JPS595889A - Power enlarging machine utilizing speciality of planetary gear mechanism - Google Patents

Power enlarging machine utilizing speciality of planetary gear mechanism

Info

Publication number
JPS595889A
JPS595889A JP11517782A JP11517782A JPS595889A JP S595889 A JPS595889 A JP S595889A JP 11517782 A JP11517782 A JP 11517782A JP 11517782 A JP11517782 A JP 11517782A JP S595889 A JPS595889 A JP S595889A
Authority
JP
Japan
Prior art keywords
gear
power
view
force
revolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11517782A
Other languages
Japanese (ja)
Inventor
Ryuichi Sato
佐藤 龍市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11517782A priority Critical patent/JPS595889A/en
Publication of JPS595889A publication Critical patent/JPS595889A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/10Alleged perpetua mobilia

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To increase the output of a motor by a method wherein a power, enlarged than the input thereof, is produced in the rotary body effecting planetary revolution utilizing the meshing effect of an internal gear, a gear, a sun gear and the like. CONSTITUTION:When a pulley 2, integral with a boss 1, the sun gear 11 and the like made four revolution, the gears 7, 8 make one revolution by three turns thereof along the internal gear 6, however, the whole of the machine makes one revolution at the same time. An external reaction with respect to the revolution of the machine is not existing at all, therefore, a canceling loss of the output due to the reaction is also not existing, and the machine converts the power, increased than the input therefor, into an electric power most efficiently in the machine under being revolved. The electric power is outputted to the outside of the machine as an electric current which has no resistance with respect to the revolution of the machine and, therefore, the output, stronger than the input, may be obtained by rotating the electric motor.

Description

【発明の詳細な説明】 発明の目的 この発明は遊星機構の特殊性を利用した動力増大機に関
する。動力増大が可能か不可能かと云う事はあくまでも
機構上の問題として考えるべきである。従って可能な機
構と不可能な機構とあるはずであるが、先ず従来不可能
とぢれている根拠を説明する。動力増大は第44図第4
5図第46図第47図等のような機構ではどのように組
合せようとも理論的にも実質的にも不可能である事は一
致するところであり、一般の常識であるが、この点を、
動力増大が可能である第43図の遊星機構と比較し易い
状態で説明すると次のようになる。第44図は軸(D)
を一定の位置に固定しこれに大小二段の円周を持つ一体
の車輪(F)(H)の中心を可転的に図のように取付け
、((H)は(F)の2倍の円周である)車輪CI−I
 )の円周の一点(E)を力点として、矢印(B1)の
方向へ、又車輪CF)の円周の一点(C)は重点として
矢印(A1)の方向へ、それぞれ紐を引いた時、矢印(
B1)の方向に引く力が2 kgであれば、矢印(A1
)の方向に引く力は4kgで釣合う、これは、軸CD)
の中心から車輪(F)の半径(A)は、車輪(H)の半
径CB)のiであり、又円周も車輪CF)は(H)のグ
である。従って力と円周距離は反比例する。これは車輪
(F)(H)を歯車にしてどのような機構に組合せよう
とも、軸(D)を一定の位置に固定している限り、カと
距離は必ず反比例するから動力増大は不可能になる事を
証明するものである。又第45図第46図は車輪(7)
を平面上で移動させた場合の力と距離の測定である。第
45図のように車輪(7)を(El)の位置に置いて、
その頂点(Dl)の位置に押棒(1)の先端を押当て、
矢印(Fl)の方向に押して第46図のように一回転き
せると、車輪(7)は(B2)の位置に止る、この状態
を測定すると次のようになる。車輪(7)の起動点(E
l)から停止した位置(B2)までの距離(C1)区間
はμ輪(7)の円周と同じであるが、押棒(1)の先端
は起動線(G1)から(G2)までの距離を進行してい
る。この距離は車輪(7)の円周距離の2倍で(B2)
区間は車輪(7)に押棒(1)が押当って進行した距離
であり、(A2)区間は車輪(7)に接触しないで進行
した距離である。この状態で力と距離を測定すると、押
棒(1)は車輪(7)の頂点(Dl)を力点として(A
2) (B2)区間を進行しているのに対し、車輪(7
)の進行距離は起動点(El)から(B2)までの(c
l)区間だけであるから、従って押棒(1)が進行した
(A2)(B2)区間の因である。これに対し車輪(7
)の中心部(R2)を重点として矢印(B2)の方向に
押すカには、車輪(7)の頂点を押す押棒(1)の2倍
の力が作用する。父車輪(7)の(几1)の位置を重点
として、矢印(sl)の方向に引くカも押棒(1)の2
倍で作用する。勿論これは矢印(Sl)(B2)のカを
別々に作用させた場合のことである。このように車輪(
7)を直線上で転がした場合は必ずカと距離は反比例す
る。これも従来動力増大が不可能であるとされる根拠の
一つであると思はれる。従ってこの発明は従来不可能で
あるとされる根拠を把握した上で、動力増大が可能にな
る機構を構成するものである。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION The present invention relates to a power multiplier that utilizes the special characteristics of a planetary mechanism. Whether power increase is possible or not should be considered as a mechanical issue. Therefore, there must be mechanisms that are possible and mechanisms that are impossible, but first I will explain the basis for why they are conventionally impossible. The increase in power is shown in Figure 44, Figure 4.
It is agreed that mechanisms such as those shown in Figure 5, Figure 46, Figure 47, etc. are theoretically and practically impossible no matter how they are combined, and this is common knowledge.
The explanation will be as follows in order to facilitate comparison with the planetary mechanism shown in FIG. 43, which is capable of increasing power. Figure 44 is axis (D)
is fixed at a certain position, and the center of integral wheels (F) and (H) with two steps of large and small circumferences is attached rotatably as shown in the figure, ((H) is twice as large as (F)). wheel CI-I
When the string is pulled in the direction of the arrow (B1) with a point (E) on the circumference of the wheel CF) as a point of emphasis, and in the direction of the arrow (A1) with a point (C) on the circumference of the wheel CF) as a point of emphasis. , arrow (
If the pulling force in the direction of arrow (A1) is 2 kg, then
) is balanced by 4 kg, which is the axis CD)
The radius (A) of wheel (F) from the center of is i of radius CB) of wheel (H), and the circumference of wheel CF) is g of (H). Therefore, force and circumferential distance are inversely proportional. This means that no matter what kind of mechanism you combine with the wheels (F) and (H) as gears, as long as the shaft (D) is fixed at a fixed position, force and distance are always inversely proportional, so it is impossible to increase the power. This proves that. Also, Figure 45 and Figure 46 are wheels (7)
This is the measurement of force and distance when moving on a plane. Place the wheel (7) in position (El) as shown in Figure 45,
Press the tip of the push rod (1) at the position of the apex (Dl),
When pushed in the direction of the arrow (Fl) and rotated once as shown in Fig. 46, the wheel (7) stops at the position (B2).This state is measured as follows. Starting point (E) of wheel (7)
The distance (C1) section from l) to the stopped position (B2) is the same as the circumference of the μ-ring (7), but the tip of the push rod (1) is the distance from the starting line (G1) to (G2). is in progress. This distance is twice the circumferential distance of the wheel (7) (B2)
The section is the distance traveled by the push rod (1) when it hits the wheel (7), and the section (A2) is the distance traveled without contacting the wheel (7). When measuring the force and distance in this state, the push rod (1) is placed at the apex (Dl) of the wheel (7) as the point of effort (A
2) (B2) While the wheels are traveling in section (B2),
) is (c) from the starting point (El) to (B2).
l) section, therefore, it is the cause of the (A2) (B2) section in which the push rod (1) has advanced. On the other hand, wheels (7
) is applied with twice the force of the push rod (1) that presses the top of the wheel (7). The force of pulling in the direction of the arrow (sl), focusing on the position (1) of the main wheel (7), is also the 2nd position of the push rod (1).
Acts twice. Of course, this is the case when the forces indicated by arrows (Sl) and (B2) are applied separately. Like this, the wheels (
7) When rolled on a straight line, force and distance are always inversely proportional. This is also considered to be one of the reasons why it is impossible to increase the power in the past. Therefore, this invention constructs a mechanism that makes it possible to increase the power after grasping the grounds that it was previously impossible.

発明を構成する為に必要な理論と実験。Theory and experiments necessary to construct an invention.

これは遊星機構を利用したもので、カの作用では動力増
大は不可能とされる第44図第45図第46図の場合と
変りはなりが、回転の延長距離に於いて全く異なる。即
ち第43図のように歯車(7)を内歯車(6)に噛合せ
て支点CD)の移動距離を拡大し、((この場合は内歯
車(6)の内周が支点CD)の移動距離となる)これと
は反対に力点(E)の移動距離は第42図で見られるよ
うに、力点歯車(11)を可能な限り小さくすると、力
点(E)と支点CD)の延長距離の差が小さくなって動
力の増大率が大きくなる。この点を分析すると次のよう
になる。
This uses a planetary mechanism, and is different from the cases shown in FIGS. 44, 45, and 46, in which power cannot be increased by the action of force, but the extended distance of rotation is completely different. In other words, as shown in Fig. 43, the gear (7) is meshed with the internal gear (6) to expand the movement distance of the fulcrum CD (in this case, the inner periphery of the internal gear (6) is the fulcrum CD). On the other hand, as shown in Fig. 42, if the force gear (11) is made as small as possible, the moving distance of the force point (E) will be the distance between the force point (E) and the fulcrum CD). The difference becomes smaller and the rate of increase in power becomes larger. Analyzing this point is as follows.

第43図は動力増大の可能性を理論的に説明するのが目
的であるので、実験用の機構に設けた中心軸(4)を固
定する脚(5)と歯車(7)を取付ける円板枠(67)
は除外しである。第43図の固定しである中心軸(4)
に可転的に取付けた力点歯車(11)と内歯車(6)の
間に歯車(7)を噛合せ、力点歯車(11)と歯車(7
)の噛合点を力点(E)として、力点歯車(11)を矢
印(S)の方向に回転しようとすれば、歯車(7)は力
点歯車(11)に矢印(B1)の方向に押される。これ
に対し、歯車(7)の重点(C)を紐で矢印(A1)の
方向に引くと、内歯車(6)と歯車(7)の噛合点が支
点(D)となって作用する。この状態で矢印(A1)と
(BI)の力を比較すると、第44図の場合と全く同じ
ように、矢印(B1)の方向に作用するカが、2kII
であれば、矢印(A1)の方向に作用するカは4ゆで釣
合う。然し力点歯車(11)を回転して、歯車(7)に
内歯車(6)内を一周させると第44図の場合とは異な
り、カと回転の延長距離は反比例しない結果となる。即
ち歯車(7)を−個の梃子歯車として考へた場合、力点
(E)重点(C)支点CD)等の関係は、第44図に於
ける力点(E)重点(C)支点CD)等の関係と全く同
じであるにも拘わらず遊星回転する事によって、第43
図と第44図では全く異った結果が出る。これは第44
図のように支点CD ”)を一定点に止めて伝動作用を
する機構と、第43図のように支点(D)を移動させな
がら遊星同転する機構の相異によるものである事が解る
。この遊星回転を第41図で分析すると次のようになる
。この図では内歯車(6)歯車(7)力点歯車(11)
等の歯の部分は少略する。
Since the purpose of Figure 43 is to theoretically explain the possibility of increasing power, it is a disk to which the leg (5) fixing the central shaft (4) provided in the experimental mechanism and the gear (7) are attached. Frame (67)
is excluded. The central shaft (4) that is fixed in Figure 43
A gear (7) is meshed between a power point gear (11) and an internal gear (6) which are reversibly attached to the power point gear (11) and a gear (7).
) is the force point (E), and if you try to rotate the force gear (11) in the direction of the arrow (S), the gear (7) will be pushed by the force gear (11) in the direction of the arrow (B1). . On the other hand, when the point (C) of the gear (7) is pulled in the direction of the arrow (A1) with a string, the meshing point of the internal gear (6) and the gear (7) acts as a fulcrum (D). Comparing the forces of arrows (A1) and (BI) in this state, the force acting in the direction of arrow (B1) is 2kII, just as in the case of Fig. 44.
If so, the force acting in the direction of arrow (A1) is balanced by 4 points. However, when the power point gear (11) is rotated and the gear (7) is made to go around the internal gear (6), unlike the case shown in FIG. 44, the extended distance of force and rotation will not be inversely proportional. In other words, when considering the gear (7) as - lever gears, the relationship between the points of force (E), the point of emphasis (C), the fulcrum CD), etc. in Fig. 44 is as follows. Although the relationship is exactly the same as the above, by planetary rotation, the 43rd
The results shown in Fig. 44 are completely different from those shown in Fig. 44. This is the 44th
It can be seen that this is due to the difference between a mechanism in which the fulcrum (CD) is fixed at a fixed point for transmission as shown in the figure, and a mechanism in which the planets rotate simultaneously while moving the fulcrum (D) as in Fig. 43. If this planetary rotation is analyzed in Fig. 41, it will be as follows.In this figure, internal gear (6), gear (7), and power point gear (11)
The tooth parts such as these are omitted.

力点歯車(11)を矢印(8)の方向に回転して、歯車
(7)を起動線(K1)の位置から矢印(S)の方向へ
1回転移動させると、歯車(7)は(K2)の線で止る
。この際力点歯車(11)は歯車(7)と同じ歯数を噛
合なから1回転して印(S)の方向へ2回転させると、
歯車(7)は(K3)の線で止る。これに対し、力点歯
車(11)は2回転と更に(Hl)と(H2)の区間を
回転する、即頌回転になる。又歯車(7)を起動線(K
1)の位置から矢印(S)の方向へ3回転させると、歯
車(7)は内歯車(6)内を一周して起動線(K1)の
位置に戻る。これに対し力点歯車(11)は3回転して
更に(Hl) (H2)数を噛合いながら歯車(7)の
移動に伴なってうに、内歯車(6)内に同じ歯数を持っ
歯車を噛合せた場合には、力点歯車(11)に1の力で
入力が作用して4回転すれば歯車(7)は3回転して、
重点(C)には力点CB)の2倍の力が作用するから、
入力と出力は次のようになる。((力点歯車(11)の
回転数4×力1−人力4゜歯車(7)の回転数3Xカ2
=出力6゜出力6÷入力4=1.5゜従つ°C出力は入
力の1.5倍になる)。
When the power point gear (11) is rotated in the direction of the arrow (8) and the gear (7) is moved one rotation from the position of the starting line (K1) in the direction of the arrow (S), the gear (7) moves to (K2). ) stop at the line. At this time, the power point gear (11) has the same number of teeth as the gear (7), so if it rotates once and rotates twice in the direction of mark (S),
Gear (7) stops at line (K3). On the other hand, the power point gear (11) rotates twice and further rotates between (Hl) and (H2), resulting in an immediate rotation. Also, connect the gear (7) to the starting line (K
When the gear (7) is rotated three times in the direction of the arrow (S) from the position 1), the gear (7) goes around the internal gear (6) and returns to the position of the starting line (K1). On the other hand, the power point gear (11) rotates three times and further meshes (Hl) (H2) numbers as the gear (7) moves. When meshing, if an input is applied to the power point gear (11) with 1 force and it rotates 4 times, the gear (7) rotates 3 times,
Since twice the force acts on the emphasis point (C) as on the emphasis point CB),
The input and output are as follows. ((Rotational speed of force gear (11) 4 x Force 1 - Human power 4° Rotational speed of gear (7) 3 x Force 2
= Output 6° Output 6 ÷ Input 4 = 1.5° °C Output is 1.5 times the input).

第42図の場合は力点歯車(11)は内歯車(6)の杏
であるから、歯車(7)が(回転して内歯車(6)内を
一周すれば、力点歯車(11)は7回転する、従って入
力と出力は次のようになる。
In the case of Fig. 42, the power point gear (11) is an apricot of the internal gear (6), so if the gear (7) rotates and goes around the internal gear (6), the power point gear (11) becomes 7 Rotates, so the input and output are as follows.

(力点歯車(11)の回転数7X力1−人力7゜内歯車
(6)の内周距離6×力2=出力12゜出力12÷入カ
フ=1.7゜従って出力は入力の1.7倍以上になる)
(Rotational speed of power point gear (11) 7 x Force 1 - Human power 7° Inner circumferential distance of internal gear (6) 6 x Force 2 = Output 12° Output 12 ÷ Input cuff = 1.7° Therefore, the output is 1 of the input. (more than 7 times)
.

尚第43図に示す歯車(7)の中心部の円線(R)には
重点(C)と同じく力点(B)の2倍の力が作用するが
、第47図第48図第49図のように円板枠(67)と
ブーIJ−(76)が一体になっている機構ではブーI
J−(76)から出力を取出そうとしても必ず力と距離
は反比例するから入力より出力は大きくならない。従っ
て遊星機構には動力増大が可能になる機構と不可能にな
る機構との分岐点がある。以上の理論を証明する為に第
37図第38図第40図第50図第51図第52図等の
実験を行なったので、先ず第37図第38図第40図か
ら説明する。第37図は正面図、第38図は第37図の
左側面図、第40図は第37図の右側面図である。2枚
の円板枠(67)を第39図に示すボールド(66)と
ナツト(15)で図のようにネジ締めて一体にし、第2
9図のように歯車(7)、ボス(10)と一体の歯車(
8)、ボス(22)と一体の歯車(21)等を第37図
のように軸(9)を以って円板枠(67)に取付け、円
板枠(67)の左側面に突出した軸(9)の突出部はス
ナップリング(25)を以って離脱しないようにする。
Note that twice the force as the force point (B) acts on the circular line (R) at the center of the gear (7) shown in Fig. 43, as well as the point of force (C), but In a mechanism where the disc frame (67) and the Boo IJ- (76) are integrated, the Boo I
Even if you try to get an output from J-(76), the force and distance are always inversely proportional, so the output will not be greater than the input. Therefore, in the planetary mechanism, there is a bifurcation point between a mechanism that makes it possible to increase the power and a mechanism that does not. In order to prove the above theory, experiments such as those shown in FIGS. 37, 38, 40, 50, 51, and 52 were conducted, and the explanation will be given first from FIGS. 37, 38, and 40. 37 is a front view, FIG. 38 is a left side view of FIG. 37, and FIG. 40 is a right side view of FIG. 37. Tighten the two disc frames (67) together with the bolts (66) and nuts (15) shown in Figure 39 as shown in the figure, and then
As shown in Figure 9, the gear (7) and the gear (10) integrated with the boss (10)
8) Attach the boss (22) and the gear (21) integrated with it to the disc frame (67) with the shaft (9) as shown in Fig. 37, so that it protrudes from the left side of the disc frame (67). A snap ring (25) is used to prevent the protrusion of the shaft (9) from coming off.

第22図のようにボス(2o)と一体の歯車(19)は
第37図のように歯車(21)にそれぞれ噛合せ、ボス
(28)と一体の歯車(27)とボス(71)と一体の
ブー’J−(73)は円板枠(67)の左側面に出して
軸(24)を以って取付け、円板枠(67)の右側面に
突出した軸(24)の端部にはスナップリング(25)
を取付けて離脱しないようにする。歯車(8)、(21
)は第32図で示すように、平行キー(65)を以って
軸(9)と一体にし、第35図第36図に示す弾性体(
56)を第33図第34図のように嵌めた歯車(7)は
軸(9)と固定しないようにして置く。歯車(19)(
27)、プーリー(73)等は第25図のように、平行
キー(65)を以って軸(24)と一体にする。円板枠
(67)の中心部には中心軸(4′)を通して、歯車(
s)(7)は脚(53)を以って台板(’50 )に固
定している内歯車(6)内に第37図第40図のように
噛合せ、第26図第27図第28図のようにボス(1)
プーリー(2)等と一体になっている力点歯車(11)
は中心軸(4)の右端に取付けて、第37図第40図の
ように歯車(7)と(7)の朋に噛合せ、力点歯車(1
1)と円板枠(67)の間にはパイプ(12)を機体の
移動防止の為にはさめ、中心軸(4)の左端にも機体の
移動防止の為にパイプ(60)を嵌める。中心軸(4)
の両端は台板(50)の両端部に直立固定している脚(
5)の上部に図のように取付けて押ネジ(3)を以って
固定する。以上は実験用の第37図第38図第40図の
機構である。尚回転状況は第41図で説明したようにブ
ーIJ −(2)と一体の力点歯車(11)が4回転す
れば、歯車(7) (8)F!3回転して内歯車(6)
内を一周して、円板枠(67)を1回転させるが、歯車
(27) (19)とブー!J−(73)は他の歯車よ
り小さくして、力点歯車(11)と同じ(4回転するよ
うにしである。又回転距離は力点歯車(11)は(内歯
車(6)の内周距離十力点歯車(11)の円周距離)即
ち4回転であるのに対し、他の歯車は総て(内歯車(6
)の内周距離と同じである)この機構を次のような方法
で実験した。第40図のようにグー!I−(2’)に固
定した軸(72)に紐(70)の一端を掛け、他端は計
器(74)に連結し、又第37図第38図のように円板
枠(67)に固定した軸(68)には紐(70)を連結
した計器(69)を掛け、紐(70)の他端はプーリー
(73)に固定した軸(72)に掛けて置−て、計器(
74)を矢印(Sl)の方向に引くと、歯車伝動により
円板枠(67)が矢印(N)の方向に回転するが、この
際計器(74)の目盛が2 kgになれば、計器(69
)の目盛は4 kgになる。これは回転する機体に対し
て外部からの反作用は全くなく、従って反作用による出
力の相殺損失が無い為、第43図で説明した歯車(7)
の梃子作用がそのま5機体の内部で作用する結果だと考
へられる。次に第50図第51図第52図の実験を説明
すシ。この機構は第37図第38図第40図から軸(2
4)とこれに固定する歯車(19)(27)プーリー(
73)等を除外して、円板枠(67)の左側面に軸(9
)の端部を長く出し、これにブーIJ−(62)を図の
ように固定したもので、その外は総て第37図第38図
第40図と同じ機構である。第50図第51図のように
円板枠(67)に固定しである軸(68)に紐(7o)
を連結した計器(69)を取付け、紐(7o)の他端は
ブーIJ−(62)に固定した軸(72)に掛けて置い
て、計器(74)に連結した紐(7o)の他端は第52
図のようにブーIJ−(2)に固定している軸(72)
に掛けて、計器(74)を矢印(Sl)の方向に引くと
円板枠、(67)は矢印(N)の方向に゛回転するが、
この際計器(74)の目盛が2kgになれば計器(69
)の目盛は4kgになる。
The gear (19) integrated with the boss (2o) as shown in Fig. 22 meshes with the gear (21) as shown in Fig. 37, and the gear (27) integrated with the boss (28) and the boss (71) mesh with each other as shown in Fig. 37. The integral Boo'J- (73) is attached to the left side of the disc frame (67) with the shaft (24), and the end of the shaft (24) protrudes from the right side of the disc frame (67). Snap ring (25)
Attach it to prevent it from coming off. Gears (8), (21
) is integrated with the shaft (9) using the parallel key (65) as shown in FIG. 32, and the elastic body (
56) fitted as shown in FIGS. 33 and 34, the gear (7) is placed so as not to be fixed to the shaft (9). Gear (19) (
27), pulley (73), etc. are integrated with the shaft (24) using a parallel key (65), as shown in FIG. The gear (4') is passed through the center of the disc frame (67).
s) (7) is engaged with the internal gear (6) which is fixed to the base plate ('50) with the leg (53) as shown in Fig. 37 and Fig. 40, and as shown in Fig. 26 and Fig. 27 Boss (1) as shown in Figure 28
Power point gear (11) integrated with pulley (2) etc.
is attached to the right end of the center shaft (4), meshed with the gears (7) and (7) as shown in Fig. 37 and Fig. 40, and the power point gear (1
A pipe (12) is inserted between 1) and the disc frame (67) to prevent the aircraft from moving, and a pipe (60) is also fitted to the left end of the center shaft (4) to prevent the aircraft from moving. . Center axis (4)
Both ends are legs (
Attach it to the top of 5) as shown in the figure and secure it with the setscrew (3). The above is the experimental mechanism shown in FIGS. 37, 38, and 40. As explained in Fig. 41, if the force point gear (11) integrated with Boo IJ-(2) rotates four times, the rotation status is as follows: Gear (7) (8)F! 3 rotations and internal gear (6)
The disc frame (67) rotates once, but the gear (27) (19) and Boo! J-(73) is smaller than the other gears and is designed to rotate 4 times, the same as the power gear (11). Also, the rotation distance is the same as the power gear (11) (inner periphery distance of the internal gear (6)). The circumferential distance of the ten force point gear (11) is 4 rotations, while all the other gears are the internal gear (6 rotations).
) This mechanism was tested using the following method. Goo like figure 40! One end of the string (70) is hung on the shaft (72) fixed to I-(2'), the other end is connected to the meter (74), and the disc frame (67) is attached as shown in Fig. 37 and Fig. 38. The instrument (69) connected to the string (70) is hung on the shaft (68) fixed to the shaft, and the other end of the string (70) is hung on the shaft (72) fixed to the pulley (73). (
74) in the direction of the arrow (Sl), the disc frame (67) rotates in the direction of the arrow (N) due to gear transmission.At this time, if the scale of the meter (74) reaches 2 kg, the meter (69
) is 4 kg. This is because there is no external reaction to the rotating machine, and therefore there is no offset loss of output due to reaction, so the gear (7) explained in Fig. 43
This is thought to be the result of the leverage acting directly within the five aircraft. Next, the experiments shown in FIGS. 50, 51, and 52 will be explained. This mechanism is shown in Fig. 37, Fig. 38, and Fig. 40.
4) and the gears (19), (27) and pulleys (
73), etc., and the shaft (9) on the left side of the disc frame (67).
) has a long end, and a Boo IJ- (62) is fixed to it as shown in the figure, and everything else is the same mechanism as in Figures 37, 38, and 40. As shown in Fig. 50 and Fig. 51, the string (7o) is attached to the shaft (68) which is fixed to the disc frame (67).
The other end of the string (7o) is hung on the shaft (72) fixed to the boo IJ- (62), and the other end of the string (7o) connected to the meter (74) is attached. The end is the 52nd
Shaft (72) fixed to Boo IJ-(2) as shown in the diagram
When the instrument (74) is pulled in the direction of the arrow (Sl), the disc frame (67) rotates in the direction of the arrow (N).
At this time, if the scale of the meter (74) reaches 2 kg, the meter (69)
) will be 4 kg.

これは第37図第38図第40図の実験と全く同じ結果
である。即ち回転する機体に対して外部からの反作用は
全くない為、反作用による出力の相殺損失が無く、第4
3図で説明する歯車(7)の梃子作用がそのま5機体の
内部に作用するからだと考へられるが、第37図第38
図第40図の実験と、第50図第51図第52図との実
験では歯車伝動に異なる点があるにも抱はらず同じ結果
になるのは円板枠(67)と、歯車(7)(8)と連動
するプーリー(62)との力の引き合いに於いて、中心
軸(4)を中心にして回転する一個の回転体の内部抵抗
として力が平均して作用する為であると考へられる。
This is exactly the same result as the experiments shown in FIGS. 37, 38, and 40. In other words, since there is no external reaction to the rotating body, there is no offset loss of output due to reaction, and the fourth
It is thought that this is because the lever action of the gear (7) explained in Fig. 3 acts directly on the inside of the 5 aircraft, but Fig. 37 Fig. 38
The experiment shown in Fig. 40 and the experiment shown in Fig. 50, Fig. 51, and Fig. 52 show that although there are differences in gear transmission, the disc frame (67) and the gear (7) have the same results. ) (8) and the interlocking pulley (62), this is because the force acts on average as internal resistance of a single rotating body rotating around the central axis (4). I can think about it.

その証拠に計器(69)を、円板枠(67)の何処の位
置に取付けても第51図のようにプーリー(62)に紐
(70)を巻付けて、引き合いをさせると、計器(74
)の目盛が2 kgを示せば計器(69)の目盛は4k
gを示す。即ち計器(69)には計器(74)の2倍の
力が作用する。この実験は第38図で行なっても同じで
ある。動力の最大の損失は稼動機の反作用による出力の
相殺損失である事は周知の通りで一般の常識であるが、
動力増大の目的を達成する為には発電機を遊星機構に直
結して、回転する機体に対して外部からの反作用による
出力の相殺損失をなくする機構条件が必用であると考へ
る。尚この発明は無公害な上に次々と連結する事により
更に強大な動力が得られるので、随所に電源を造る事が
最大の目的である。
As proof of this, no matter where the instrument (69) is mounted on the disc frame (67), if you wrap the string (70) around the pulley (62) as shown in Figure 51 and make an inquiry, the instrument ( 74
) indicates 2 kg, the scale of the meter (69) indicates 4k.
g. That is, twice as much force acts on the meter (69) as on the meter (74). This experiment is the same even if performed using FIG. It is well known and common sense that the greatest loss of power is the offset loss of output due to the reaction of the operating machine.
In order to achieve the purpose of increasing power, we believe that it is necessary to directly connect the generator to the planetary mechanism, and to create a mechanical condition that eliminates the offset loss of output due to external reactions to the rotating aircraft. This invention is non-polluting and can generate even more power by connecting them one after another, so the main purpose of this invention is to create power sources everywhere.

発明の構成 この発明は前記の理論と実験に基づいて構成したもので
ある。第10図第11図第12図に示すように内部に支
持板(59)を設けた円筒(16)の右端に第13図第
14図第15図に示す円板枠(13)の突起部(57)
を第1図のように嵌め込み、円筒(16)の縁(18)
と円板枠(13)は縁周の四ケ所をポール1−(17)
とナツト(15)を以って、ネジ締めて一体にし、第2
9図第30図第31図に示すようにボス(22)と一体
の歯車(21)、ボス(10)と一体の歯車(8)、第
35図第36図に示す弾性体(56)を第34図のよう
に嵌め込んだ歯車(7)等は円板枠(13)と支持板(
59)を貫通している軸(9)に第1図のように取付け
て、第32図に示すように平行キー(65)を以って軸
(9)と歯車(21)、(8)等は一体にするが、歯車
(7)は別個にして置き、支持板(59)の左側面に突
出している軸(9)にはスナップリング(25)を取付
けて離脱しないようにする。第22図に示すように、ボ
ス(28)と一体の歯車(27) 、ボス(20)と一
体の歯車(19)等は第1図のように円板枠(13)と
支持板(59)を貫通している軸(24)に取付け、歯
車(21)と(19)は噛合せ、歯車(27)は支持板
(59)の左側面に出し、第25図に示すように平行キ
ー(65)を以って軸(24)と歯車(27)(19)
等は一体にして、円板枠(13)の右側面に突出してい
る軸(24)はスナップリング(25)を以って離脱し
ないようにする。第16図第17図第18図に示すよう
に、ボス(55)にベアリング(54)を嵌め込んだ内
歯車(26)は第1図のように円筒(16)内の支持板
(59)の左側面に込れ、歯車(27)に第1図第16
図第18図のように噛合せる。
Structure of the Invention This invention is constructed based on the above-mentioned theory and experiment. As shown in FIG. 10, FIG. 11, and FIG. (57)
Insert the cylinder (16) as shown in Figure 1, and press the edge (18)
And the disc frame (13) has four places around the rim with poles 1- (17)
and nuts (15), tighten the screws to unite them, and then
As shown in Fig. 9, Fig. 30, and Fig. 31, the gear (21) is integrated with the boss (22), the gear (8) is integrated with the boss (10), and the elastic body (56) shown in Fig. 35 and Fig. 36. As shown in Figure 34, the fitted gear (7) etc. are attached to the disc frame (13) and the support plate (
59) to the shaft (9) passing through it as shown in Fig. 1, and as shown in Fig. 32, use the parallel key (65) to connect the shaft (9) and the gears (21), (8). etc. are integrated, but the gear (7) is placed separately, and a snap ring (25) is attached to the shaft (9) protruding from the left side of the support plate (59) to prevent it from coming off. As shown in Fig. 22, the gear (27) integrated with the boss (28), the gear (19) integrated with the boss (20), etc. are connected to the disc frame (13) and the support plate (59) as shown in Fig. 1. ), the gears (21) and (19) are meshed, the gear (27) is attached to the left side of the support plate (59), and the parallel key is attached as shown in Figure 25. With (65), shaft (24) and gear (27) (19)
etc. are integrated, and the shaft (24) protruding from the right side of the disc frame (13) is prevented from coming off using a snap ring (25). As shown in Fig. 16, Fig. 17, and Fig. 18, the internal gear (26) with the bearing (54) fitted into the boss (55) is attached to the support plate (59) in the cylinder (16) as shown in Fig. 1. Figure 1, Figure 16, into the left side of the gear (27).
Mesh as shown in Figure 18.

円筒(16)の左端には第7図第8図第9図に示す円板
枠(34)の突起部(58)を嵌め込んで、円筒(16
)の縁(18)と円板枠(34)を合せる。
The protrusion (58) of the disc frame (34) shown in FIGS. 7, 8, and 9 is fitted into the left end of the cylinder (16).
) and the disc frame (34).

円板枠(34)の左側面の突起部(33)には、第19
図第20図第21図のように換気孔(52)と(37)
を設け、歯車(29)は軸(51)に固定した発電機(
32)を第1図のように嵌め込へ歯車(29)は内歯車
(26)に噛合せる。発電機(32)の左端は第4図第
5図第6図に示す円板枠(35)の突起内(36)に嵌
め込んで、円板枠(35)、(34)円筒(16)の縁
(18)等はボールド(31)とナツト(15)を以っ
て、ネジ締めて一体にする。結局円板枠(35)、(3
4)、(13)と円筒(16)等を一体にして、円板枠
(35)、(34)、(13)内歯車(26)等の中心
部のベアリング(54)には中心軸(4)を貫通して、
歯車(7)と(8)は脚(53)を以って、台板(50
)に固定している内歯車(6)内に噛合せ、円板枠(1
3)の右側の中心軸(4)にはパイプ(12)と第26
図第27図第28図に示すように、ボス(1)と一体に
なっているブー!J −(2)と力点歯車(11)を取
付け、力点歯車(11)は歯車(7)と(7)の間にだ
け噛合うようにパイプ(12)の長さで間隔を保つよう
にする。円板枠(35)の左側面に固定した絶縁体(3
8)内の中心軸(4)の部分には機体の移動を防止する
為、第1図第4図のようにパイプ(60)を取付け、中
心軸(4)の両端は台板(50)の両端に直立固定して
いる脚(5)に取付けて押ネジ(3)を以って固定する
。円板枠(35)に固定している絶縁体(38)と一体
の集電環(41)には、発電機(32)から引き出した
導線(39)を接続し、集電環(42)には導線(4o
)を第4図のように接続する。絶縁体(38)の下部で
、脚(5)の図のような位置に第1図第2図で示すよう
にネジ(49)を以って固定している絶縁体(45)に
は、導線(47)と接続する刷子(43)は集電環(4
1)に、導線(48)と接続する刷子(44)は集電環
(42)にそれぞれ接触させて押ネジ(46)を以って
固定し、導線(47)と(48)は長くして電動機に接
続する。以上は遊星機構の特殊性を利用した動力増大機
の構造である。
The projection (33) on the left side of the disc frame (34) has a 19th
Ventilation holes (52) and (37) as shown in Figure 20 and Figure 21.
The gear (29) is connected to a generator (51) fixed to the shaft (51).
32) as shown in FIG. 1, and the gear (29) meshes with the internal gear (26). The left end of the generator (32) is fitted into the protrusion (36) of the disc frame (35) shown in Figure 4, Figure 5, and Figure 6 to connect the disc frame (35), (34) and cylinder (16). The edge (18) etc. are screwed together using the bold (31) and nut (15). In the end, the disc frame (35), (3
4), (13) and the cylinder (16) etc. are integrated, and the bearing (54) at the center of the disc frame (35), (34), (13) internal gear (26) etc. has a central shaft ( 4) through
Gears (7) and (8) are attached to the base plate (50) by means of legs (53).
) is meshed with the internal gear (6) fixed to the disc frame (1
The pipe (12) and the 26th center shaft (4) on the right side of 3)
As shown in Figures 27 and 28, the Boo! is integrated with the boss (1)! J-(2) and the power point gear (11) are installed, and the power point gear (11) is kept spaced by the length of the pipe (12) so that the power point gear (11) meshes only between the gears (7) and (7). . Insulator (3) fixed to the left side of the disc frame (35)
8) In order to prevent the movement of the aircraft, a pipe (60) is attached to the center shaft (4) as shown in Fig. 1 and Fig. 4, and a base plate (50) is attached to both ends of the center shaft (4). Attach it to the legs (5) that are fixed upright at both ends of the body and secure it with set screws (3). A conductive wire (39) drawn out from the generator (32) is connected to the current collecting ring (41) which is integrated with the insulator (38) fixed to the disc frame (35), and the current collecting ring (42) is a conductor (4o
) are connected as shown in Figure 4. At the bottom of the insulator (38), the insulator (45) is fixed to the position of the leg (5) as shown in the figure with a screw (49) as shown in Fig. 1 and Fig. 2. The brush (43) connected to the conducting wire (47) is connected to the current collecting ring (4
In 1), the brushes (44) connected to the conductor (48) are brought into contact with the current collection ring (42) and fixed with setscrews (46), and the conductors (47) and (48) are made long. and connect it to the electric motor. The above is the structure of a power multiplier that takes advantage of the special characteristics of the planetary mechanism.

発明の効果 この発明を使用するにはブーIJ −(2)と電動機を
ベルトで連結して機体を回転するのであるが、この際の
回転と力の状況は第41図と第43図に於いて説明した
ように、ボス(1゛)と一体になっているブーU −(
2)力点歯車(11)等が4回転すれば歯車(7)(8
)は内歯車(6)内を3回転して一周するが、これと同
時に機体全体が一回転する。この際歯車(7)内に装填
した弾性体(56)の作用で始動時に於いては機体の反
作用を柔軟に受ける為、歯車や軸の摩擦を緩和し、且つ
一旦圧縮された弾性体(56)は元の形に戻ろうとして
必ず力の弱い方向へ押す為に入力の損失は最も少なく、
加へて第43図に於いて説明した力の作用と、第37図
第38図第40図第50図第51図第52図等の実験で
証明したように、機体の回転に対して外部からの反作用
は全く無い為、反作用による出力の相殺損失がなく、従
って機体は最も効率よく回転しながら、機体の内部で入
力より増大した動力を直に電力に変へて、機体の回転に
対して無抵抗に等しい電流にして機体の外部に出し電動
機を回転させて入力より強大な出力を作用させる事が出
来る。この発明は次々に連結すると更に強力な動力を得
る事が出来るし、又無公害であり随所に簡易に設置が可
能である為、原子力発電に替り得る電源を造る事も難か
しい事ではないと考へる。
Effects of the Invention To use this invention, the Boo IJ-(2) and the electric motor are connected with a belt to rotate the aircraft, and the rotation and force conditions at this time are shown in Figures 41 and 43. As explained above, the Boo U-(
2) If the power point gear (11) etc. rotates 4 times, the gears (7) (8)
) makes three revolutions inside the internal gear (6), and at the same time, the entire machine rotates once. At this time, the action of the elastic body (56) loaded in the gear (7) flexibly receives the reaction force of the aircraft at the time of startup, thereby alleviating the friction of the gear and shaft. ) always pushes in the direction of weaker force in an attempt to return to its original shape, so the loss of input is the least.
In addition, the effect of the force explained in Fig. 43 and the effects of the external force on the rotation of the aircraft as proven by experiments such as Fig. 37, Fig. 38, Fig. 40, Fig. 50, Fig. 51, Fig. 52, etc. Since there is no reaction from It is possible to generate a current that is equal to no resistance and send it to the outside of the aircraft to rotate the motor and produce an output that is stronger than the input. This invention can be connected one after another to obtain even more powerful power, and since it is non-polluting and can be easily installed anywhere, it will not be difficult to create a power source that can replace nuclear power generation. Think about it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本機の正面図であるが、内部を示す為    
゛に一部を切断しである。第2図は第1図の左側面図で
脚(5)の一部を切断しである。第3図は第1図の右側
面図。第4図は円板枠(35)とこれに付属する部品図
で一部を切断しである。 第5図は第4図の左側面図であるが第4図のように切断
はしてない。第6図は第4図の右側面図であるが第4図
のように切断はしてない。第7図は円板枠(34)の正
面図。第8図は第7図の左側面図。第9図は第7図の右
側面図。第10図は円筒(16)の正面図であるが内部
の支持板(59)を示す為一部を切断しである。第11
図は第1θ図の左側面図であるが切断部はない。 第12図は第10図の右側面図であるが切断部はない。 第13図は円板枠(13)の正面図。 第14図は第13図の左側面図。第15図は第13図の
右側面図。第16図は内歯車(26)で内部を示す為一
部を切断しである。第17図は第16図の左側面図であ
るが内歯車(26)は切断していない。第18図は第1
6図の右側面図であるが内歯車(26)は切断していな
い。 第19図は発電機(32)の正面図。第20図は第19
図の左側面図。第21図は第19図の右側面図。第22
図は軸(24)に取付けた歯車(27)(19)等の正
面図。第23図は第22図の左側面図。第24図は第2
2図の右側面図。第25図は軸(24)と平行キー(6
5)の正面図。 第26図はボス(1)と一体になっているブーIJ −
(2)と力点歯車(11)の正面図。第27図は第26
図の左側面図。第28図は第26図の右側面図。第29
図は軸(9)に取付けた歯車(2L)(8)(7)等の
正面図。第30図は第29図の左側面図。第31図は第
29図の右側面図。第32図は軸(9)と平行キー(6
5)の正面図。第33図は第29図に示す歯車(8)と
(7)の間の軸(9)を切断した歯車(7)の左側面図
で歯車(7)弾性体(56)等の一角も切断しである。 第34図は第33図の右側面図。第35図は弾性体(5
6)の側面図。第36図は第35図の右側面図。第37
図は実験に用いた機構の正面図。第38図は第37図の
左側面図。第39図は2枚の円板枠(67)を一体にす
る為に用いたボール1−(66)の正面図。第40図は
第37図の右側面図。第41図は内歯車(6)歯車(7
)力点歯車(11)等の歯は省略しであるが、各歯車の
回転状況を説明する為の図。第42図は内歯車(6)歯
車(7)力点歯車(11)等の歯は第41図と同じく省
略しであるが、歯車(7)を大きくし、力点歯車(11
)を小さくして、第41図の場合と回転率を比較する為
の図。第43図は第44図と比較し易い状態にして、歯
車(7)の梃子作用を理論的に説明する為の図。第44
図は一定の位置に固定した軸(I))を中心にして回転
する、力と距離が反比例する所謂反比例機構で、動力増
大が不可能とされる限拠を説明子る為の図。第45図第
46図は車輪(7)を平面上で転がして、距離と力が反
比例する事を示し、この機構を利用しても動力増大は不
可能である事を説明する乱筆47図は第43図第49図
に示す(R)線にだけ作用する力を利用しても力と距離
は反比例する事を証明する機構図。第48図は第47図
の左側面図。第49図は第47図の右側面乱箱50図は
実験用の機構で正面図。第51図は第50図の左側面図
。第52図は第50図の右側面図。 475 ) 廿61囚 −i485−
Figure 1 is a front view of this machine, but it is used to show the inside.
A part of it was cut out. FIG. 2 is a left side view of FIG. 1, with part of the leg (5) cut away. Figure 3 is a right side view of Figure 1. FIG. 4 is a partially cutaway view of the disc frame (35) and the parts attached thereto. FIG. 5 is a left side view of FIG. 4, but is not cut away as in FIG. 4. FIG. 6 is a right side view of FIG. 4, but is not cut away as in FIG. 4. FIG. 7 is a front view of the disc frame (34). FIG. 8 is a left side view of FIG. 7. FIG. 9 is a right side view of FIG. 7. FIG. 10 is a front view of the cylinder (16), with a portion cut away to show the internal support plate (59). 11th
The figure is a left side view of Figure 1θ, but there is no cut section. FIG. 12 is a right side view of FIG. 10, but without the cut section. FIG. 13 is a front view of the disc frame (13). FIG. 14 is a left side view of FIG. 13. FIG. 15 is a right side view of FIG. 13. FIG. 16 shows the internal gear (26), which is partially cut away to show the inside. FIG. 17 is a left side view of FIG. 16, but the internal gear (26) is not cut away. Figure 18 is the first
Although this is a right side view of FIG. 6, the internal gear (26) is not cut away. FIG. 19 is a front view of the generator (32). Figure 20 is 19th
Left side view of the figure. FIG. 21 is a right side view of FIG. 19. 22nd
The figure is a front view of gears (27), (19), etc. attached to the shaft (24). FIG. 23 is a left side view of FIG. 22. Figure 24 is the second
Right side view of Figure 2. Figure 25 shows the shaft (24) and parallel key (6).
5) Front view. Figure 26 shows the boo IJ that is integrated with the boss (1).
(2) and a front view of the power point gear (11). Figure 27 is the 26th
Left side view of the figure. FIG. 28 is a right side view of FIG. 26. 29th
The figure is a front view of gears (2L), (8), (7), etc. attached to the shaft (9). FIG. 30 is a left side view of FIG. 29. FIG. 31 is a right side view of FIG. 29. Figure 32 shows the shaft (9) and parallel key (6).
5) Front view. Figure 33 is a left side view of gear (7) with the shaft (9) between gears (8) and (7) shown in Figure 29 cut away, with one corner of the gear (7) elastic body (56) etc. also cut away. It is. FIG. 34 is a right side view of FIG. 33. Figure 35 shows an elastic body (5
6) side view. FIG. 36 is a right side view of FIG. 35. 37th
The figure is a front view of the mechanism used in the experiment. FIG. 38 is a left side view of FIG. 37. FIG. 39 is a front view of ball 1-(66) used to integrate two disc frames (67). FIG. 40 is a right side view of FIG. 37. Figure 41 shows internal gear (6) and gear (7).
) A diagram for explaining the rotational status of each gear, although teeth such as the power point gear (11) are omitted. In Fig. 42, the teeth of the internal gear (6), gear (7), power point gear (11), etc. are omitted as in Fig. 41, but the gear (7) is made larger and the power point gear (11) is omitted.
) is made smaller and the rotation rate is compared with the case of Fig. 41. FIG. 43 is a diagram for theoretically explaining the lever action of the gear (7) in a state that is easy to compare with FIG. 44. 44th
The figure is a so-called inversely proportional mechanism in which force and distance are inversely proportional, which rotates around an axis (I) fixed at a fixed position, and is used to explain the limitations on which it is impossible to increase power. Figures 45 and 46 show that the wheel (7) is rolled on a flat surface to show that distance and force are inversely proportional. Fig. 43 is a mechanism diagram proving that force and distance are inversely proportional even if the force acting only on the (R) line shown in Fig. 49 is used. FIG. 48 is a left side view of FIG. 47. Figure 49 is the right side of the box in Figure 47. Figure 50 is a front view of the experimental mechanism. FIG. 51 is a left side view of FIG. 50. FIG. 52 is a right side view of FIG. 50. 475) 61st Prisoner-i485-

Claims (1)

【特許請求の範囲】[Claims] 理論と実験によって説明したように、内歯車(6)歯車
(7)(8)力点歯車(11)等の噛合作用に依って、
遊星回転する回転体の内部で、入力より増大した動力を
、遊星機構に直結した発電機で、直に電力に変え電流に
して機体の外部に出し、導線によって接続する電動機を
回転して出力を増大する、遊星機構の特殊性を利用した
動力増大機。
As explained through theory and experiment, due to the meshing action of internal gear (6), gears (7), (8), power point gear (11), etc.
Inside the planetary rotating body, the power that is increased from the input power is directly converted into electric power by a generator directly connected to the planetary mechanism, which is then output as a current to the outside of the aircraft, which rotates the electric motor connected by a conductor and produces an output. A power increasing machine that utilizes the special characteristics of the planetary mechanism.
JP11517782A 1982-07-01 1982-07-01 Power enlarging machine utilizing speciality of planetary gear mechanism Pending JPS595889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11517782A JPS595889A (en) 1982-07-01 1982-07-01 Power enlarging machine utilizing speciality of planetary gear mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11517782A JPS595889A (en) 1982-07-01 1982-07-01 Power enlarging machine utilizing speciality of planetary gear mechanism

Publications (1)

Publication Number Publication Date
JPS595889A true JPS595889A (en) 1984-01-12

Family

ID=14656249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11517782A Pending JPS595889A (en) 1982-07-01 1982-07-01 Power enlarging machine utilizing speciality of planetary gear mechanism

Country Status (1)

Country Link
JP (1) JPS595889A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2587764A1 (en) * 1985-09-20 1987-03-27 Homo Eugene Machine for producing power and transmitting it
JPH04359666A (en) * 1991-06-05 1992-12-11 Eisaku Nakamura Energy saving power generating system
WO2007079609A1 (en) * 2006-01-09 2007-07-19 Chienchih Chang Energy increasing device and such method
WO2008053506A2 (en) * 2006-10-31 2008-05-08 Domenico Palamara System and method for the conversion of the gravity energy into the mechanical energy
US20160195071A1 (en) * 2013-09-23 2016-07-07 Philippe PELLEGRIN Gravity rotation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2587764A1 (en) * 1985-09-20 1987-03-27 Homo Eugene Machine for producing power and transmitting it
JPH04359666A (en) * 1991-06-05 1992-12-11 Eisaku Nakamura Energy saving power generating system
WO2007079609A1 (en) * 2006-01-09 2007-07-19 Chienchih Chang Energy increasing device and such method
WO2008053506A2 (en) * 2006-10-31 2008-05-08 Domenico Palamara System and method for the conversion of the gravity energy into the mechanical energy
WO2008053506A3 (en) * 2006-10-31 2008-06-19 Domenico Palamara System and method for the conversion of the gravity energy into the mechanical energy
US20160195071A1 (en) * 2013-09-23 2016-07-07 Philippe PELLEGRIN Gravity rotation device

Similar Documents

Publication Publication Date Title
US4227092A (en) Hand cranked electrical power source
US6239524B1 (en) Power conversion methods and apparatus
FR2264676A1 (en) Motor driven bicycle wheel - has electric motor in wheel with battery powered epicyclic gearing
JPS595889A (en) Power enlarging machine utilizing speciality of planetary gear mechanism
CN103944031B (en) Ground wire operating lever
JPH0328715A (en) Absolute position detector
US4096763A (en) Hypocycloidal reduction gearing
WO2009101786A1 (en) Generator
CN109733433A (en) Low floor vehicle, bogie and its shaft end structure
JPS62160053A (en) Double reversal rotating generator
CN207248318U (en) Slidingtype self power generation electronic scale
CN107196456B (en) DC speed reducing motor
CN208353184U (en) A kind of motor
JPS59154319A (en) Multirevolution type absolute encoder
CN207248333U (en) Switch wheel self power generation electronic scale
US1595286A (en) Spring motor
JPH04102750A (en) Concentric two-output shaft reduction gear
CN201051698Y (en) Deviated car electromotor
DE102016223363A1 (en) pedal crank
US3206667A (en) Transmitter for an electrical speedometer
JPH0724083A (en) Bicycle type treadmill and electric power generation device
TWI272402B (en) Driver with indicator meter
JP3168093U (en) Electric structure
US1181669A (en) Combined counter and circuit-breaker.
JPH0367791A (en) Bicycle power generation device