JPS5958000A - Manufacture of dislocation-free single crystal semiconductormaterial - Google Patents

Manufacture of dislocation-free single crystal semiconductormaterial

Info

Publication number
JPS5958000A
JPS5958000A JP58155693A JP15569383A JPS5958000A JP S5958000 A JPS5958000 A JP S5958000A JP 58155693 A JP58155693 A JP 58155693A JP 15569383 A JP15569383 A JP 15569383A JP S5958000 A JPS5958000 A JP S5958000A
Authority
JP
Japan
Prior art keywords
silicon
doped
substance
compensated
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58155693A
Other languages
Japanese (ja)
Inventor
コンラ−ト・ロイシエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schuckertwerke AG
Siemens AG
Original Assignee
Siemens Schuckertwerke AG
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Schuckertwerke AG, Siemens AG filed Critical Siemens Schuckertwerke AG
Publication of JPS5958000A publication Critical patent/JPS5958000A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/06Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 オプトエレクトロニクス・シリコン半導体デバイス詩に
赤外センサσ)製作に当って・ま、出発材料として一般
にインジウムを高濃度l(ドープされたシリコンが必要
となる。赤外センサの効率はこσ)インジウム贋度眞大
きく関係し、現実には1cffl当り1019からIO
20VC達するインジウム原子密度が要求さ2”Lる。
[Detailed Description of the Invention] In the production of optoelectronic silicon semiconductor devices (infrared sensors), indium is generally used as a starting material at a high concentration (silicon doped). Efficiency is greatly related to the indium quality, and in reality it is IO from 1019 per cffl.
An indium atom density reaching 20VC is required.

こθ”l 10” cm−3という値はシリコン(でカ
ナろインジウムの溶解限度に近いものである。
The value θ"l 10" cm-3 is close to the solubility limit of indium in silicon.

インジウムは3乃至5μmの波長範囲に対するドーパン
トとして最適であり、これより長波長では充分な感度を
示さないから特に7乃至10μ+aσ)波長範囲に附1
7ではドーパントしてガリウムが使用さ、ftろ。
Indium is most suitable as a dopant for the wavelength range of 3 to 5 μm, and since it does not show sufficient sensitivity at longer wavelengths, it is especially suitable for the wavelength range of 7 to 10 μm + aσ).
In 7, gallium is used as a dopant.

赤外センサの製作1((・″j数回の熱α理が実施さハ
ロることも3r、<知られている。従って多くの場合拡
散係数が小さいドーパントの使用が有利でちる。
It is also known that infrared sensor production 1 requires several thermal aerations. Therefore, in many cases it is advantageous to use a dopant with a small diffusion coefficient.

これに適した物質としてはタリウムとアンチモンが見出
さi”していろ。しかしインジウムとガリウムの」1合
に限らずタリウム又はアンチモンを使用する場合にも効
率を高めろためには一層高贋度にドープする必要がある
。即ちタリウムθ)上)合1cm3当り10′8からJ
Ol”K達する密度となり、アンチモンの場合は同じ<
1o 10から1020  にも達する密度となる。
Thallium and antimony have been found to be suitable substances for this purpose. However, when using not only the combination of indium and gallium, but also thallium or antimony, in order to increase efficiency, it is necessary to Need to dope. That is, thallium θ) on) 10'8 to J per cm3
The density reaches Ol”K, which is the same for antimony <
The density reaches from 1o 10 to 1020 .

カリウムと同様ニインジウム、アンチモンおよびタリウ
ムはこの場合蒸気圧が著しく高くなるから、こ、Itら
の原子をシリコンに高溌度で組み入れろことは困難であ
る。ドーパントは急、速に蒸発し、シリコン内に充分t
vとどめておくことはCきな℃ゝ。
Like potassium, indium, antimony, and thallium have extremely high vapor pressures in this case, so it is difficult to incorporate these atoms into silicon with high viscosity. The dopant evaporates quickly and quickly, leaving enough t in the silicon.
vThe only thing you need to keep is C.

西独国特許出願公開公報第2939492号、第293
9491号、第2939460号、第2939452号
、第2939459号、第2939451号1(は、ド
ーパントσ)こθ)ような高濃度乞達成する方法が記載
されているが、このように高濃度にドープされた半導体
結晶には必然的に大きな格子残留応力が生ずる・ 理想的な格子構成を持ち不純物な含まないデバイスが、
動作温既に関係しているが最も低雑音σ)もθ)である
ことはよく知ら第1.てし・ろ。異物質力;含よi”L
そ旧と同時に温度が上昇すると格子が変形し雑音を大き
くし雑音レベルもそt’tに応じて上昇すイ)。
West German Patent Application Publication No. 2939492, No. 293
No. 9491, No. 2939460, No. 2939452, No. 2939459, No. 2939451 (1) describes a method of achieving high concentration of dopant (σ) and (θ). A large lattice residual stress inevitably occurs in a semiconductor crystal that has been processed.・A device with an ideal lattice configuration and no impurities is
Although the operating temperature is already related, it is well known that the lowest noise σ) is also θ). Teshiro. Foreign material power; contains i”L
When the temperature rises at the same time, the lattice deforms and the noise increases, and the noise level also rises accordingly.

この発明は高濃度ドーピングに伴う格子残留応力を補償
することにより雑音レー(ルを可能限度まで下げること
が可能であるとの認識に基くもσ)である。
This invention is based on the recognition that the noise level can be lowered to the lowest possible limit by compensating for the lattice residual stress associated with high doping.

文献(IBM ’L”ecllnical Discl
osure Bull−etin、  9 (1967
)、p、1452〜1455、西独間!1−〒許出願公
告第22]1709号明細書)により、高4[(ドープ
半導体デ/く・イスの場合ド−パントa)拡散に際して
補償物質を同時に拡散させろことは公知である。上記θ
)西独国特許出願公告明ill :B +cよ才]、ば
まずドープくントと補償物質/】・ら成ろフィルムを半
導体表面にとりつけ特定の7m度プログラムに従ってこ
θ)フィルムから半導体内(C拡散させる。このように
して作らJtたデノくイスOま多(tn点で従来のもθ
)より勝りtているが、雑音特性に関しては猶満足でき
るものではない。例えば最小温度差?検出するセンサの
製作に対してはこ」tらの方法は満足さiするもσ)で
はない。この発明の基礎となった研究妬よれば、雑音の
原因は拡散領域には無く、休、漬雑音を発生する基礎材
料内((ある。表面雑音を発生する拡散領域は基礎材料
に発生する効果が除かれろと重要な意味を持たなくなる
Literature (IBM 'L"ecllnical Discl.
osure Bull-etin, 9 (1967
), p, 1452-1455, between West Germany! It is known from Patent Application Publication No. 22/1709) that a compensating substance should be simultaneously diffused during the diffusion of dopant a in the case of doped semiconductor devices. Above θ
) West German Patent Application Announcement ill :B Diffusion.The Jt denomination chair made in this way (at the tn point, the conventional θ
), but the noise characteristics are still not satisfactory. For example, minimum temperature difference? Although the method of these authors is satisfactory for the fabrication of a sensor for detection, it is not satisfactory. According to the research that formed the basis of this invention, the source of the noise is not in the diffusion region, but within the basic material that generates the surface noise. If it is removed, it will no longer have any important meaning.

この知識に基いてこ力発明は、拡散領域θ)格子応力を
除くことをせず基礎材料全体の格子応力を除去すること
を提案する。半導体店礎材料がそれに必要な基本ドーピ
ング?保って格子応力を取り除かノするとそれて続いて
拡散領域に対して何等の追加手段によることなく高濃度
ドーピングを困難な〈実施することができる。この発明
は棒ならびに盤の形の無転位単結晶材料を市場に出し半
導体デバイス製造業者に提供することを目的としている
Based on this knowledge, the present invention proposes to eliminate the lattice stress in the entire base material without removing the lattice stress in the diffusion region θ). Does the basic doping of the semiconductor store basic material require it? If the lattice stress is maintained and the lattice stress is removed, subsequent heavy doping can be carried out in the diffusion region without any additional measures. The purpose of this invention is to provide dislocation-free single crystal materials in the form of rods and disks to the market and to semiconductor device manufacturers.

こ(万発明によ21−ば高濃度にドープされた無転位単
結晶基礎材料を作るため、出発材料にドープくント7組
み込む際ドーパントσ)組み込みによって生じる結晶格
子内部応力を少くとも部分的に補償し電気的には嘲作用
となる物質σ)少くとも一粁類が同時に加えら几ろ〇 補1jli物質は出発材料σ)シリコン特に多結晶シリ
コンにその製造中て加えろθ)が最も簡単な方法であ6
゜この多結晶シリコンは搬送ガス例えば水素に)見合し
たガス状θ)ノリコン化合物例えばシリコクロロホルム
(SiHCl2)又は四塩化シリコン(SiC14)火
熱分解してシリコンア特にシリコンで作らQ直接電流を
流して加熱さJtろ支持体表面に沈着させろことによっ
て作らノtろ。このガス相からのポリシリコンσ)析出
中、析出したシリコンにドーピング物71と補償物質を
加える。こ1tらσ)物質は化合物の形で反応ガスに導
く。この化合物は独立したガス流として導かれろが、反
応ガス混合物にj+i+えておくことも可能である。組
み込み物質の量は化合物の温度の選定rrcよって陶乍
(・コ調節することができろ。
In order to make a highly doped dislocation-free single crystal basic material, this method (21) is used to at least partially reduce the internal stress in the crystal lattice caused by the incorporation of the dopant 7 into the starting material. A substance that compensates and has an electrically negative effect σ) At least one substance must be added at the same time, and the substance is the starting material σ) Added to silicon, especially polycrystalline silicon, during its manufacture θ) is easiest. 6 in a way
゜This polycrystalline silicon is made of silicon, especially silicon, by pyrolytic decomposition of a gaseous θ) silicon compound, such as silicochloroform (SiHCl2) or silicon tetrachloride (SiC14), in proportion to the carrier gas, e.g. hydrogen. The JT filter was prepared by depositing it on the surface of the support. During this polysilicon σ) deposition from the gas phase, dopants 71 and compensation substances are added to the deposited silicon. This substance is introduced into the reaction gas in the form of a compound. This compound is introduced as a separate gas stream, but it is also possible to add it to the reaction gas mixture. The amount of incorporated material can be adjusted by selecting the temperature of the compound.

半導体月料をドーピング物質および補償物質と共にるつ
ぼに入)t、こJtを溶融(、て全体をチコクラルスキ
ー法によって無転位結晶棒に引−ヒげろことも可能であ
る。この場合棒の全長に亘って一様な成分一度を達成す
るため、融体に含ま一1tろ物質の蒸気圧の差を補償す
る手段欠設しするのが合理的である。
It is also possible to put the semiconductor material together with the doping material and the compensation material into a crucible, melt the material, and then pull the entire material into a dislocation-free crystal rod using the Czycochralski method. In this case, the entire length of the rod is melted. In order to achieve uniform composition throughout the melt, it is reasonable to provide means for compensating for differences in vapor pressure of the 11 tons of material contained in the melt.

更にドーピング物質乞補償物質と共に基本ドーピングと
して例えば円盤状に切断された半導体材料全体に拡散さ
せることも可能である。
Furthermore, it is also possible to diffuse the doping substance together with the compensating substance as basic doping throughout the entire semiconductor material, which is cut into disks, for example.

例えばホウ素とリンはンリコン内にあろと原子半径が小
さいことにより負σ)格子応力を発生1″るが、正の格
子応力な発生させろゲルマニウム、スズおよび鉛を11
目える1−とによりこσ)負応力を打消すことができる
。ナトリウム、カリウム、ルビジウム、セシウム等のア
ルカリ金属およびインジウムはリン又はホウ素をドープ
されたシリコンσ)格子宿力7ン打消すことかて゛きろ
For example, boron and phosphorus generate a negative lattice stress due to their small atomic radius in silicon, but germanium, tin and lead generate a positive lattice stress.
1- and σ) Negative stress can be canceled out. Alkali metals such as sodium, potassium, rubidium, cesium, etc. and indium can cancel out the lattice forces of silicon doped with phosphorus or boron.

ガタ1クム、アルミニウム、アンチモン、インジウム、
タリウム貼よび僅かの量であるがヒ素もシリコンのドー
ピングに使用するとその原子体積が大といため正θ)格
子Lvr力の原因となり、炭素、水素および酸素を浦f
!物質と1−で加えろことができる。更にフッ素と1菫
かであるが窒素と硫黄も使用可能である。
Gata 1 cum, aluminum, antimony, indium,
When thallium is pasted and arsenic is used in a small amount for silicon doping, its large atomic volume causes positive θ) lattice Lvr forces, causing carbon, hydrogen, and oxygen to be
! You can add substances and 1-. Furthermore, fluorine and violet, but also nitrogen and sulfur can be used.

ホウ素をドープさJtたシリコンはゲルマニウムスズお
よび鉛によって、リンをドープされたシリコンはゲルマ
ニウム((よって格子窓カケ補償さオする。
Boron-doped silicon is compensated for by germanium, tin and lead, and phosphorus-doped silicon is compensated for by germanium (thereby compensating for lattice window chipping).

ドープ物質がアンチモン又はインジウムσ)とき補4′
11物質として炭素、酸素、フッ素の外場合によって窒
素と水素が使用さ2する。
Complement 4' when the doping substance is antimony or indium σ)
In addition to carbon, oxygen, and fluorine, nitrogen and hydrogen are used as the 11 substances2.

ヒ素をドープしたシリコンは格子突変係数が一〇、5σ
)どき実質上補償は不可能であるが、場合によっては炭
素又は酸素を低濃度に加えることができる。
Arsenic-doped silicon has a lattice variation coefficient of 10.5σ
), compensation is virtually impossible, but in some cases carbon or oxygen can be added to low concentrations.

インジウムを高濃度にドープしたととは単イ未θ)イン
ジウムではなくフッ化インジウム又は酸化インジウム?
、1体に加えろと効果的である。鳴合によってロダン化
インジウムも(1ハθ)、Iンジウム化合物例えばIn
(Ci’J)、およびInNと同じく有効である。
What do you mean by doping indium at a high concentration? Do you mean indium fluoride or indium oxide instead of indium?
, it is effective to add it to one body. Due to the combination, indium rhodanide (1ha θ) is also formed, and indium compounds such as In
(Ci'J) and InN are also effective.

タリウムθ)場合も同様な作用が期待さ几ろθ)で’+
” 12s、 ’r 120およびT l 20 sが
ドーピング′吻質として推奨されろ。アルミニウム、ガ
リウム又はアンチモンとスズをゲルマニウム1/cドー
プしたときは止め格子応力O)補償にシリコン、炭素、
酸素および水素が使用されろ。
A similar effect is expected in the case of thallium θ).
12s, 'r 120 and Tl 20s are recommended as doping agents. When aluminum, gallium or antimony and tin are doped with germanium 1/c, the stop lattice stress O) is compensated by silicon, carbon,
Oxygen and hydrogen should be used.

ゲルマニウムに対してヒ素、リンおよびホウ素をドープ
したときはスズ、鉛、リチウム、カリウム、ルビジウム
、セシウムおよびヨウ素が補償物質として使用される。
When germanium is doped with arsenic, phosphorus and boron, tin, lead, lithium, potassium, rubidium, cesium and iodine are used as compensators.

個別的には無効果の′物質であってもそれをいくつか組
合せて添加物質の原子半i11/)算術゛ト均を茫礎!
′l!7J質の原子半径に適合させることができるから
、補イ賞J勿′t1は数f+1!頃の4勿質を、組合せ
たもθ)で′も良いことは当然理解i′すtろ。
Even if a substance has no effect individually, you can combine several of them to create the basic arithmetic equation of the additive substance!
'l! Since it can be adapted to the atomic radius of the 7J quality, the supplementary award J't1 is a number f + 1! Of course, it is understood that the combination of the four basic qualities of θ) and ′ is also good.

この発明1η:、r、ろ方法の定−鼠化に際しては、シ
リコンと原子半洋が異る不純物原子は総て格子ひずみを
起すも0)であるという考えから出発する。不純物原子
が小さいもρ)であれば基礎物質としてのシリコンに負
の11′5子応力が生じ、太きいものであると正の格そ
応力が生ずる。結晶格子応力の大きさはシリコン原子に
対−「る不純物原子の半径比と不7純′吻原子濃度σ)
積に関係する、格子1・農産係数Gl(KY次式で定義
する。
In this invention 1.eta.:, r, when the filtration method is standardized, we start from the idea that all impurity atoms having different atomic dimensions from silicon cause lattice distortion (0). If the impurity atoms are small (ρ), a negative 11′ pentagonal stress will be generated in silicon as the basic material, and if the impurity atoms are large, a positive stress will be generated. The magnitude of crystal lattice stress is determined by the radius ratio of impurity atoms to silicon atoms and the impurity atom concentration σ).
Lattice 1/Agricultural production coefficient Gl (KY defined by the following formula) related to the product.

こXtにより発生した格子応力の大きさは不純物突変と
格子0度係数θ)積で与えられろ。シリコンの原子密度
は4.99 X I 022原子/ cm’、ゲルマニ
ウムの原子密度は4゜41XI022原子/、−である
The magnitude of the lattice stress generated by this Xt is given by the product of the impurity random variation and the lattice zero degree coefficient θ). The atomic density of silicon is 4.99 X I022 atoms/cm', and the atomic density of germanium is 4.41 X I022 atoms/cm'.

第二σ)不純物)度B tc基く格子応力の補償に必要
な不純物濃度Aは次式によって求めらitろ。
The impurity concentration A required to compensate for the lattice stress based on the second σ) impurity Btc can be found by the following equation.

二つの実施例によってこの発明の考え方を明らかにする
The idea of this invention will be clarified through two examples.

実施例1゜ 原子密度2 X 、1016原子/cm3  のインジ
ウムを炭素で補償する。
Example 1 Indium with an atomic density of 2.times.10@16 atoms/cm@3 is compensated with carbon.

GKJn= −17,3 Gf(Ko −+14.3 =  2.4’X!0160原子/c−実施例2゜ 比抵抗0.040Can Kアンチモン欠ドープされた
11型シリコンを炭素的50%、酸素約50係の混合物
で補償する。
GKJn= -17,3 Gf (Ko -+14.3 = 2.4' Compensate with a mixture of about 50 parts.

不純物密度K 5b=4 X l O17原子/cn+
3G K K 5b=−114 15.4X、+024 酸素と炭素の密度はそ11.ぞJt
Impurity density K 5b=4 X l O17 atoms/cn+
3G K K 5b=-114 15.4X, +024 The density of oxygen and carbon is 11. zo Jt

Claims (1)

【特許請求の範囲】 1) ドーピング物質を半導体材料に組み入れる際、こ
の組み入ノtによって生じる格子応力?少くともf(1
5分的に打消し電気的には無作用になる補償物質を同時
に加えることを特徴とする高濃度にドープさ11だ無転
位単結晶半導体材料の製造方法。 2)特に多、結晶シリコンの製造σ)途中で補償物質7
加える1−とを特徴とする特許請求の範囲第1項記載の
方法。 3)水素のような輸送ガスI/C混合したガス状J)シ
リコン化合物例えばシリコクロロホルム(SiHCl2
)又は四塩化ケイ素(5iC14)を熱分子r)¥し、
直接電流を流して加熱したシリコン基体上にシリコンを
沈着させることにより多き吉晶シリコンを作ることを特
徴とする特許請求の範囲第1項または第2偵記載θ)方
1宍。 4)半導体材料をドーピング物質」6よび補償物質と共
にるつぼに入7tて熔融し、全体をチョクラルスキ法に
よって転位を生ずることなく引き上げろことな特徴とす
る特許請求の範囲第j項記本(の方法。 5)棒の全長に亘って一様なドーピング濃度を達成する
ため、溶融体に含まJする物質の蒸気圧の差異を打消す
装置が使用さJtろことを特徴とする特許請求θ)範囲
第1頃または第4項記載の方法。 6) ドーピング物質を補償物質と共に基本ドーピング
として例えば板状に切断された半導体材料全体に拡散さ
せろことを特徴とする特〃[請求の範囲第1項記載の方
法。 7)インジウムをドープしたシリコンを炭素によって補
償することを特徴とする特許請求の範囲第1項ないし第
6項のいずオtかに記載θ)方法。 8)アンチモン?ドープしたシリコン′?:炭素又は酸
素又はそσ)双方vcよって補償することを特徴と才ろ
肪4′Fl;iv求σ)範囲第1頃を仁いし第6項σ)
いずノ1かに記載θ)方法。 9)ホウ素をドープしたシリコンをゲルマニウム、スズ
、鉛σ)いずitかあるいはそ2tl′−)の系口合ぜ
によって補償−「命ことを特徴とする特許請求θ)Q、
間第1頃ないし第6頃のいずftかに記載の方、去。 】0)  リンをドープしたシリコンをゲルマニウムに
よって補償することを特徴とする特許請求の範囲第1頃
ないし第6項のいず2tかに記載θ)方法。 】】)ホウ階又はリンをドープしたシリコンをナトリウ
ム、カリウム、ルビジウム、セシウム等σ)アルカリ金
属16よびインジウ台によって補(iitfることを特
徴とする特許請求σ)範囲第1項/工いし第G頃のいず
几かに記載の方法。 】2)ガリウム、アルミニウム、アンチモン、インジウ
ム又はタリウム7ドープしたシリコンを炭素、水素、酸
素、フッ素、窒素Rよび硫黄のいずハ、か又はそのいく
つかにょ′)て補イ1¥することを特徴とする特許I請
求の範囲第1項ないし第6項のいず71.かに記載の方
法。 1j〕  アルミニウム、ガリウム、アンチモン又はス
ズをドープ゛したゲルマニウムをシリコン、炭素、酸素
および水素θ)いずオtが一つ又はそのいくつかによっ
て補償することケ特徴とする特許請求の範囲第1項ない
し第6項のいず1tIJ−に記載σ)方法。 14)ヒ素、リン又はホウ素をドープしたゲルマニウム
をシリコン、鉛、リチウム、カリウム、ルビジウム、セ
シウムおよびヨウ素のいず1tか一つ又はそのいくつか
によって補償することを特徴とする特許請求の範囲第】
負ないし第6項のいずれかに記載の方法。
[Claims] 1) When a doping substance is incorporated into a semiconductor material, what is the lattice stress caused by this incorporation? At least f(1
A method for producing a highly doped dislocation-free single crystal semiconductor material, characterized in that a compensating substance which cancels out and becomes electrically ineffective in 5 minutes is added at the same time. 2) Particularly in the production of polycrystalline silicon σ) Compensating substance 7 in the process
The method according to claim 1, characterized in that: 3) Gaseous mixtures of transport gases such as hydrogen I/C J) Silicon compounds such as silicochloroform (SiHCl2
) or silicon tetrachloride (5iC14) by thermal molecule r),
Method 1 of claim 1 or claim 2, characterized in that silicon is produced by depositing silicon on a heated silicon substrate by direct current flow. 4) The method of claim 1, characterized in that the semiconductor material is melted in a crucible together with a doping substance and a compensating substance, and the whole is pulled up by the Czochralski method without producing dislocations. 5) In order to achieve a uniform doping concentration over the entire length of the rod, a device is used to cancel the difference in vapor pressure of the substances contained in the melt. The method described in Section 1 or Section 4. 6) A method according to claim 1, characterized in that the doping substance is diffused together with the compensating substance as basic doping, for example throughout the semiconductor material cut into plate shapes. 7) Method θ) according to any one of claims 1 to 6, characterized in that the silicon doped with indium is compensated with carbon. 8) Antimony? Doped silicon'? : Carbon or oxygen or its σ) Both are characterized by being compensated by vc;
θ) Method described in item 1. 9) Compensation of boron-doped silicon by a combination of germanium, tin, and lead σ) it or its 2tl'-) - a patent claim characterized by "life" θ)Q,
If you are listed in any of the 1st to 6th chapters, please leave. 0) Method according to any one of claims 1 to 6, characterized in that the phosphorus-doped silicon is compensated with germanium. ]】) Silicon doped with borium or phosphorus is supplemented with sodium, potassium, rubidium, cesium, etc. σ) alkali metal 16 and indium oxide. The method described in Izukika from around G. 2) Supplementing silicon doped with gallium, aluminum, antimony, indium or thallium 7 with carbon, hydrogen, oxygen, fluorine, nitrogen and/or sulfur. Patent I characterized by any one of claims 1 to 6 71. Method described in Crab. 1j] Claim 1 characterized in that germanium doped with aluminum, gallium, antimony or tin is compensated by one or several of silicon, carbon, oxygen and hydrogen θ) σ) method described in any one of Items 6 to 6. 14) Claim No. 1, characterized in that germanium doped with arsenic, phosphorus or boron is compensated by one or more of silicon, lead, lithium, potassium, rubidium, cesium and iodine.
6. The method according to any one of paragraphs 6 to 6.
JP58155693A 1982-08-30 1983-08-25 Manufacture of dislocation-free single crystal semiconductormaterial Pending JPS5958000A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE32322593 1982-08-30
DE19823232259 DE3232259A1 (en) 1982-08-30 1982-08-30 Process for producing semiconductor material with high doping

Publications (1)

Publication Number Publication Date
JPS5958000A true JPS5958000A (en) 1984-04-03

Family

ID=6172078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58155693A Pending JPS5958000A (en) 1982-08-30 1983-08-25 Manufacture of dislocation-free single crystal semiconductormaterial

Country Status (4)

Country Link
JP (1) JPS5958000A (en)
DE (1) DE3232259A1 (en)
FR (1) FR2532335A1 (en)
IT (1) IT1163932B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028443B1 (en) 2008-03-10 2011-04-14 실트로닉 아게 Semiconductor wafer of single crystalline silicon and process for its manufacture
CN114262231A (en) * 2021-12-16 2022-04-01 江苏诺明高温材料股份有限公司 Lining refractory material for lime kiln and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0350845A3 (en) * 1988-07-12 1991-05-29 Seiko Epson Corporation Semiconductor device with doped regions and method for manufacturing it
US5553566A (en) * 1995-06-22 1996-09-10 Motorola Inc. Method of eliminating dislocations and lowering lattice strain for highly doped N+ substrates
DE19953883A1 (en) * 1999-11-09 2001-05-23 Infineon Technologies Ag Arrangement for reducing the on-resistance of p- or n-channel field effect transistors
DE102004039197B4 (en) 2004-08-12 2010-06-17 Siltronic Ag Process for producing doped silicon wafers
JP4516096B2 (en) 2007-05-31 2010-08-04 Sumco Techxiv株式会社 Method for producing silicon single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101028443B1 (en) 2008-03-10 2011-04-14 실트로닉 아게 Semiconductor wafer of single crystalline silicon and process for its manufacture
CN114262231A (en) * 2021-12-16 2022-04-01 江苏诺明高温材料股份有限公司 Lining refractory material for lime kiln and preparation method thereof

Also Published As

Publication number Publication date
IT1163932B (en) 1987-04-08
IT8322636A0 (en) 1983-08-25
FR2532335A1 (en) 1984-03-02
DE3232259A1 (en) 1984-03-01

Similar Documents

Publication Publication Date Title
Nozaki et al. Concentration and behavior of carbon in semiconductor silicon
US5534079A (en) Supersaturated rare earth doped semiconductor layers formed by chemical vapor deposition
Sunder et al. Czochralski growth and characterization of GaSb
Taishi et al. Czochralski-growth of germanium crystals containing high concentrations of oxygen impurities
JPS5958000A (en) Manufacture of dislocation-free single crystal semiconductormaterial
Silvey et al. The Preparation and Properties of Some II–V Semiconducting Compounds
US20210269937A1 (en) Silicon carbide crystals and methods for producing same
US3212922A (en) Producing single crystal semiconducting silicon
Shimanskii et al. Thermal stability of the properties of germanium crystals for IR optics
Yonenaga Germanium crystals
Kuramata et al. Floating zone method, edge-defined film-fed growth method, and wafer manufacturing
JP3195889B2 (en) Method for producing silicon single crystal and quartz glass crucible
US3519492A (en) Process for the production of pure semiconductor materials
Pivac et al. Comparative studies of EFG poly-Si grown by different procedures
FR2836931A1 (en) Production of semiconductive telluride crystals containing cadmium, zinc and/or selenium, used in a nuclear radiation detector, involves incorporation of iron, and Group III element(s) and using Travelling Solvent or Bridgman method
Alekperov et al. High-Temperature Exciton Photoconductivity of Ge 1–x Nd x S Crystals
Gotoh et al. Ga segregation during Czochralski-Si crystal growth with Ge codoping
EP0745704A2 (en) Process for preparing an epitaxially coated semiconducting wafer
Bobrovnikova et al. Doping and impurity-vacancy complex formation during vapour-phase epitaxy of gallium arsenide
Podkopaev et al. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals
Fleming Growth of FeS2 (pyrite) from Te melts
RU2640788C1 (en) Method for obtaining doped diamond monocrystal
JPH02239195A (en) Compound semiconductor single crystal
JPH04137725A (en) Glass substrate polycrystalline silicon film
Grasza et al. Low supersaturation nucleation and “contactless” growth of photorefractive ZnTe crystals