JPS5958886A - Single mode semiconductor laser diode - Google Patents

Single mode semiconductor laser diode

Info

Publication number
JPS5958886A
JPS5958886A JP57168903A JP16890382A JPS5958886A JP S5958886 A JPS5958886 A JP S5958886A JP 57168903 A JP57168903 A JP 57168903A JP 16890382 A JP16890382 A JP 16890382A JP S5958886 A JPS5958886 A JP S5958886A
Authority
JP
Japan
Prior art keywords
laser diode
diode
single mode
etalon
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57168903A
Other languages
Japanese (ja)
Other versions
JPS6354235B2 (en
Inventor
Shigefumi Masuda
増田 重史
Akira Okamoto
明 岡本
Takeo Iwama
岩間 武夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57168903A priority Critical patent/JPS5958886A/en
Priority to CA000437093A priority patent/CA1238970A/en
Priority to EP83305763A priority patent/EP0107373B1/en
Priority to DE8383305763T priority patent/DE3382205D1/en
Priority to KR8304554A priority patent/KR870001832B1/en
Publication of JPS5958886A publication Critical patent/JPS5958886A/en
Publication of JPS6354235B2 publication Critical patent/JPS6354235B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a diode controlling the beam wave length precisely by a method wherein an etalon is constituted by arranging the reflecting members opposing to the beam emitting parts at both ends of a semiconductor laser diode. CONSTITUTION:A stem S is bonded on a Peltier element P while a bulk glass BG and a laser diode LD are arranged on the surface ends at specified interval. Next, a lens L, a single mode filter SMF and a transfer optical fiber TF are linearly aligned behind the diode LD. In such a constitution, an etalon is constituted between a reflecting surface M1 of the glass BG and the diode LD further constituting another etalon between the reflecting surfaces M2 and M3 of the fiber SMF. Besides, the other etalon is constituted on the diode LD itself. Through these procedures, total three etalons are arranged in series to make the interval between the reflecting surfaces M1 and M3 (n) times of the beam wave length lambda performing the fine adjustment of the fiber SMF length as for the level adjustment.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は、光フアイバジャイロケータ、光位相変調通信
方式等のように、光の位相を利用する技術に用いて好適
な単一モード半導体レーザダイオードに関するものであ
る。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to a single mode semiconductor laser suitable for use in technologies that utilize the phase of light, such as optical fiber gyrocators and optical phase modulation communication systems. It concerns diodes.

(b)  技術の背景 近年ジャイロケータ金光ファイバと半導体レーザダイオ
ードを用いて構成することが行なわれて来ている。
(b) Background of the Technology In recent years, gyrocators have been constructed using gold optical fibers and semiconductor laser diodes.

この光フアイバジャイロは、第1図にその原理を示すよ
うに、レーザダイオードLDからのレーザ光をハーフミ
ラ−HFにより2分岐し、光ファイバのループLPの両
端から入射し、光フアイバループLPを右回りに伝搬し
た光と、左回りに伝搬したブCを再びハーフミラ−HF
にて合成して位相差検出器PDに入射し、その位相差か
ら回転速度を指示する装置である。
As the principle of this optical fiber gyro is shown in Fig. 1, the laser beam from the laser diode LD is split into two by a half mirror HF, and enters from both ends of the optical fiber loop LP. The light that propagated in the circular direction and the light that propagated in the counterclockwise direction are retranslated into a half mirror - HF.
This device synthesizes the signals and inputs them to the phase difference detector PD, and indicates the rotation speed from the phase difference.

このように光の位相差を用いるため、レーザダイオード
は発光波長を安定させることが要求されている。
Since the phase difference of light is used in this way, the laser diode is required to stabilize the emission wavelength.

(C)従来技術及び問題点 従来、このため発光波長の艮いレーザダイオードLDを
選択して用い、又伝送用光ファイバTFの端面Fからの
反射光によや発光波長が変動するのを防止するためにア
イソレータISOを配置している。ところが、このアイ
ソレータISOは完全に反射光を阻止できず、又アイソ
レータISOの端面において反射が生じるため、どうし
ても発光波長が変動してしまう欠点があった。
(C) Prior art and problems Conventionally, for this purpose, a laser diode LD with a different emission wavelength was selected and used, and the emission wavelength was prevented from changing due to the reflected light from the end face F of the transmission optical fiber TF. An isolator ISO is installed for this purpose. However, this isolator ISO cannot completely block reflected light, and since reflection occurs at the end face of the isolator ISO, the emission wavelength inevitably fluctuates.

位相情報を用いるジャイロ等では、との鼓動が無視でき
ない。
In a gyro or the like that uses phase information, the pulse cannot be ignored.

(d)  発明の目的 本発明は上記の点に鑑みてなされたもので、発光波長を
精度よく制御できるようにした単一モード半導体レーザ
ダイオードを提供することを目的とする。
(d) Object of the Invention The present invention has been made in view of the above points, and an object of the present invention is to provide a single mode semiconductor laser diode whose emission wavelength can be precisely controlled.

(e)  発明の構成 上記目的は本発明によれば、半導体レーザダイオードの
両端部の光出射部に対向してエタロンを構成するように
反射部材を配置したことを%徴とする単一モード半導体
レーザダイオードによって達成される。
(e) Structure of the Invention According to the present invention, the above-mentioned object is to provide a single mode semiconductor characterized in that a reflecting member is arranged so as to constitute an etalon facing the light emitting part at both ends of a semiconductor laser diode. Achieved by a laser diode.

(f)  発明の実施例 以下、本発明を実施例に基づいて説明する。第3図は本
発明の実施例を示す図で、図中、Pはペルチェ素子、S
はステム、BGはバルクガラス、SMFはシングルモー
ドファイバ、M、 、 M2. ■ムは反射面、TFは
伝送用光ファイバ、Lはレンズでちる。
(f) Examples of the invention The present invention will be described below based on examples. FIG. 3 is a diagram showing an embodiment of the present invention, in which P is a Peltier element, and S
is the stem, BG is bulk glass, SMF is single mode fiber, M, , M2. ■M is a reflective surface, TF is a transmission optical fiber, and L is a lens.

本発明においては、縦モードのロッキングをよりM度よ
く行なうために、レーザダイオードLDの後方発光面に
はバルクガラスBGを、前方発光面には両端面は反射面
Mt 、Msによりエタロンf 8g gしたシングル
モードファイバSMFを配置した。
In the present invention, in order to perform locking of the longitudinal mode better by M degrees, the rear light emitting surface of the laser diode LD is provided with bulk glass BG, and both end surfaces of the front light emitting surface are formed by reflecting surfaces Mt and Ms, thereby forming an etalon f8g g. A single-mode fiber SMF was installed.

この構成によれば、バルクガラスBGの反射面M、とレ
ーザダイオードLDとの間で、1つのエタロンが構成さ
れ、シングルモードファイ/(SMFの反射面M2とM
sとの間でもう1つのエタロンが構成される。レーザダ
イオード自材も1つのエタロンを構成しているので、都
合3つのエタロンが直列に配置されたととになる。そし
て、反射面゛M1とMsの間隔は発光波長λのn倍とす
る。
According to this configuration, one etalon is configured between the reflective surface M of the bulk glass BG and the laser diode LD, and the single mode fiber/(SMF reflective surface M2 and M
Another etalon is constructed with s. Since the laser diode itself constitutes one etalon, three etalons are arranged in series. The distance between the reflective surfaces M1 and Ms is set to be n times the emission wavelength λ.

作用について説明すると、レーザダイオードLDからは
、あるスペクトラム幅をもったレーザ光が出射する。そ
して、とのレーザ光は各スペクトラム毎に出射角度が異
なっており、従って)くルクガシスBGの反射面Mlに
入射する角度も異なっている。この入射角度によって反
射面Mlから反射する光と反射しない光に分けられる。
To explain the operation, the laser diode LD emits a laser beam having a certain spectrum width. The emission angles of the laser beams differ for each spectrum, and therefore the angles at which they enter the reflective surface Ml of the Clugasis BG also differ. Depending on this angle of incidence, the light is divided into light that is reflected from the reflecting surface Ml and light that is not reflected.

これにより、レーザダイオードLDにフィードバックさ
れる光のスペクトラムは、レーザダイオードから出射す
る光に比較して狭くなる。
As a result, the spectrum of the light fed back to the laser diode LD becomes narrower than the light emitted from the laser diode.

このようにしてスペクトラムの幅が狭くなったレーザダ
イオードLDからの元は、シングルモードファイバS 
M F’に入射する。そして、シングルモードファイバ
SMFでは反射面M、、M3間で反射が淋9返えされ、
シングルモードファイバSMFの長さによって定まる波
長だけが反射面B111.。
The source from the laser diode LD whose spectrum width has been narrowed in this way is a single mode fiber S.
MF'. In the single mode fiber SMF, the reflection is returned between the reflective surfaces M, M3,
Only the wavelength determined by the length of the single mode fiber SMF is determined by the reflecting surface B111. .

IVlsYf:a過し、反射面M2を介してレーザダイ
オードにフィードバックし、一方反射面M3を介して伝
送用光ファイバTFに入射する。
IVlsYf:a, is fed back to the laser diode via the reflective surface M2, and enters the transmission optical fiber TF via the reflective surface M3.

以上の構成により実施した結果を第4図(a)に示す。The results obtained using the above configuration are shown in FIG. 4(a).

第4図(b)は、第2図の構成によるレーザダイオード
からのり6元スペクトラムを示す図である。図から明ら
かな如く、従来においては100Xの範囲でいくつも縦
モードが発生しているが、本発明によれば縦モードが1
つとなっている。
FIG. 4(b) is a diagram showing a six-element spectrum from the laser diode with the configuration shown in FIG. As is clear from the figure, conventionally, several longitudinal modes occur in the range of 100X, but according to the present invention, only one longitudinal mode occurs.
It is one.

次に、シングルモードファイバSMFの長さに対する反
射面の透過率について実験した結果を説明する。使用し
たシングルモードファイバSMFの長さは5隨を中心と
して、その長さを変化させた。そして、反射面M2.M
3の反射率は95チで、使用波成は1.305μ簿であ
る。その結果を第5図に示す。
Next, the results of an experiment regarding the transmittance of the reflective surface with respect to the length of the single mode fiber SMF will be explained. The length of the single mode fiber SMF used was varied around five lengths. And reflective surface M2. M
3 has a reflectance of 95 cm, and the waveform used is 1.305 μm. The results are shown in FIG.

図において、i黄軸はシングルモードファイバの長さく
一’) 、縦軸は透過損−である。そして、最大の透過
損(31,8d B )を与える長さくA点)は、5.
00143(鴎)で、最小の透過損(0,00091d
B)を与える長さくB点)は5.000756(”)で
あっ/ヒ。又図から明らかな如く、長さを変えることに
よシ周期的に透過損が変化する。
In the figure, the yellow axis is the length of the single mode fiber (1'), and the vertical axis is the transmission loss. Then, the length (point A) that gives the maximum transmission loss (31,8dB) is 5.
00143 (seagull), minimum transmission loss (0,00091d
The length at point B) that gives point B) is 5.000756 (''). Also, as is clear from the figure, the transmission loss changes periodically by changing the length.

図から最大の透過損を与える長さと、最小の透過損を掬
える長さの左りは、 λ A−B D=−i〒1]二#0.225μ属 となる。
From the figure, the left side of the length that provides the maximum transmission loss and the length that provides the minimum transmission loss is λ A−B D=−i〒1]2#0.225μ.

(g)  発明の効果 以上の如く本発明の構成によれば、単一のモードのレー
ザ光を鍔ることが可能となる。しかも、そのレベルの調
整はシングルモードファイバノ長さの微調整で可能とな
る。
(g) Effects of the Invention As described above, according to the configuration of the present invention, it is possible to emit laser light in a single mode. Furthermore, the level can be adjusted by finely adjusting the length of the single mode fiber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光フアイバジャイロの一例を示す図、第2図は
従来の構成を示す図、第3図は本発明の構成例を示す図
、第4図は第3図の構成例を用いて実、験結果金示す図
、第5図はシングルモードファイバの長さと処遇」貝と
の関係を示す図である。 図中、LDはレーザダイオード、BGはバルクガラス、
SMFはシングルモードファイバ、TFは伝送用ファイ
バ、IVII HIVI2は反射面である。 寥1図 算2図 算3図 (1 βθ3ρA’                /?P
、3ρA″6b) 茸4図 茸5図
FIG. 1 is a diagram showing an example of an optical fiber gyro, FIG. 2 is a diagram showing a conventional configuration, FIG. 3 is a diagram showing an example of the configuration of the present invention, and FIG. 4 is a diagram showing an example of the configuration of FIG. In fact, Figure 5 shows the experimental results, and is a diagram showing the relationship between the length of single mode fiber and the treatment. In the figure, LD is a laser diode, BG is bulk glass,
SMF is a single mode fiber, TF is a transmission fiber, and IVII HIVI2 is a reflective surface. 1 diagram 2 diagram 3 diagram (1 βθ3ρA' /?P
, 3ρA″6b) Mushroom 4 diagram Mushroom 5 diagram

Claims (1)

【特許請求の範囲】[Claims] (1)半導体レーザダイオードの両端部の光出射部に対
向して、エタロンを構成するように反射部材を配置した
ことを特徴とする単一モード半導体レーザダイオード。 (2、特許請求の範囲第(1)項記載の単一モード半導
体レーザダイオードにおいて、該反射部材の一方を単一
モードファイバの端面に反射膜を設けた構成としたこと
を特徴とする単一モード半導体レーザダイオード。
(1) A single mode semiconductor laser diode characterized in that reflective members are arranged to form an etalon, facing the light emitting portions at both ends of the semiconductor laser diode. (2. A single mode semiconductor laser diode as set forth in claim (1), characterized in that one of the reflective members has a configuration in which a reflective film is provided on the end face of a single mode fiber. mode semiconductor laser diode.
JP57168903A 1982-09-28 1982-09-28 Single mode semiconductor laser diode Granted JPS5958886A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57168903A JPS5958886A (en) 1982-09-28 1982-09-28 Single mode semiconductor laser diode
CA000437093A CA1238970A (en) 1982-09-28 1983-09-20 Fiber-optic gyro
EP83305763A EP0107373B1 (en) 1982-09-28 1983-09-27 Fibre optic gyroscope
DE8383305763T DE3382205D1 (en) 1982-09-28 1983-09-27 CIRCULAR WITH OPTICAL THREAD.
KR8304554A KR870001832B1 (en) 1982-09-28 1983-09-28 Fiber-optic gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57168903A JPS5958886A (en) 1982-09-28 1982-09-28 Single mode semiconductor laser diode

Publications (2)

Publication Number Publication Date
JPS5958886A true JPS5958886A (en) 1984-04-04
JPS6354235B2 JPS6354235B2 (en) 1988-10-27

Family

ID=15876695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57168903A Granted JPS5958886A (en) 1982-09-28 1982-09-28 Single mode semiconductor laser diode

Country Status (1)

Country Link
JP (1) JPS5958886A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2664439A1 (en) * 1990-07-06 1992-01-10 Alsthom Cge Alcatel Semiconductor laser with external reflector
JPH065961A (en) * 1992-01-29 1994-01-14 American Teleph & Telegr Co <Att> Laser device
KR20040047254A (en) * 2002-11-29 2004-06-05 한국전자통신연구원 Optical device including tunable laser diode integrated with etalon
CN103983261A (en) * 2014-04-28 2014-08-13 北京大学 A fiber optic gyroscope based on vector space analysis and a signal processing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109405849B (en) * 2018-10-18 2021-01-26 武汉长盈通光电技术股份有限公司 Optical fiber ring bonding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2664439A1 (en) * 1990-07-06 1992-01-10 Alsthom Cge Alcatel Semiconductor laser with external reflector
JPH065961A (en) * 1992-01-29 1994-01-14 American Teleph & Telegr Co <Att> Laser device
KR20040047254A (en) * 2002-11-29 2004-06-05 한국전자통신연구원 Optical device including tunable laser diode integrated with etalon
CN103983261A (en) * 2014-04-28 2014-08-13 北京大学 A fiber optic gyroscope based on vector space analysis and a signal processing method thereof

Also Published As

Publication number Publication date
JPS6354235B2 (en) 1988-10-27

Similar Documents

Publication Publication Date Title
EP1459111B1 (en) External cavity with retro-reflecting device in particular for tunable lasers
EP0473071A2 (en) Beam combining apparatus for semiconductor lasers
KR20020048301A (en) Diffractive optical element for providing favorable multi-mode fiber launch and reflection management
JP2002267861A (en) Optical waveguide, optical module, optical fiber laser device
US6125222A (en) Fiber grating feedback stabilization of broad area laser diode
US20050008045A1 (en) Laser with reflective etalon tuning element
JPH0974245A (en) Semiconductor optical amplifier
US4905252A (en) Ring laser cavities
JPS5958886A (en) Single mode semiconductor laser diode
JP2554772B2 (en) Laser pulse stretcher
US6959023B1 (en) Laser with reflective etalon tuning element
JPH01196189A (en) Tunable optical fiber raman laser
JPS60207389A (en) Semiconductor laser device
JPH04264409A (en) Optical coupling circuit
JP2000171665A (en) Ld module
JP2701611B2 (en) Same wavelength bidirectional transceiver module
JPH01231387A (en) Semiconductor light emitting device
JPS607790A (en) Semiconductor laser device
JPS62136890A (en) Semiconductor laser device
JPS59108384A (en) Light feedback type semiconductor laser device
JPH04150085A (en) Semiconductor laser package
JPH04275483A (en) Semiconductor laser light amplifier
JPS6255983A (en) External light feedback semiconductor laser using optical fiber
JPS60179709A (en) Optical coupling device
JPS6164182A (en) Optical feedback type semiconductor laser device