JPS5957996A - Manufacture of niobium carbide crystal body - Google Patents

Manufacture of niobium carbide crystal body

Info

Publication number
JPS5957996A
JPS5957996A JP57168085A JP16808582A JPS5957996A JP S5957996 A JPS5957996 A JP S5957996A JP 57168085 A JP57168085 A JP 57168085A JP 16808582 A JP16808582 A JP 16808582A JP S5957996 A JPS5957996 A JP S5957996A
Authority
JP
Japan
Prior art keywords
composition
crystal
rod
melt zone
phase component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57168085A
Other languages
Japanese (ja)
Inventor
Shigeki Otani
茂樹 大谷
Takao Tanaka
高穂 田中
Yoshio Ishizawa
石沢 芳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP57168085A priority Critical patent/JPS5957996A/en
Publication of JPS5957996A publication Critical patent/JPS5957996A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain an NbC crystal body having a uniform composition by adding a component corresponding to Nb or C which is evaporated from a melt zone during melting to the solid phase component of an NbC crystal to be manufactured to prepare the composition of a rod of a sintered body to be fed and by forming a melt zone of a liq. phase component coexisting with the solid phase component of the NbC crystal to be manufactured at the melt zone section. CONSTITUTION:Both ends of a rod 3 of a sintered body is supported by holders 2, and an NbC crystal body is manufactured by heating the rod 3 with a heating source 6 such as a high frequency heating source in an inert gaseous atmosphere under pressure while moving the rod 3. The composition of the rod 3 is composed of the solid phase component of an NbC crystal to be manufactured and a component corresponding to Nb or C which is evaporated from a melt zone 5 during melting, and a melt zone of a liq. phase component coexisting with the solid phase component of the NbC crystal to be manufactured is formed at the melt zone section.

Description

【発明の詳細な説明】 本発明は均一な組成をイアする炭化ニオブ結晶体の製造
法に関する。flこ詳しくは結晶体の始端部および終端
t)11においても均一 な組成を有する炭化ニオブ結
晶体の製造法に関する。。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a niobium carbide crystal having a uniform composition. More specifically, the present invention relates to a method for producing a niobium carbide crystal having a uniform composition even at the starting end and the terminal end (t)11 of the crystal. .

炭化ニオブは高融点、高硬度および高’+l’を気伝導
1生を持ら、その仕事関数は耐熱歌属(W、Mo等)よ
り低い値をとり、化学的にも安定であることなどから、
最近電子材料、特番こフィールドエミッター材としての
結晶体の利用が検8]されている。
Niobium carbide has a high melting point, high hardness, and high air conductivity, and its work function is lower than that of heat-resistant metals (W, Mo, etc.), and it is chemically stable. from,
Recently, the use of crystalline materials as electronic materials and special field emitter materials has been investigated.

従来、炭化ニオブ(、NbCx )の結晶は、フラック
ヌ法、気相法、ノラズマ法などをこよって製造されてい
るが、焼結体ロッドの両端をホルダーで支持し、高周波
等の加熱源を用いて焼結体ロッドの一部を溶融し、加圧
不活性ガス雰囲気1・で焼結体ロッドを移動しつつ高周
波等を加熱源として行う方法(以下FZ法という)が高
純度で比較的大型結晶が得られることから、NbCX結
晶体の育成が試みられている。
Conventionally, niobium carbide (NbCx) crystals have been produced using the Flacne method, vapor phase method, and Norasma method. A method in which a part of the sintered rod is melted and the sintered rod is moved in a pressurized inert gas atmosphere while using high frequency waves or the like as a heating source (hereinafter referred to as the FZ method) is a high-purity and relatively large-scale method. Since crystals can be obtained, attempts have been made to grow NbCX crystals.

ところが、NbCXTtこは非常に広い不定比領域(0
,7<X<1)が存在するため、従来のFZ法をこよっ
て育成された結晶は、FZ法の原理と激しい蒸発により
、結晶棒の長さ方向の組成に変化を起こし、長さ方向の
組成が均一・な結晶を得ることができなかった。そのた
め、フィールドエミッター材としCγ+’F用するのに
、一番良好な組成を把握することができなく、フィール
ドエミッター材として実用化するに至っていない。
However, NbCXTt has a very wide non-stoichiometric region (0
, 7 < It was not possible to obtain crystals with a uniform composition. Therefore, it has not been possible to determine the best composition for using Cγ+'F as a field emitter material, and it has not been put to practical use as a field emitter material.

本発明はI=’ Z法で組成の均一な炭化ニオブ結晶体
を製造する方法を提供するにある。
The present invention provides a method for producing niobium carbide crystals having a uniform composition by the I='Z method.

本発明の方法(こ用いるFZ法を図面に基づいて説明す
る。
The method of the present invention (the FZ method used here) will be explained based on the drawings.

第1図は本発明の方法をご用いるFZ法の装置の概念図
でキ〕る。装置jtとし°Cは、例えばAlJL社製の
高圧タイプの結晶育成炉が用いられる。第1図にj3い
て、■はシャフト、2はボルダ−23は焼結体ロッド、
4はNbC結晶47k 、  5は融帯、6は1えFコ
イルである。
FIG. 1 is a conceptual diagram of an apparatus for the FZ method using the method of the present invention. For example, a high-pressure crystal growth furnace manufactured by AlJL is used as the apparatus. In Fig. 1, j3 is the shaft, 2 is the boulder, and 23 is the sintered rod.
4 is NbC crystal 47k, 5 is a melt zone, and 6 is a 1F coil.

長さ10〜20αの焼結体ロッド3の端をRFコイルか
ら高周波を発生させ°C誘導加熱溶融させて融帯5を形
成し、ホルダー2に保持された焼結体ロッド3をゆっく
り移動させて結晶を育成させる。この時の融帯5の移動
速度は0.5〜10wl bが適当である。移動方向は
L下いずれの方向でもよい。雰囲気は不活性ガスが使用
され、通常はノ′ルゴン、ヘリウノ、またはその混合ガ
スである。雰囲気ガスは、主に試料の触発を抑制するた
めと、RFココイル間よびコイルと試料間の放電を抑制
するため(こ用いられる。通常2〜30気圧、好ましく
は5〜20気圧である。これより圧力が低いと蒸発と放
電を抑制する効果が殆んどなく、またこれより高いと対
流による熱損失が大きくなるので好ましくない。
The end of the sintered rod 3 having a length of 10 to 20α is melted by induction heating at °C by generating high frequency from an RF coil to form a melt zone 5, and the sintered rod 3 held in the holder 2 is slowly moved. to grow crystals. At this time, the moving speed of the melting zone 5 is suitably 0.5 to 10 wlb. The moving direction may be any direction below L. An inert gas is used as the atmosphere, usually Norgon, Heliun, or a mixture thereof. The atmospheric gas is used mainly to suppress triggering of the sample and to suppress discharge between the RF co-coil and between the coil and the sample.It is usually 2 to 30 atmospheres, preferably 5 to 20 atmospheres. If the pressure is lower than this, there is almost no effect of suppressing evaporation and discharge, and if the pressure is higher than this, heat loss due to convection becomes large, which is not preferable.

融帯の組成は希望する組成を持つ)結晶と共存する液相
組成を相図より求めてその組成とする。
(The composition of the melt zone has the desired composition.) The composition of the liquid phase that coexists with the crystal is determined from the phase diagram and determined as that composition.

その際、この物質は融点が高く、蒸発が激しいため一瞬
にして初期融帯を形成−4−るか、あるいは4υ期融帯
の両側の焼結棒からもそれが形成するまでに炭素(又は
ニオブ)が蒸発するため、供給棒の先に蒸発量分だけ炭
素(又はニオブ)を添加するなどし”C1炭素(又はニ
オブ)の蒸発による組成変化を打ち消す必要がある。ま
た供給棒の組成は各種の組成を持つ供給棒を使用し、そ
の都度融帯組成をその液相組成として所定の条件ドでF
 Z法を行ない、得られる結晶組成から、供給棒の組成
を決めればよい。
At that time, this material has a high melting point and evaporates rapidly, so either an initial melting zone is formed in an instant, or carbon (or Niobium) evaporates, so it is necessary to add carbon (or niobium) to the tip of the supply rod by the amount of evaporation to cancel out the composition change due to evaporation of C1 carbon (or niobium).Also, the composition of the supply rod is Feed rods with various compositions are used, and each time the melt zone composition is used as the liquid phase composition to feed F under predetermined conditions.
The composition of the supply rod may be determined from the crystal composition obtained by carrying out the Z method.

本発明における+iiJ記の融帯部に融帯組成ロッドを
存在させ゛(F Z法会行う方法としては、(1)八を
粘体117ドを2分し、上部に原料供給焼結トド1Jヮ
ト(先に炭素又はニオブを適1辻添加したもの)、  
+−:sr+に融帯組成ロッドとし、先ず上部のt、i
11!帯組成ロッドを浴かして融帯を生成させ、焼結体
口、ドをヒ方に向って移動させる方法。
In the present invention, a melting zone composition rod is present in the melting zone section described in +iiJ. (added carbon or niobium in advance),
+-: Set the fusion zone composition rod to sr+, firstly, the upper t, i
11! A method in which a band composition rod is exposed to a bath to generate a melting zone, and the sintered body opening and closing point are moved in this direction.

また1−、ドの口、ドを逆に設け、下方に向って移動さ
せる方法。
Another method is 1-, where the opening of the C is reversed and the C is moved downward.

+21 111Gこ供給焼結体ロッドを設け、その間(
こ融帯#11 +1v、ロッドまたは溶かすと融帯組成
になる量の炭素1i−ど溶料ニオブをはさみ、先す融帯
7119分を溶かした後、供給焼結体ロッドをL下いず
れかの方向(こ移+1(IJさせる方法。
+21 111G supply sintered compact rod is provided, and between them (
After melting the melting zone #11 +1v, rod or the amount of carbon 1i- or niobium that will make the melting zone composition when melted, and melting the melting zone #11 +1v, put the supplied sintered compact rod under either of L. Direction (Movement +1 (How to make IJ.

(8)通常のISZ法を行なうと、融帯移動を行なう(
こつれ、融帯組成が、その共存液相組成に近づいて行く
。そのため、1−分融帯移動を行い、融帯組成が共存液
相に+t JJy、4こ一致した時、融帯部分を固化さ
せて、これを用いて(1)の方法により一114Gこし
て、融帯を形成させ対応−4る組成の結晶を育成する方
法が挙げられる。
(8) If the normal ISZ method is used, the zone will move (
Eventually, the melt zone composition approaches the coexisting liquid phase composition. Therefore, the melting zone is moved by 1 minute, and when the melting zone composition matches the coexisting liquid phase by +t JJy, the melting zone is solidified, and this is used to strain -114G by the method (1). , a method of forming a melt zone and growing a crystal with a corresponding composition.

結晶の育成条件は]1上の7.ノドG二回転を与えるこ
とにより融帯の攪拌を促進し、ゾーンバスを容易にする
ことができる。
Conditions for crystal growth are listed in section 7 above. By applying two rotations of the throat G, agitation of the melting zone can be promoted and zone bathing can be facilitated.

本発明をこおいて使用する供給焼結体ロッドは炭化ニオ
ブが広い不定比領域を持つため、種々の、t、+1成の
ものを用意する。例えば市販の炭化ニオブ粉末(こ、ニ
オブ金属あるいは発光分光分析用カーボンを混合するこ
とをこより1」的の組り屯の焼結体ロッドを作ることが
できる。原料純度は高い方が好ましく、通常98重11
唄%以]ユ、好ましくは99重らt%以りのものがよい
。ぞし″C’lL均粒径10 tt以丁であることが好
ましい。
Since niobium carbide has a wide non-stoichiometric region, the supply sintered rods used in the present invention are prepared in various types with t, +1 composition. For example, a sintered rod can be made by mixing commercially available niobium carbide powder (niobium metal or carbon for emission spectroscopy).The higher the purity of the raw material, the better, and usually 98 weight 11
% or more], preferably 99% or more. It is preferable that the average particle size is 10 tt or more.

焼結体ロッドの形状は、角柱(例えば10×10 X 
200 m4.15X15Xi00J、)、円柱(例え
ば、10φ×150 J )等を;+f1常便川す用が
、任意の形状でよい。成ノ1歩方法としてlよ、均一な
音度の成形体を得るため、ラバーフレスを用いるのが好
ましい。成形圧は通常1t/iである。
The shape of the sintered rod is a rectangular column (for example, 10 x 10
200 m4.15X15Xi00J), a cylinder (for example, 10φx150 J); As a first step method, it is preferable to use a rubber press in order to obtain a molded product with uniform acoustic intensity. The molding pressure is usually 1 t/i.

次に成形体を焼結する。焼結は通常1500〜2400
℃で0.3〜6時間行う。焼結雰囲気としては、真空、
不活性ガストで行い、使用する焼結炉はどのようなもの
でもよいが、高周波誘導加熱炉が便利である。このよう
な条件下で得られる焼結体ロッドの密度は45〜75%
である占なお、焼結工程で焼結体の化学組成が多少ずれ
るのが普通であるから、厳密に制御するには焼結体の組
成分析を行い、配合組成と焼結組成との対応をつけCお
くことが好ましい、このような条件ドで育成された炭化
ニオブ結晶は、始端部から1 cm ’iでは多結晶体
であるが、その先は1つのダレインに成長し1終端部は
単結晶である。中央部のへき開面の観察、工、チング法
およびX線ラウェ法で検査したところ良質の単結晶であ
ることか分った、 なお、この物質をこ會まれる不純物は、この物1!(+
こ比べ、蒸気圧が高いため育成の際、蒸発により、精製
されていることがわかった。
Next, the molded body is sintered. Sintering is usually 1500-2400
C. for 0.3 to 6 hours. The sintering atmosphere is vacuum,
The sintering is performed using an inert gas, and any type of sintering furnace may be used, but a high-frequency induction heating furnace is convenient. The density of the sintered rod obtained under these conditions is 45-75%
Furthermore, it is normal for the chemical composition of the sintered body to deviate somewhat during the sintering process, so in order to strictly control it, it is necessary to analyze the composition of the sintered body and check the correspondence between the blended composition and the sintered composition. A niobium carbide crystal grown under such conditions, where it is preferable to leave the crystal with C, is polycrystalline at 1 cm'i from the starting point, but beyond that it grows into one dalein, and at the end, it grows into a single crystal. It is a crystal. Observation of the cleavage plane at the center, and inspection using the X-ray method and X-ray Lawe method revealed that it was a high quality single crystal.The impurities that can damage this material are 1! (+
In comparison, it was found that because of its high vapor pressure, it is purified through evaporation during growth.

本発明の方法は最高融点を示す組成以外の組成を持つ結
晶の育成に適用する時、その真価分発押する。NbC−
C系の相図の一部を示す第2図に7.Bいて説明すると
、従来法(こよると、Xlの組成を持つ供給棒を使用し
て融帯を形成させる(こはT、の温度まで温度をあげる
必要がある。
The method of the present invention exhibits its true value when applied to the growth of crystals having compositions other than those exhibiting the highest melting point. NbC-
7. Figure 2 shows part of the phase diagram of the C system. To explain this in terms of the conventional method, a melt zone is formed using a feed rod having a composition of Xl (this requires raising the temperature to a temperature of T).

これに対し、本発明の方法によると融帯を形成する部分
の組成がそれと共存4る液相組成のXつであるため、’
llの温度で融帯を形成することができる。具体的に示
すと、従来法では3600 C近くまで温](〔をあげ
る心安があったが、本発明の方法では3300℃の温度
で十分融帯を形成させることができる。このように30
00℃以りの温度でさらに300C以」−の温度をあげ
る(こは多くのエネルギーを必要とし、放電線0川i4
1害を起こす等の問題が生ずるか、本発明の方法ではこ
のような障害を起こすことがない。
On the other hand, according to the method of the present invention, the composition of the part forming the melt zone is X of the liquid phase composition coexisting with the melt zone.
A melt zone can be formed at a temperature of 1. Specifically, in the conventional method, it was safe to raise the temperature to nearly 3600°C, but with the method of the present invention, a melting zone can be sufficiently formed at a temperature of 3300°C.
At a temperature above 00℃, raise the temperature to 300℃ or higher (this requires a lot of energy and the discharge wire
However, the method of the present invention does not cause such problems.

また、本発明の方法によると、融・11F移;Itの聞
その組成が変化しないので、加熱、IC力の調11iが
小さく、それだけ女になlAJ’、帯移動かり能となり
、良質な結晶体が得られる。しかも、得られる炭化ニオ
ブ結晶体の始端部、中央部、終端部における組成の変化
がなく、実質的に均一な組成を有するものが容易に得ら
れ、また希望する組成を有する良′tτ、大型の結晶が
得られる優れた効果を有″l−る。
In addition, according to the method of the present invention, since the composition does not change during the melting and 11F transition, the heating and IC power 11i are small, which increases the woman's lAJ' and band transfer ability, resulting in high-quality crystals. You get a body. Moreover, there is no change in the composition of the resulting niobium carbide crystal at the starting end, center, and end, and it is easy to obtain a material having a substantially uniform composition. It has an excellent effect of obtaining crystals.

〈実施例2 NbCxの全組成領域(0,7<x<1)において、任
意の均一な組成を持つ単結晶を育成するためをこ、結晶
−融帯一貌結棒の組成関係を求めなければならない。
<Example 2> In order to grow a single crystal with an arbitrary uniform composition in the entire composition range of NbCx (0,7<x<1), it is necessary to find the compositional relationship between the crystal and the melt zone. Must be.

41ノ期融帯の組成は、前(4ページ)に述べたよう)
こ、既に報告されCいる相図に基づき決めることができ
る。一方、焼結体の組成は、4!11々の組成を持つ焼
結棒を用い、定常状態におい′C得られる結晶組成を調
べ、その関係(図3)から求めた。
The composition of the 41st melt zone is as described above (page 4).
This can be determined based on the phase diagram that has already been reported. On the other hand, the composition of the sintered body was determined from the relationship (FIG. 3) by examining the crystal composition of 'C obtained in a steady state using sintered rods having compositions of 4 and 11.

NbC・・・+5.  NbCo、s7. NbCo7
s結晶棒を、相図と図3(こ基づき、育成した。育成条
件は、Pll・=10気圧F、育成速度1.25 cm
 / hで、L Fシ1.フトを逆方向に毎分8同−献
であった。
NbC...+5. NbCo, s7. NbCo7
The s crystal rod was grown based on the phase diagram and Figure 3. The growth conditions were Pll = 10 atm F, growth rate 1.25 cm.
/h, L Fshi1. The speed was 8 times per minute in the opposite direction.

イ)NbC1195結晶俸を育成する場合、初期融帯の
組成をC/Nbキ1.2とし、焼結体組成をC/Nb 
= L、17とした。イ:Iられた結晶棒は、一定な一
部1[成であった。
b) When growing NbC1195 crystal bales, the initial melt zone composition is C/Nb key 1.2, and the sintered body composition is C/Nb
= L, 17. A: The crystal rod that was separated was made up of a constant portion of 1.

口)  NbCo、s7結晶棒の育成は、同様Qこ初期
融帯をC/Nbキ0.99とし、焼結棒組成をC/Nb
=0.96とし−〔、行なった。得られた結晶体の組成
は、始苓1都、中央端、終端部がそれぞれ、c /Nb
 = o、s 74. o、s 74. o、s73と
一定な組成であった。。
) NbCo, s7 crystal rods were grown in the same way, with the initial fusion zone set to C/Nb key 0.99, and the sintered rod composition set to C/Nb.
= 0.96 - [, conducted. The composition of the obtained crystal is c/Nb at the beginning, center, and end, respectively.
= o, s 74. o, s 74. The composition was constant: o, s73. .

ハ)  NbCo7sの結晶棒育成をこは、融帯のホ1
[成をC/Nb中0.7とし、焼結4・9組成をC/ 
N l)−〇、73とした。得られた結晶棒始端I6;
と、終帰部は、C/Nb= 0.752.0.755と
一定な結晶棒を得た。
C) The crystal rod growth of NbCo7s is carried out in the melting zone.
[The composition was set to 0.7 in C/Nb, and the sintering 4.9 composition was set to C/Nb.
Nl)-〇, 73. Obtained crystal rod starting end I6;
Then, a crystal rod with a constant C/Nb=0.752.0.755 was obtained at the final part.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はFZ法の概念図、第2図はNb−Cの相図の一
部である。 1:シャフト、2:ホルタ−, 3:供給焼結体ロッド、  4 :NbC結晶俸、5:
融帯、        6 : it Fコイル、A:
液相線、      13:固相線、C:共融点。 第3図は、焼結棒組成と、その焼結体から定常状f7Q
に11)られる結晶組成との関係を示し゛〔いる。 第1 図 第2図 め3 図
FIG. 1 is a conceptual diagram of the FZ method, and FIG. 2 is a part of the Nb-C phase diagram. 1: Shaft, 2: Holter, 3: Supply sintered rod, 4: NbC crystal pellet, 5:
Melting zone, 6: it F coil, A:
liquidus line, 13: solidus line, C: eutectic point. Figure 3 shows the composition of the sintered rod and the steady state f7Q from the sintered body.
11) shows the relationship with the crystal composition. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1,)  焼結体ロッドの両端をホルダーで支持し、
加圧不活性ガス雰囲気Fで焼結体口、ドを移動しつつ高
周波等の加熱源で加熱して炭化ニオブ結晶体を製造する
方法番こおいて、供給焼結体ロッドの組成を、得ようと
する炭化二オグ結晶の固相成分昏こ溶融時に融帯から蒸
発する二オフまたは炭素の成分を加えたものとし、且つ
融帯部Gこ、得ようとする炭化ニオブの結晶の内相成分
と共存する液相成分からなる融帯を形成させて行うこと
を特徴とする炭化ニオブ結晶体の製造法。
(1,) Support both ends of the sintered rod with holders,
A method of producing a niobium carbide crystal by moving the sintered body in a pressurized inert gas atmosphere F and heating it with a heating source such as a high frequency. The solid phase component of the niobium carbide crystal to be obtained is added with the component of niobium or carbon that evaporates from the melting zone during melting, and the melting zone G is the internal phase of the crystal of niobium carbide to be obtained. A method for producing niobium carbide crystals, characterized by forming a melt zone consisting of a liquid phase component coexisting with other components.
JP57168085A 1982-09-27 1982-09-27 Manufacture of niobium carbide crystal body Pending JPS5957996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57168085A JPS5957996A (en) 1982-09-27 1982-09-27 Manufacture of niobium carbide crystal body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57168085A JPS5957996A (en) 1982-09-27 1982-09-27 Manufacture of niobium carbide crystal body

Publications (1)

Publication Number Publication Date
JPS5957996A true JPS5957996A (en) 1984-04-03

Family

ID=15861562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57168085A Pending JPS5957996A (en) 1982-09-27 1982-09-27 Manufacture of niobium carbide crystal body

Country Status (1)

Country Link
JP (1) JPS5957996A (en)

Similar Documents

Publication Publication Date Title
JPS5957996A (en) Manufacture of niobium carbide crystal body
Otani et al. Preparation of TiC single crystal from self-combustion rod by floating zone method
JPS5812240B2 (en) Method for producing hafnium carbide crystals
JPS5860699A (en) Growing method of titanium carbide single crystal
JPS606914B2 (en) Method for producing tantalum carbide crystals
JPS5812239B2 (en) Method for manufacturing zirconium carbide crystals
JP2997762B2 (en) Growth method of calcium hexaboride crystals
EP0148946A1 (en) Method of producing a chrysoberyl single crystal
JP2929007B1 (en) Method for growing single crystal of group Va diboride
JP2580523B2 (en) Growth method of titanium diboride single crystal
JPS5814399B2 (en) Method for producing titanium carbide crystals
JP2997760B2 (en) Method for producing hafnium diboride single crystal
JPH027919B2 (en)
JPH0364479B2 (en)
JPH05238889A (en) Production of crystal substance of yttrium hexacontahexaboride for soft x-ray spectroscopy
JP2642882B2 (en) Growth method of tungsten diboride single crystal
JPS6132253B2 (en)
JP2997761B2 (en) Method for producing rhenium diboride single crystal
JP3569743B2 (en) Skutterudite single crystal and method for producing the same
JPH0232237B2 (en) CHITANTANCHITSUKABUTSUNOTANKETSUSHONOSEIZOHO
JPH02298227A (en) Production of refractory metal material capable of plastic working
JPS6135129B2 (en)
JPH0477397A (en) Lanthanum boride base single crystal and its growing method
JPH01286996A (en) Method for growing titanium carbide single crystal
JPH0477398A (en) Cerium boride base single crystal and its growing method