JPS595805A - Axial flow turbine rotor - Google Patents

Axial flow turbine rotor

Info

Publication number
JPS595805A
JPS595805A JP11401682A JP11401682A JPS595805A JP S595805 A JPS595805 A JP S595805A JP 11401682 A JP11401682 A JP 11401682A JP 11401682 A JP11401682 A JP 11401682A JP S595805 A JPS595805 A JP S595805A
Authority
JP
Japan
Prior art keywords
opening
rotor
rotor disk
ceramic
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11401682A
Other languages
Japanese (ja)
Inventor
Naoto Sasaki
直人 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11401682A priority Critical patent/JPS595805A/en
Publication of JPS595805A publication Critical patent/JPS595805A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To freely predetermined a proper pitch-chord ratio, by engaging a ceramic turbine blade into an annular recess from the axial opening of metallic rotor disk and then feeding the blade in a peripheral direction. CONSTITUTION:The rim section 15 of ceramic segment 13 constituting a turbine blade is engaged with an annular recess 16 from the opening of metallic rotor disk and then feeding the blade progressively in a peripheral direction. Thereafter, an opening lid 18 is provided on the opening 17.

Description

【発明の詳細な説明】 本発明は軸流タービンロータに関し、特にセラミックス
動翼と金属製ディスクとで構成した軸流タービン四−夕
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an axial flow turbine rotor, and more particularly to an axial flow turbine rotor constructed of ceramic rotor blades and metal disks.

近年は高温強度特性を有するセラミツがζビタービンロ
ータに適用する研究が進められており、軸流タービンロ
ータの例としては、例えば米国特許第1I/IIO’l
tt号で開示されたようにロータ全体をセラミックスと
するものや、米国機械学会7977年度発行の同会誌に
発表された動翼のみをセラミックスとするものなどが知
られている。
In recent years, research has been progressing on the application of ceramics, which have high-temperature strength characteristics, to zeta-biturine rotors, and examples of axial flow turbine rotors include, for example, U.S. Pat.
There are known rotors in which the entire rotor is made of ceramics, as disclosed in No.

第1図はかかる米国機械学会誌に発表されたセラミック
ス翼と金属製ディスクとの組合せによる細流タービンロ
ータの例を示し、ここでlはそのタービンロータ、コは
セラミックス翼、3は金属製のロータディスクである。
FIG. 1 shows an example of a trickle turbine rotor made of a combination of ceramic blades and a metal disk published in the Journal of the American Society of Mechanical Engineers, where l is the turbine rotor, C is the ceramic blade, and 3 is the metal rotor. It's a disc.

本例ではセラミックス翼部の一枚ずつが同形状のセグメ
ントとして切離されて配置され、隣接するセラミックス
翼部同志は翼間流路lの中間部近傍の部位jAでそのリ
ム部!同志が接触を保つように構成されている。
In this example, each of the ceramic blades is separated and arranged as a segment of the same shape, and adjacent ceramic blades are connected to their rims at a portion jA near the middle of the inter-blade flow path l. Comrades are structured to maintain contact.

本例はガスの流入側から見た状態が示されており、tは
セラミックス翼部の翼部、7はセラミックスR−のリム
部jから裏面のディスク3側に設けられたダブテールで
あり1.2Aおよび2Bは翼2のリーディングエツジお
よびトレーリングエツジである。rは金属製ロータディ
スク3において各翼部に対応する取付は位置に刻設され
たダブテール嵌合溝であり、第一図に示すように嵌合溝
ざの画側のテーパ面rAはダブテール7の有する両側の
楔面7Aよりは幾分末広がりに形成され、これらのテー
パ面rAと楔面7Aとの間には第2図に示すように緩衝
材デが介装されていて、緩衝材りによりロータ/の運転
時にディスク3の熱膨張による圧縮応力がセラミックス
翼に生じるのを防止している。
This example is shown as viewed from the gas inflow side, where t is the wing of the ceramic wing, 7 is a dovetail provided from the rim j of the ceramic R- to the disk 3 side on the back surface; 2A and 2B are the leading and trailing edges of wing 2. r is a dovetail fitting groove carved at the mounting position corresponding to each blade in the metal rotor disk 3, and as shown in Figure 1, the tapered surface rA on the picture side of the fitting groove is the dovetail 7. The tapered surface rA and the wedge surface 7A are formed to be slightly wider toward each other, and a cushioning material is interposed between the tapered surface rA and the wedge surface 7A as shown in FIG. This prevents compressive stress from occurring in the ceramic blades due to thermal expansion of the disk 3 during operation of the rotor.

しかしながら、このような従来の軸流タービン四−夕に
おいては、個々のセラミックスR,2のダブテール部7
を金属ローlディスク3の嵌合溝lに嵌め込むことによ
って一体化したロータ/全構成するよう図られているの
で、次のような問題点がある。
However, in such a conventional axial flow turbine quadrant, the dovetail portions 7 of the individual ceramics R,2
Since the rotor is fitted into the fitting groove L of the metal roller disk 3 to form an integrated rotor/entire structure, the following problems arise.

/)成形工程ならびに加工工程の双方が複雑で、゛かつ
精密度が要求される数多い個々のセラミックスR,2と
、これらのセラミックス翼2の数に対応しただけの数の
嵌合溝tをNvする要のある金属ロータディスク3との
製作工程に費用が嵩む。
/) Both the molding process and the processing process are complicated, and precision is required for a large number of individual ceramics R, 2, and the number of fitting grooves t corresponding to the number of these ceramic wings 2 is Nv. The manufacturing process for the metal rotor disk 3 that needs to be completed increases the cost.

コ)ロータディスク3には、容置2の取付は位置ごとに
ダブテール7の形状に見合った模型の嵌合溝tが設けら
れるので、この場合、隣り合った嵌合溝ざの底部間がく
びれ、残置される頚部lσの周方向の厚みを゛強度上確
保する必要のあることから、翼λ間のピッチPが制限さ
れて、空力性能上の適正値を上回り、大きくなってしま
うので適正なピッチ・コード比が選定できない。
e) In the rotor disk 3, a model fitting groove t corresponding to the shape of the dovetail 7 is provided for each position for mounting the container 2, so in this case, the bottoms of the adjacent fitting grooves are constricted. Since it is necessary to ensure the circumferential thickness of the remaining neck lσ for strength, the pitch P between the blades λ is limited, and the pitch P between the blades λ exceeds the appropriate value in terms of aerodynamic performance. Pitch/code ratio cannot be selected.

本発明の目的は、このような従来の問題点に鑑み、加工
ならびに組立工程が簡略化されることによりコストが低
減でき、しかも適正なピッチPとコード比を有するセラ
ミックス翼とすることのできる軸流タービンロータを提
供することにある。
In view of these conventional problems, an object of the present invention is to provide a shaft that can reduce costs by simplifying the machining and assembly process, and that can be made into a ceramic blade having an appropriate pitch P and chord ratio. An object of the present invention is to provide a flow turbine rotor.

かかる目的を達成するために、本発明では、タービン翼
を一枚ないし複数枚の翼部とリム部とからなる同型のセ
ラミックスのセグメントを周方向に連設させることによ
り形成するようになし、一方、金属ロータディスクには
各セグメントのリム部を半径方向および周方向にわたり
嵌め合わせるようにした環状溝を形成すると共にその溝
の周方向の一部を切欠いて、一つ一つのセグメントを軸
方向から溝に低め入れるための開口部を設けて、この開
口部からセグメントを順次に嵌め入れて周方向に嵌め合
いのまま送り込むようになし、最後のセグメントを装着
して開口部を金属蓋で閉成するように構成する。
In order to achieve this object, in the present invention, a turbine blade is formed by connecting ceramic segments of the same type in the circumferential direction, each consisting of one or more blade parts and a rim part. In the metal rotor disk, an annular groove is formed in which the rim portion of each segment fits in both the radial and circumferential directions, and a portion of the groove is cut out in the circumferential direction, so that each segment can be separated from the axial direction. An opening is provided for low insertion into the groove, and the segments are fitted one after another through this opening and fed in circumferentially while remaining fitted, and the last segment is installed and the opening is closed with a metal lid. Configure it to do so.

以下に、図面に基づき本発明の詳細な説明する〇第3図
は本発明の一実施例を示すもので、ここで//はタービ
ンロータ、/2は金属ロータディスクであり、13はタ
ービン8を構成するセラミックスセグメントである。本
例では、一つのセグメント/3がq枚の各翼部/4’と
共通のリム部/Sとを有し、第4を図に示すような形状
とする。すなわちリム部/jの周方向の端面ljAはロ
ータl/の半径方向となるように形成されており、ここ
で、端面/j A間のなす角度α0は3600を数等分
した値とする。第3図では、このようなセグメント13
が次々とロータディスク/2に組み込まれた状態が示さ
れており、ここで、/6はディスク12の外周面/λA
に沿って刻設された環状溝、/7はこの環状溝/乙の一
部をセグメント/3のリム部/Sの側面形状に合わせて
切欠いた開口部、1gはこの開口部/7を閉成するため
の開口蓋である。なお、開口部17および開口蓋nの周
方向の端部のなす角度β0を、上述したリム部/Sの端
面ljAがなす角度α0より幾分大きくしておくことに
より、セグメン)/3の溝16への嵌め入れ作業を容易
とすることができる。
The present invention will be described in detail below based on the drawings.〇 Figure 3 shows an embodiment of the present invention, where // is a turbine rotor, /2 is a metal rotor disk, and 13 is a turbine 8. This is the ceramic segment that makes up the In this example, one segment /3 has q wing parts /4' and a common rim part /S, and the fourth segment has a shape as shown in the figure. That is, the circumferential end surface ljA of the rim portion /j is formed to be in the radial direction of the rotor l/, and the angle α0 formed between the end surfaces /jA is a value obtained by dividing 3600 into several equal parts. In FIG. 3, such a segment 13
are shown being assembled one after another into the rotor disk /2, where /6 is the outer circumferential surface of the disk 12 /λA
An annular groove is carved along the annular groove, /7 is an opening made by cutting out a part of this annular groove /B to match the side shape of the rim part /S of segment /3, and 1g is an opening that closes this opening /7. It is an opening lid for Note that by making the angle β0 formed by the opening 17 and the circumferential end of the opening lid n somewhat larger than the angle α0 formed by the end surface ljA of the rim portion /S described above, the groove of segment)/3 is formed. 16 can be made easier.

第5図は、リム部/jが溝/6に嵌め込まれた状態を示
し、このようにリム部/jの双方の肩面/3 Bと溝/
乙のこの肩面/3 Bに対向する面との間には例えばセ
ラミック繊維など耐熱性材料による緩衝材19を介挿す
る。なお、溝/乙の断面形状としては、開口部/7を設
けた個所以外では第5図に示した開口蓋/gをディスク
/2に取付けた状態の形状とする。
Figure 5 shows the state in which the rim part /j is fitted into the groove /6, and in this way both shoulder surfaces /3B and groove /6 of the rim part /j are fitted.
A cushioning material 19 made of a heat-resistant material such as ceramic fiber is inserted between this shoulder surface of B and the surface facing B. Note that the cross-sectional shape of the groove /B is the same as that shown in FIG. 5 when the opening cover /g is attached to the disk /2 except for the part where the opening /7 is provided.

更に相隣るセグメント/3の端面/j A間には第6図
に示すように緩衝材19を介装させるようにすると共に
、溝76の底面/4 Aのリム部端面n Aが当接する
部位と対応する位置の少なく共一つに、本図に示すよう
に突出した保合突起〃を設け、一方この突起〃の位置と
対応する端面/S Aの各端部にもそれぞれ突起〃の形
状に合わせて四部2tを形成しておく。すなわち、この
ような突起〃にリム部/Sの凹部2/を係合させること
によって、各七グ、メント/3が溝l≦に沿い周方向に
移動するのを禁止する。
Furthermore, as shown in FIG. 6, a cushioning material 19 is interposed between the end surfaces /jA of adjacent segments /3, and the bottom surface of the groove 76 and the rim end surface nA of the bottom surface /4A abut against each other. At least one of the positions corresponding to the parts is provided with a protruding retaining protrusion as shown in this figure, and on the other hand, a protrusion is also provided at each end of the end face/SA corresponding to the position of this protrusion. Four parts 2t are formed according to the shape. That is, by engaging such a protrusion with the recess 2/ of the rim part /S, each of the seven rings and the mento /3 is prohibited from moving in the circumferential direction along the groove l≦.

なお、突起部〃および四部λlの断面形状は応力集中を
避けるために滑らかな形状、例えば円弧形状等にするの
が好適である。
Note that the cross-sectional shapes of the protrusion and the four parts λl are preferably smooth, for example, arcuate, to avoid stress concentration.

このように構成した軸流タービンロータにおい素(81
C)、窒化珪素(8iN4)などのセラミック材料を用
いて射出成形または泥しよう鋳込み(スリップキャステ
ィング)などの成形法によることができる。このように
成形したセグメント/3を開口m/7から次々と環状溝
/6に沿ってロータディスク/2に嵌め込むと共に、そ
のリム部/!;の肩面/K Bと溝76との間およびリ
ム部/jの当接面ljA間には緩衝材/9を介装させる
ようにして、開口部/7の位置にくるセグメント/3を
最後に嵌め合わせてから開口蓋/gを開口部/7に取付
け、その溶接面を例えば電子ビーム溶接などにより溶着
して接合する。
The axial flow turbine rotor constructed in this way has an odor element (81
C), it can be formed by a molding method such as injection molding or slip casting using a ceramic material such as silicon nitride (8iN4). The thus formed segments /3 are fitted into the rotor disk /2 one after another from the opening m/7 along the annular groove /6, and the rim portion /! A buffer material /9 is interposed between the shoulder surface /K B and the groove 76 and between the abutment surface ljA of the rim /j, and the segment /3 at the opening /7 is inserted. Finally, after fitting, the opening cover /g is attached to the opening /7, and its welded surfaces are welded and joined by, for example, electron beam welding.

なお、以上の説明ではセグメント/3に複数の翼部/グ
を設ける場合について述べたが、翼部/4Iが7枚であ
ってもよい。ただし、7つのセグメン) /3に設ける
翼部/41の数が多いほど、セグメント/3の成形なら
びにロータ//としての加工および組立工程を簡略化す
ることができる。従って、図示はしないが、本発明の一
実施例として、セグメントに全周にわたる翼を一体に形
成し、要すればそのリムの一個所にスリットを設けて熱
応力を逃すようにしてもよい。このようにリムと翼部と
を形成する場合は、このリムを嵌め込む四−タディスク
の溝の全周部にわたり、開口部を設け、この開口部に嵌
め合わせて溶着する開口蓋もリング状に形成する。更に
また、同様にしてセグメン)/3を全周の三等分や三等
分等にしてもよいことは勿論である。
In the above description, a case has been described in which a plurality of wing parts /4I are provided in segment /3, but the number of wing parts /4I may be seven. However, the greater the number of blade parts /41 provided in the seven segments /3, the simpler the molding of the segments /3 and the processing and assembly process as the rotor //. Accordingly, although not shown, in one embodiment of the present invention, a segment may be integrally formed with a wing extending over its entire circumference, and if necessary, a slit may be provided at one location on the rim to release thermal stress. When forming the rim and wing portion in this way, an opening is provided around the entire circumference of the groove of the quadruple disk into which the rim is fitted, and the opening lid that is fitted and welded to this opening is also ring-shaped. to form. Furthermore, it goes without saying that the segment )/3 may be divided into thirds or thirds of the entire circumference in the same manner.

以上説明してきたように、本発明によれば、一枚ない゛
し複数枚の翼部と、翼部をディスクの回りに配置するた
めのリム部とを一体のセグメントとしてセラミックスで
成形し、このようにして成形した同形のセグメントのリ
ム部を金属ロータディスクの外周面に沿って設けた環状
の溝の開口部から嵌め入れて溝に係合させ、開口蓋を開
口部に取付けてロータディスクを構成するようにしたの
で、製造工程が簡略化されてコストを低減することがで
き、従来のように翼部一枚ごとのダブテール溝をロータ
ディスクに設けなくてすむので、翼間のピッチPがこの
ために制約されることがなくなり適正なピッチ・コード
比が自由に設定できて、空力性能を向上させることがで
きる。
As explained above, according to the present invention, one or more wing portions and a rim portion for arranging the wing portions around a disk are molded from ceramic as an integral segment. The rim portion of the same-shaped segment formed in this manner is inserted into the opening of the annular groove provided along the outer circumferential surface of the metal rotor disk to engage with the groove, and the opening cover is attached to the opening to remove the rotor disk. This structure simplifies the manufacturing process and reduces costs. It also eliminates the need to provide dovetail grooves for each blade in the rotor disk as in the past, so the pitch P between the blades can be reduced. As a result, there are no restrictions and an appropriate pitch/code ratio can be set freely, thereby improving aerodynamic performance.

更に全周にわたる翼部とリム部とを一つのセラるように
すれば、更に製造工程が簡略化されコストが一層低減で
きる。
Furthermore, if the wing portion and the rim portion covering the entire circumference are made into one cell, the manufacturing process can be further simplified and the cost can be further reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、セラミックス翼と金属ロータディスクとを組
合せてなる従来の軸流タービンロータの一例を示す構成
図、第一図はその翼取付は部の拡大図、第3図は本発明
軸流タービンロータの一例を示す構成図、第1図はその
セラミックスセグメントの形体図、第3図は第3図のA
−A線部分断面図、第6図は第5図のB−B線断面図で
ある。 /、l/・・・タービン四−夕、 2・・・セラミツA、  、2A・・・リーディングエ
ツジ、2B・・・トレーリングエツジ、 3・・・ロー
タディスク、グ・・・翼間流路、     !・・・リ
ム部、3k・・・部位、      6・・・翼部、7
・・・ダブテール、7A・・・横面、!・・・嵌合溝、
     ざA・・・テーパ面、ワ・・・緩衝側、  
   lθ・・・頚部、12・・・ロータディスク、7
2人・・・外周面、/3・・・セラミックスセグメント
、 /グ・・・翼部、/!;・・・リム部、/SA・・・端
面、      /3B・・・肩面、/l・・・環状溝
、     /7・・・開口部、7g・・・開口蓋、 
     /9・・・緩衝側、〃・・・突起、    
  2/・・・四部。 特許出願人  日産自動車株式会社
Fig. 1 is a configuration diagram showing an example of a conventional axial flow turbine rotor consisting of a combination of ceramic blades and a metal rotor disk, Fig. 1 is an enlarged view of the blade attachment section, and Fig. 3 is an axial flow turbine rotor according to the present invention. A configuration diagram showing an example of a turbine rotor, FIG. 1 is a configuration diagram of the ceramic segment, and FIG. 3 is A in FIG.
-A partial sectional view, and FIG. 6 is a BB line sectional view of FIG. /, l/... Turbine quarter, 2... Ceramic A, , 2A... Leading edge, 2B... Trailing edge, 3... Rotor disk, G... Inter-blade flow path , ! ...Rim part, 3k...Part, 6...Wing part, 7
...Dovetail, 7A...side surface! ...fitting groove,
A...Tapered surface, W...Buffer side,
lθ...Neck, 12...Rotor disk, 7
2 people...Outer circumferential surface, /3...Ceramics segment, /G...wing part, /! ;...Rim part, /SA...End face, /3B...Shoulder surface, /l...Annular groove, /7...Opening part, 7g...Opening lid,
/9...Buffer side,〃...Protrusion,
2/...four parts. Patent applicant Nissan Motor Co., Ltd.

Claims (1)

【特許請求の範囲】 /)セラミックスの翼を金属製のロータディスクに取付
けてなる軸流タービンロータにおいて、少なくとも一枚
の翼と、当該翼を前記ロータディスクの外周面のまわり
に配置するためのリム部とを一体のセグメントとしてセ
ラミックスで形成し、前記ロータディスクの外周面には
全周にわたり前記セグメントのリム部を前記ロータディ
スクの半径方向に係合する環状溝を設け、該環状溝の少
なくとも一部に前記リム部を嵌入可能とした開口部を形
成して、該開口部から前記リム部を前記環状溝に緩衝材
を介して嵌入させることにより前記翼を前記ローターデ
ィスクに配置して前記開口部を閉成したことを特徴とす
る軸流タービンロータ。 コ)特許請求の範囲第1項記載の軸流タービン四−夕に
おいて、前記環状溝に前記リム部の周方向の移動を阻止
する保合突起を少なくとも一個所に設けたことを特徴と
する細流タービンロータ。
[Claims] /) An axial flow turbine rotor in which ceramic blades are attached to a metal rotor disk, including at least one blade and a mechanism for arranging the blade around the outer peripheral surface of the rotor disk. The rim portion is formed of ceramic as an integral segment, and an annular groove is provided on the outer peripheral surface of the rotor disk to engage the rim portion of the segment in the radial direction of the rotor disk over the entire circumference, and at least one of the annular grooves An opening into which the rim part can be fitted is formed in a part of the blade, and the rim part is fitted into the annular groove via a cushioning material through the opening, thereby arranging the blades on the rotor disk. An axial flow turbine rotor characterized by having a closed opening. h) In the axial flow turbine quaternary according to claim 1, the annular groove is provided with a locking protrusion that prevents movement of the rim portion in the circumferential direction at least at one location. turbine rotor.
JP11401682A 1982-07-02 1982-07-02 Axial flow turbine rotor Pending JPS595805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11401682A JPS595805A (en) 1982-07-02 1982-07-02 Axial flow turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11401682A JPS595805A (en) 1982-07-02 1982-07-02 Axial flow turbine rotor

Publications (1)

Publication Number Publication Date
JPS595805A true JPS595805A (en) 1984-01-12

Family

ID=14626935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11401682A Pending JPS595805A (en) 1982-07-02 1982-07-02 Axial flow turbine rotor

Country Status (1)

Country Link
JP (1) JPS595805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300001A (en) * 1988-04-06 1989-12-04 Westinghouse Electric Corp <We> Rotor for turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300001A (en) * 1988-04-06 1989-12-04 Westinghouse Electric Corp <We> Rotor for turbine

Similar Documents

Publication Publication Date Title
US4659285A (en) Turbine cover-seal assembly
EP1243811B1 (en) Rotor balancing system for turbomachinery
US8348619B2 (en) Platform and blade for a bladed wheel of a turbomachine, bladed wheel and compressor or turbomachine comprising such a bladed wheel
US4108571A (en) Bladed rotor assembly for a gas turbine engine
US5007800A (en) Rotor blade fixing for turbomachine rotors
US4101245A (en) Interblade damper and seal for turbomachinery rotor
US3689177A (en) Blade constraining structure
JPH057545B2 (en)
US3014695A (en) Turbine bucket retaining means
US5018941A (en) Blade fixing arrangement for a turbomachine rotor
US5242270A (en) Platform motion restraints for freestanding turbine blades
JPH0629522B2 (en) Turbine rotor with vanes made of ceramic material
JPS6146644B2 (en)
JPH0713444B2 (en) Gas turbine engine stator assembly
JP2003003801A (en) Turbo machine rotor assembly with two bladed-disks separated by spacer
JP2011511900A (en) Multi-component winged rotor for fluid engine
JPH056018B2 (en)
US5593282A (en) Turbomachine rotor construction including a serrated root section and a rounded terminal portion on a blade root, especially for an axial-flow turbine of a gas turbine engine
US2625365A (en) Shrouded impeller
US7503751B2 (en) Apparatus and method for attaching a rotor blade to a rotor
US4451204A (en) Aerofoil blade mounting
US20170218778A1 (en) Rotor for turbine engine comprising blades with added platforms
US4815938A (en) Shroud gap control for integral shrouded blades
US5044886A (en) Rotor blade fixing providing improved angular alignment of said blades
JPS595805A (en) Axial flow turbine rotor