″1
,12計3シ;−5、補正の対酸 明細書の開明の詳細な説明の欄 6、補正の内容 (υ 明細書の第2頁第6行に「アゾビスフチロントリ
ル」とあるのを「アゾビスブチロニトリル」と訂正する
。 (2)同第7頁第8行に[加熱INL度Jとあるのを「
加熱時間」と訂正する。 以  上
Figure 1 (a) is a diagram showing the coordination structure of each component in the conventional polymerization method, Figure 1 (b) is a diagram showing the polymerization mechanism in the conventional polymerization method, and Figure 2 is a diagram showing the mechanism of polymerization in the conventional polymerization method. FIG. 3(a) is a front view of a glass ampoule in which reaction J is carried out, and FIG. 3(b) is a diagram of the coordination structure of each component in this invention. 4 is a correlation diagram showing the relationship between the conversion rate of the polymer produced according to this invention and the heating time, and FIG. FIG. 6 is a correlation diagram showing the correlation between the conversion rate of the polymer produced according to the present invention and the amount of liponucleic acid added, and FIG.
The figure is a correlation diagram showing the correlation between the conversion rate of the produced polymer and the heating time according to the present invention, and FIG. 8 is the correlation diagram showing the correlation between the yield of the polymer of the present invention and the amount of MMA added. In the figure, (1) is M M A )@, and (2) is the water layer. Figure 4 Heat time [hr]
Figure 1O: ``Amount of acid in January [Regulation No. 1° Figure kasentapi ['C] Figure 8 Amount of HMA [Bessen viscous'', written by Masa Ura (spontaneous) 11゛Director General゛1c; of! ], Display of 'Bf'l '4111r;11; Address: Higashiichi, Tokyo (1112-3, Marunouchi, Ta-ku) Name (+1 (lI) -1) Representative: Ryodenki Co., Ltd. Representative Yuhito Taikata, 8th Division, 4 Agent Address: 111-ku, Tokyo, Tokyo Marunouchi nail j″1
, 12 total 3; -5, Detailed explanation of the disclosure in the amended acid specification column 6, Contents of the amendment (υ What does "Azobisphthyrontolyl" say in the 6th line of page 2 of the specification?) (2) On page 7, line 8, [heating INL degree J] should be corrected as “azobisbutyronitrile.”
"Heating time" is corrected. that's all

Claims (4)

【特許請求の範囲】[Claims] (1)欲属ポルフィリン化合吻、水溶性高分子及び水の
存在下で、ビニルモノマーを重合サセるようにしたビニ
ルモノマーの重合法。
(1) A method for polymerizing vinyl monomers in which vinyl monomers are polymerized in the presence of a porphyrin compound, a water-soluble polymer, and water.
(2)金属ポルフィリン化合吻が、銅クロロフィリン、
鉄りロロフィリン、及びビタミン1312の内の少なく
とも1つである特許d肯求の範囲第1項記載のビニルモ
ノマーの重合法。
(2) The metal porphyrin compound proboscis is copper chlorophyllin,
A method for polymerizing a vinyl monomer according to claim 1, which is at least one of iron rolophylline and vitamin 1312.
(3)水イ谷性高分子が、リポ核酸(RNA)、ポリ(
α−アミノit )、ポリ(β−アラニン)、及びオリ
ゴアマイドの内の少なくとも1つである特許請求の範囲
第1項又は第2項記載のビニルモノマーの重合法。
(3) Mizuitani polymers can be used for liponucleic acid (RNA), poly(
A method for polymerizing a vinyl monomer according to claim 1 or 2, which is at least one of α-amino it), poly(β-alanine), and oligoamide.
(4)ビニルモノマーが、メタクリル酸メチル、メタク
リル酸エチル、メタクリル酸エチル、及びメタクリル酸
nグチルの内の少なくとも1つである一fj奸請求の範
囲第1項、第2項又は第3項記載のビニルモノマーの重
合法。
(4) The vinyl monomer is at least one of methyl methacrylate, ethyl methacrylate, ethyl methacrylate, and n-glythyl methacrylate. Polymerization method of vinyl monomer.
JP17281382A 1982-09-29 1982-09-29 Polymerization of vinyl monomer Granted JPS5959703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17281382A JPS5959703A (en) 1982-09-29 1982-09-29 Polymerization of vinyl monomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17281382A JPS5959703A (en) 1982-09-29 1982-09-29 Polymerization of vinyl monomer

Publications (2)

Publication Number Publication Date
JPS5959703A true JPS5959703A (en) 1984-04-05
JPH0153881B2 JPH0153881B2 (en) 1989-11-16

Family

ID=15948843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17281382A Granted JPS5959703A (en) 1982-09-29 1982-09-29 Polymerization of vinyl monomer

Country Status (1)

Country Link
JP (1) JPS5959703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998035996A1 (en) * 1997-02-17 1998-08-20 Sekisui Chemical Co., Ltd. Process for preparing polymer by using copper compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998035996A1 (en) * 1997-02-17 1998-08-20 Sekisui Chemical Co., Ltd. Process for preparing polymer by using copper compound
AU737973B2 (en) * 1997-02-17 2001-09-06 Sekisui Chemical Co., Ltd. Process for preparing polymer by using copper compound

Also Published As

Publication number Publication date
JPH0153881B2 (en) 1989-11-16

Similar Documents

Publication Publication Date Title
FI70233B (en) FOER FARING FRAMSTAELLNING AV NYA AKRYLKOPOLYMERER
Iwatsuki et al. Free radical copolymerization behavior of methyl α-(trifluoromethyl) acrylate and α-(trifluoromethyl) acrylonitrile: penultimate monomer unit effect and monomer reactivity parameters
DE3149198C2 (en) Process for the production of polymethyl methacrylate sheets by polymerizing methyl methacrylate syrup
Bamford et al. Non-classical free-radical polymerization: Degradative addition to monomer in the polymerization of 1-vinylimidazole
US4482688A (en) Light-colored hydrocarbon and terpene resins decolorized by iodine compounds
Matsuzaki et al. Polymerization of butyl esters of methacrylic acid and hydrolysis of the polymers
CN110790851B (en) Synthetic method of hydrolytic polymaleic anhydride
JPS5959703A (en) Polymerization of vinyl monomer
EP0590988B1 (en) Process for producing crosslinked polymer containing carboxyl group
JPS58219205A (en) Preparation of acrylamide polymer
JPH06184211A (en) Improvement in production of powdery superabsorbent by reverse suspension polymerization of acrylic monomer
JPS5814425B2 (en) Method for stabilizing unsaturated tertiary amine or its quaternary ammonium salt
Andrzejewska et al. Effect of polyacid aqueous solutions on photocuring of polymerizable components of resin-modified glass ionomer cements
JP2819767B2 (en) Method for producing vinyl or vinylidene polymer
CHAPIRO Controlled propagation in associated monomer aggregates
JPS58157801A (en) Manufacture of water-in-oil emulsion of water-soluble polymer
JP3737241B2 (en) Process for producing phosphorylcholine group-containing polymer
JPH05202106A (en) Production of water-soluble polymer gel
JP2021132542A (en) Polymer crosslinked body, gel composition, cell culture material, method for producing cell colony, and method for separating cell colony
US3511898A (en) Preparation of graft copolymers using ion-exchange bonding
Mengoli et al. Kinetic investigation of electroinitiated cationic polymerization processes—II n-butylvinylether
JP3364092B2 (en) Method for controlling polymerization of compound having carbon-carbon double bond
Narain et al. The effects of surfactants on homogeneous polymerization of acrylic monomers in aqueous media
JPH11181004A (en) Production of polystyrenesulfonic acid salt aqueous solution
JPS6069150A (en) Modified polyvinyl alcohol composition and use thereof as electron transferring medium