JPS5958387A - Cladding tube of nuclear fuel element - Google Patents
Cladding tube of nuclear fuel elementInfo
- Publication number
- JPS5958387A JPS5958387A JP57168383A JP16838382A JPS5958387A JP S5958387 A JPS5958387 A JP S5958387A JP 57168383 A JP57168383 A JP 57168383A JP 16838382 A JP16838382 A JP 16838382A JP S5958387 A JPS5958387 A JP S5958387A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- cladding
- nuclear fuel
- cladding tube
- stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Glass Compositions (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、核燃料要素の被覆管の改良に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in cladding tubes for nuclear fuel elements.
現在、設ゴF、製造及び運転されている原子炉において
は、通常、核燃料物質を耐食性、非反応性及び熱伝導性
のすぐれた被覆管内に封入している。In nuclear reactors that are currently being constructed, manufactured, and operated, nuclear fuel material is usually enclosed in a cladding tube that has excellent corrosion resistance, nonreactivity, and thermal conductivity.
そして、この燃料要素を冷却材の流れるチャンネル内に
一定間隔を隔てて格子状に集合して組み立て燃料集合体
を形成し、これら燃料集合体を適当数組み合せて核分裂
反応の可能な核分裂連鎖反応型巣合体、または炉心を形
成しており、この炉心を冷却材の流通する原子炉容器内
に収納している。Then, these fuel elements are assembled in a lattice shape at regular intervals in channels through which coolant flows, forming fuel assemblies, and a suitable number of these fuel assemblies are combined to form a fission chain reaction capable of nuclear fission reactions. They are combined to form a reactor core, which is housed in a reactor vessel through which coolant flows.
そしで、被覆管は幾つかの目的を有して取り付けられ、
その第一の目的は、核燃料と冷却材または減速材との接
触及び化学反応を防止することにある。第二の目的は、
一部が気体である放射性核分裂生成物が、燃料から冷却
材または減速材の中に、あるいは伶却材及び減速材の双
方が存在する場合はこれらの双方の中に漏れ出るのを防
止するにある。普通の被覆管材料としては、ステンレス
鋼、ジルコニウム及びその合金等である。こnらの被覆
管の破損、即ち、漏れ密封性のそう失が生じると、翰胛
材才たは減速材及びその関連する系が放射性長寿命生成
物でプラントの運転を妨げる程に汚染されるおそれがあ
る。ジルコニウム及びその合金は、子宮条件下では優秀
な被覆管材料である。その理由は、ジルコニウム及びそ
の合金が小さい中性子吸収断面を有し、さらに、400
r以下の温度では原子炉冷胛材及び減速材として、普通
に使用される水蒸気の存在下に強く、延性を有し、極め
て安定で、かつ、非反応性であるからである。Therefore, cladding is installed for several purposes:
Its primary purpose is to prevent contact and chemical reactions between the nuclear fuel and the coolant or moderator. The second purpose is
To prevent radioactive fission products, which are partially gaseous, from escaping from the fuel into the coolant or moderator, or into both the coolant and moderator if both are present. be. Common cladding materials include stainless steel, zirconium and its alloys. Failure of these claddings, i.e., loss of leak-tightness, can result in contamination of the cladding material or moderator and its associated systems with radioactive long-lived products to the extent that plant operation is impaired. There is a risk. Zirconium and its alloys are excellent cladding materials under uterine conditions. The reason is that zirconium and its alloys have a small neutron absorption cross section, and
This is because it is strong, ductile, extremely stable, and non-reactive in the presence of steam, which is commonly used as a nuclear reactor cooling material and moderator at temperatures below r.
しかし、燃料要素の作動から、核燃料、被覆管及び核分
裂反応中に生成する核分裂生成物の相互作用により、被
覆管が脆くなシ割れを生じると云う問題が明らかになっ
ている。この望ましくない状態は、燃料−被覆の膨張差
に基づく機械的応力の局在化によって促進さ才りること
が碓かめられている。このような現象は応力腐食割れと
呼ばれている。現在では核分裂生成物の放出と機械的相
互作用による応力腐食割れを回避するために、原子炉の
運転法を制限せさるを得ない状態にある。原子炉の効率
運転ならびに安全性の確保のために、この応力g負制f
Lの防止法を確立することは急務となっている。However, the operation of fuel elements has revealed problems in which the interaction of the nuclear fuel, the cladding, and the fission products produced during the fission reaction results in brittle cracking of the cladding. This undesirable condition is believed to be facilitated by localized mechanical stress due to fuel-cladding differential expansion. This phenomenon is called stress corrosion cracking. Currently, nuclear reactor operating methods must be restricted in order to avoid stress corrosion cracking due to the release of fission products and mechanical interactions. In order to ensure the efficient operation and safety of the nuclear reactor, this stress g negative control f
There is an urgent need to establish a method to prevent L.
本発明は上記の状況に鑑みなされたものてあり、強度を
低下させることなく、核分裂生成物による応力腐食割れ
を防止できる核燃料要素の被覆管を4丸供することを目
的としたものである。The present invention was made in view of the above situation, and it is an object of the present invention to provide four complete cladding tubes for nuclear fuel elements that can prevent stress corrosion cracking caused by fission products without reducing strength.
本発明の核燃料要素の被覆管に、多層構造を有する被覆
管内部に核燃料物質が装填されてなシ、上記被覆管が、
最内側の管が外側の管よυも低い強度の利料から形成さ
れるとともに、核燃料要素がバンドル状に組みNfてら
れる前の状態において上記最内側の管が降伏点を越えて
塑性変形を起こし、かつ、上記外側の管に降伏点以下で
ある太きさの内圧が加えられて上記被覆管のift内側
の右に圧縮力が作用された状態に形成されてなるもので
ある。The cladding tube of the nuclear fuel element of the present invention does not have a nuclear fuel material loaded inside the cladding tube having a multilayer structure, and the cladding tube has the following characteristics:
The innermost tube is formed from a material having a lower strength than the outer tubes, and the innermost tube undergoes plastic deformation beyond its yield point before the nuclear fuel elements are assembled into a bundle. The cladding tube is raised up and an internal pressure having a thickness below the yield point is applied to the outer tube, so that a compressive force is applied to the right inside of the ift of the cladding tube.
一般に、応力烏負制扛1qj、材料、環境及び応力条件
が満足さtして発生ずる。従って、こ!しらの因子のう
ぢの一つ、・例えば、作用応力が減少すれは応力腐食割
れは防止できる。そして、応力属食割れは引張応力下で
発生し、圧縮応力の下では発生しない。!、た、予め材
料に圧縮応力を作用をせておくと、その材料に引張応力
が作用しf?L”45合、圧縮応力から引張に移行しに
くくなる。このような事実に基づき、本発明の実施例て
は、最も内側の管を構成する材料の強度がそれよシも外
側の管の強度よりも低い多重管構造をもつで金属被覆管
に・内圧を加えることにより最も内側の管に圧縮応力を
作用させて応力腐食割れを防止するようにしたものであ
る。In general, this occurs when stress constraints, material, environment, and stress conditions are satisfied. Therefore, this! One of the main factors, for example, stress corrosion cracking can be prevented if the applied stress is reduced. And stress corrosion cracking occurs under tensile stress, but not under compressive stress. ! , If compressive stress is applied to the material in advance, tensile stress will be applied to the material, f? L"45, it becomes difficult to shift from compressive stress to tension. Based on this fact, in the embodiment of the present invention, the strength of the material constituting the innermost tube is higher than the strength of the outer tube. It has a multi-tube structure lower than that of the metal clad tube, and by applying internal pressure to the innermost tube, compressive stress is applied to the innermost tube to prevent stress corrosion cracking.
第1図は本発明の核燃料要素の被覆7〜の実施例を示し
、2g1図のように内側が純ジルコニウムのジルコニウ
ム内側管1、外側がジルコニウム内側管1より強度の大
きいジルカロイ−2外011j管2のような二重層に、
内圧が加わった場合の応力−歪曲線を模式的に描くと第
2図のようになる。第2図は横軸にひすみ、縦軸に応力
をとって示した応力−ひすみ曲線図で、第2図でABC
Dの曲線4は外側の被覆管、ABI!J曲線3は内側の
被覆管のそれぞれの応力−ひすみ曲線を示す。このよう
な被覆管において、内部Uの管が降伏点(B点)を越え
て塑性変形を生じ、かつ、外側の看は降伏点以下である
ような大きさの内圧を加えた後、圧力を除くと、外側の
管は再びほぼ引張応力が苓の点(A点)まで戻るのに対
し、内側の管は引張応力の作用しているE点から圧縮応
力の作用するG点に達する。内圧が内1811の被覆管
の降伏点以下の場合は、内側の被覆管が塑性変形を起こ
さないため、圧ね応力は作用しない。内圧が外側の被覆
管の降伏点(C点)よりも大きい場合は、被覆管全体が
塑性変形を起こし、被覆管の形状が変化することになり
奸才しくない。従って、内圧の大きさは、内側の被覆管
の降伏点以上で、外側の被覆管の降伏点以]・の範囲と
する必彎がある。FIG. 1 shows embodiments of the nuclear fuel element sheathing 7 to 7 of the present invention, and as shown in FIG. In a double layer like 2,
The stress-strain curve when internal pressure is applied is schematically drawn as shown in Figure 2. Figure 2 is a stress-strain curve diagram with strain on the horizontal axis and stress on the vertical axis.
Curve 4 of D is the outer cladding tube, ABI! J-curve 3 shows the respective stress-strain curve of the inner cladding. In such a cladding tube, after applying an internal pressure of such a magnitude that the inner tube U undergoes plastic deformation exceeding its yield point (point B) and the outer tube is below the yield point, the pressure is removed. When removed, the tensile stress of the outer tube returns almost to the point (A point), while the inner tube reaches point G, where the compressive stress acts, from point E, where the tensile stress acts. When the internal pressure is below the yield point of the inner cladding tube 1811, the inner cladding tube does not undergo plastic deformation, so no compressive stress is applied. If the internal pressure is higher than the yield point (point C) of the outer cladding tube, the entire cladding tube undergoes plastic deformation and the shape of the cladding tube changes, which is unwise. Therefore, the magnitude of the internal pressure must be within the range of above the yield point of the inner cladding tube and below the yield point of the outer cladding tube.
内圧イc加える方法としては、例えば、被覆管の一端を
封止し、他端から内圧p+ kg / cnfを加える
。For example, one end of the cladding tube is sealed, and an internal pressure p+ kg/cnf is applied from the other end.
1)Iの太きさにJl、上記のように内11jの被覆管
の降伏点σγ11(g/箇2以上、外側の被覆管の降伏
点σY Q kg/ mm 2以下の範囲になければな
らない。1) The thickness of I must be Jl, and as mentioned above, the yield point of the inner 11j cladding tube must be σγ11 (g/piece 2 or more, and the yield point of the outer cladding tube σY must be within the range of Q kg/mm 2 or less) .
今、抜堕臂全体の内径をり、Trrm、外径をr)。m
mとし、内側の扱員管の厚さが外側の被覆管の厚さに比
べて充分に小さいものとすると、近似的にp。Now, measure the inner diameter of the entire lowered arm (Trrm), and the outer diameter (r). m
m, and assuming that the thickness of the inner handling tube is sufficiently smaller than the thickness of the outer cladding tube, approximately p.
の範?、fi Ii次の(1)式によって与えられる。range? , fi Ii is given by the following equation (1).
このようにして内側の被覆管に塑性変形を生じきせた後
、内圧を除去してやると、内側の被覆管に圧縮応力が残
ることになり、燃料ペレットと被覆管との間の機械的相
互作用によシ被覆管内面に引張応力が加えられても、こ
の残留圧縮応力に打ち消されてIE管の応力腐食割れを
防ILすることができる。内圧p1は(IJ式の範囲内
でできるだけ大きい方が効果がある。If the internal pressure is removed after plastic deformation has occurred in the inner cladding tube in this way, compressive stress will remain in the inner cladding tube, and the mechanical interaction between the fuel pellet and the cladding tube will be affected. Even if tensile stress is applied to the inner surface of the cladding tube, this residual compressive stress is canceled out and stress corrosion cracking of the IE tube can be prevented. It is effective to make the internal pressure p1 as large as possible within the range of the IJ formula.
尚、ジルコニウム及びジルコニウム合金は高温で回復を
起こすため、内圧を加えてFl−、縮残留応力を生せし
めるためには、この回復が起こらないυ漬度範囲で内圧
ケ加える必教がある。一般に、糾ジルコニウムの力がジ
ルコニウム合金よりも回復を起こし易い。純ジルコニウ
ムは約300 C’tMFB−以下の温度範囲では回復
速度は比較的遅いが、350′C程匹以上の温度範囲で
は温度の上昇と共に回復速成が急に早くなる。従って、
門出をかりる温度は35(I’以下で、できれば300
t:’以下の温度範囲が好ましい。Incidentally, since zirconium and zirconium alloys recover at high temperatures, in order to generate Fl- and shrinkage residual stress by applying internal pressure, it is necessary to apply internal pressure within the υ soaking degree range where this recovery does not occur. In general, zirconium strength is more likely to cause recovery than zirconium alloys. Pure zirconium has a relatively slow recovery rate in a temperature range of about 300 C'tMFB- or less, but in a temperature range of about 350'C or more, the rate of recovery rapidly increases as the temperature rises. Therefore,
The starting temperature is 35 (I' or below, preferably 300
The temperature range below t:' is preferable.
第3図は第1図の被覆管を用いた核燃料要素の上端部シ
T′rMJ図を示し、5は燃料ベレット、内側はジルコ
ニウム管でおる。ジルカロイ−2外側管の組成は、Zr
:98.4%、Sn:1.50%、Fe:0.112%
+ N + ’ 0−001 ’A + Cr: 0.
03%であり、ジルコニウム内側管よpも高い強度を有
する。6は端栓、7はスズリングである。この二M管構
造において、燃料要素をバンドル状態に組み立てる前に
、管の一端にジルコニウム合金製の端栓6を溶接するこ
とにより封止し、他端〃・ら高圧不活性ガスまたは油を
導入したうえ内圧を加える。この場合、加える内圧は、
ジルコ0ウム及びジルカロイ−2の降伏応力、温度、被
覆管の寸法によって異なる。本実施例で採1目した外径
125陥、内径10.7 mmの゛シルコニウドライナ
ー管の場合、横軸に温度をと!lll縦軸に降伏応力f
:取って示した第4図の降伏点一温度関係曲線を示す第
4図の温度と降伏応力の関係から、加える内圧と温度と
の関係は、横軸に温度をと9縦軸に内圧をとって示した
第5図のハンチング範囲AC/)部分となる。FIG. 3 shows a T'rMJ diagram of the upper end of a nuclear fuel element using the cladding tube shown in FIG. 1, where 5 is a fuel pellet and the inside is covered with a zirconium tube. The composition of the Zircaloy-2 outer tube is Zr
:98.4%, Sn: 1.50%, Fe: 0.112%
+N+'0-001'A+Cr: 0.
03%, and the zirconium inner tube also has high strength. 6 is an end plug, and 7 is a tin ring. In this two-M tube structure, before assembling the fuel elements into a bundle, one end of the tube is sealed by welding a zirconium alloy end plug 6, and high-pressure inert gas or oil is introduced from the other end. Then apply internal pressure. In this case, the applied internal pressure is
It varies depending on the yield stress of Zircaloy-2 and Zircaloy-2, temperature, and the dimensions of the cladding tube. In the case of the silconide liner tube with an outer diameter of 125 mm and an inner diameter of 10.7 mm, which was adopted in this example, the temperature is plotted on the horizontal axis. Yield stress f on the vertical axis
: From the relationship between temperature and yield stress in Figure 4, which shows the yield point-temperature relationship curve in Figure 4, the relationship between applied internal pressure and temperature is as follows: Temperature is on the horizontal axis and internal pressure is on the vertical axis. This is the hunting range AC/) shown in FIG.
尚、第4図において、10はジルコニウムの降伏応力と
温度の関係、11−、ジルカロイ−2の降伏応力と温度
の関係を示すそれぞれの曲線である。In FIG. 4, 10 is a curve showing the relationship between the yield stress and temperature of zirconium, and 11- is a curve showing the relationship between the yield stress and temperature of Zircaloy-2.
従って、被覆管に力1]圧処理を施こす前に被覆管の温
度を調べ、第5図に示す加圧範囲で圧力を加えれば、被
覆管内側のジルコニウム内側管lに圧縮応力を作用させ
ることができる。内圧を加える時間は1分間、温度は室
温ないし300C程度でよい。Therefore, if the temperature of the cladding tube is checked before pressure treatment is applied to the cladding tube, and pressure is applied within the pressure range shown in Figure 5, compressive stress will be applied to the zirconium inner tube l inside the cladding tube. be able to. The internal pressure may be applied for 1 minute, and the temperature may be from room temperature to about 300C.
このように本実施例の核燃料ゼに素の被覆管は、二重の
省の内1則の省に圧縮力を作用させた状態に形成されて
なるので、核分裂生成物等による被覆管の応力腐食割れ
を防止し、強度も往来と同程度保持できる。In this way, the nuclear fuel cladding tube of this example is formed in such a state that a compressive force is applied to one of the dual zones, so that stress on the cladding tube due to nuclear fission products, etc. It prevents corrosion cracking and maintains the same strength as the conventional one.
以上記述した如く本発明のイシ1燃狽吸累の被覆管は、
強度を1バ、下させることなく、核分裂生成物による応
力腐食割れを防止できる効果を有するものである。As described above, the Ishi 1 combustion absorption cladding tube of the present invention is
This has the effect of preventing stress corrosion cracking caused by fission products without reducing the strength by 1 bar.
第1図は本発明の核燃料要素の被枠宥の実施例のジルコ
ニウムの内側管とジルコニウム合金の外側管からなる二
重管の断面図、第2図は第1図の被覆管に内圧を加えた
ときのジルコニウムとジルコニウム台金の応力−ひすみ
曲線の模式図、第3図は第1図の被覆管の上端部断面図
、第4図はジルカロイ−2及びジルコニウムの降伏点と
温度の関係簡明図、第5図は第3図の月石の被覆管加圧
範囲と温度との関係説明図である。
l・・・ジルコニウム内側管、2・・・ジルカロイ−2
外V1図
策21謁
73図
J
」し戊 ・こ
75図
渫度°CFIG. 1 is a cross-sectional view of a double tube consisting of a zirconium inner tube and a zirconium alloy outer tube in a framed embodiment of the nuclear fuel element of the present invention, and FIG. 2 shows an internal pressure applied to the cladding tube of FIG. 1. Figure 3 is a cross-sectional view of the upper end of the cladding tube in Figure 1. Figure 4 is the relationship between the yield point and temperature of Zircaloy-2 and zirconium. A simplified diagram, FIG. 5, is an explanatory diagram of the relationship between the pressure range of the cladding tube of the moon stone in FIG. 3 and the temperature. l...Zirconium inner tube, 2...Zircaloy-2
Outside V1 plan 21 audience 73 fig.
Claims (1)
装填された被覆管において、上記被覆′C1が、最内側
の管が外側の管よりも低い強度の拐料から形成されると
ともに、核燃料を素がバンドル状に組み立てられる前の
状態において上記最内側の管が降伏点を越えて塑性変形
を起こし、かつ、上記外側の雷に降伏点以下である大き
さの内圧が加えられて上記被覆管の最内側の管に圧縮力
が作用さ扛た状態に形成されてなることを特徴とする核
燃料要素の被覆管。 29、上記被覆管が、ジルコニウム1尺はジルコニウム
合金から形成されている特許請求の範囲第1項記載の核
燃料要素の被覆管。 3、上記被捺管が、最内側の管が純ジルコニウム、外側
の管がジルカロイ合金からなる二乗管構造に形成されて
いる特許請求の範囲第1項記載の核燃料要素の被覆官。 4、上記被覆管が、呈渦以上で300C以下の渦度範囲
で内圧が加えられて最内側管に圧縮力が作用し形成さ才
している特許請求の範囲第1項記載の核燃料要素の被覆
管。[Scope of Claims] 1. In a cladding tube in which nuclear fuel material is loaded inside the cladding having a multilayer structure, the cladding 'C1 has a structure in which the innermost tube has a lower strength than the outer tube. the innermost tube undergoes plastic deformation exceeding its yield point in the state before the nuclear fuel elements are assembled into a bundle, and the outermost tube has a size below the yield point. A cladding tube for a nuclear fuel element, characterized in that the innermost tube of the cladding tube is formed in such a state that a compressive force is applied to the innermost tube.29. A cladding tube for a nuclear fuel element according to claim 1, which is formed from a zirconium alloy. 3. The cladding tube has a square tube structure in which the innermost tube is made of pure zirconium and the outer tube is made of a zircaloy alloy. A cladding agent for a nuclear fuel element according to claim 1 formed therein. 4. The cladding tube is subjected to an internal pressure in a vorticity range of 300 C or higher from vorticity to a compressive force acting on the innermost tube. A cladding tube for a nuclear fuel element according to claim 1, wherein the cladding tube is formed by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57168383A JPS5958387A (en) | 1982-09-29 | 1982-09-29 | Cladding tube of nuclear fuel element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57168383A JPS5958387A (en) | 1982-09-29 | 1982-09-29 | Cladding tube of nuclear fuel element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5958387A true JPS5958387A (en) | 1984-04-04 |
Family
ID=15867082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57168383A Pending JPS5958387A (en) | 1982-09-29 | 1982-09-29 | Cladding tube of nuclear fuel element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5958387A (en) |
-
1982
- 1982-09-29 JP JP57168383A patent/JPS5958387A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4029545A (en) | Nuclear fuel elements having a composite cladding | |
US4200492A (en) | Nuclear fuel element | |
US3925151A (en) | Nuclear fuel element | |
US4894203A (en) | Nuclear fuel element having oxidation resistant cladding | |
US5026516A (en) | Corrosion resistant cladding for nuclear fuel rods | |
US4045288A (en) | Nuclear fuel element | |
US5341407A (en) | Inner liners for fuel cladding having zirconium barriers layers | |
US4022662A (en) | Nuclear fuel element having a metal liner and a diffusion barrier | |
KR100274767B1 (en) | Corrosion resistance zirconium liner for nuclear fuel rod cladding | |
US5024809A (en) | Corrosion resistant composite claddings for nuclear fuel rods | |
US4406012A (en) | Nuclear fuel elements having a composite cladding | |
JP2846266B2 (en) | Cladding tube | |
JPH0213280B2 (en) | ||
EP0651396B1 (en) | Process for improving corrosion resistance of zirconium or zirconium alloy barrier cladding | |
US3969185A (en) | Getter for nuclear fuel elements | |
US5475723A (en) | Nuclear fuel cladding with hydrogen absorbing inner liner | |
JPH033917B2 (en) | ||
GB2119559A (en) | Zirconium alloy barrier having improved corrosion resistance | |
JPS5958387A (en) | Cladding tube of nuclear fuel element | |
JPS6026992B2 (en) | nuclear fuel elements | |
JPS58216988A (en) | Buried zirconium layer | |
JPS60190890A (en) | Coating pipe for nuclear fuel element | |
CA1209727A (en) | Buried zirconium layer | |
JPH0449919B2 (en) | ||
JP2522627B2 (en) | Fuel cladding |