JPS5957481A - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JPS5957481A
JPS5957481A JP57168137A JP16813782A JPS5957481A JP S5957481 A JPS5957481 A JP S5957481A JP 57168137 A JP57168137 A JP 57168137A JP 16813782 A JP16813782 A JP 16813782A JP S5957481 A JPS5957481 A JP S5957481A
Authority
JP
Japan
Prior art keywords
conversion element
photoelectric conversion
transparent electrode
thickness
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57168137A
Other languages
Japanese (ja)
Inventor
Hisao Ito
久夫 伊藤
Yoshihiro Ueda
良寛 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP57168137A priority Critical patent/JPS5957481A/en
Publication of JPS5957481A publication Critical patent/JPS5957481A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain the photoelectric conversion element having the spectral sensitivity characteristics suitable for the wavelength characteristics of the source of light used by a method wherein the film thickness of the transparent electrode on the photoelectric conversion element, wherein amorphous silicon is used, is formed in the thickness with which minimum reflection is obtained in a visible wavelength region. CONSTITUTION:Cr is vapor-deposited in the thickness of 3,000Angstrom or thereabout on the insulated substrate 1 such as glass and the like using an electron beam, and an electrode 2 is formed by performing an etching. Then, amorphous silicon of approximately 1mum is coated on the electrode 2 as a photoconductive material using a glow discharge method. Said film coating is performed for 30-60min or thereabout at the substrate temperature range of 200-300 deg.C using 100% SiO4, RF power of 20-50W, and a gas flow rate of 20-50 SCCM under the pressure of 0.2-0.5 Torr. Then, a transparent electrode is coated in the thickness of 400-1,000Angstrom , with which the reflection in the wavelength range of 4,000-7,000Angstrom becomes the minimum, using a DC sputtering method. At this time, indium oxide tin is used as a target, and the coating is performed under the condition of DC power 150-200W, full gas pressure of Ar and O2 of 1-5X 10<3> Torr, and O2 partial pressure of 1-2X10<4> Torr.

Description

【発明の詳細な説明】 この発明は光導電体として非晶質シリコンを用いた光電
変換素子に関し、特に該光電変換素子の分光感度特性の
改善に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photoelectric conversion element using amorphous silicon as a photoconductor, and particularly relates to improving the spectral sensitivity characteristics of the photoelectric conversion element.

一般に、ファクシミリ等の原稿読取装置にはシリコンエ
Cセンサが用いられているが、該シリコンエCセンサは
センサ長/l’ 20 mm乃至30−と短いことから
光路長の長い縮小光学系を必要とし、装置の小型化を図
る上で問題になっていた。
Generally, a silicone C sensor is used in document reading devices such as facsimile machines, but since the silicone C sensor has a short sensor length /l' of 20 mm to 30 mm, it requires a reduction optical system with a long optical path length. This has been a problem when trying to downsize the device.

そこで最近は、縮小光学系を必要としない、すなわち原
稿幅と同じ長さを有する長尺の薄膜センサの開発が試み
られている。この代表的なものとして、光導電体に非晶
質シリコンを用い、これを透EiA電極と金属電極とで
はさんだす′ンドイッチ型のセンサがある。
Therefore, recently, attempts have been made to develop a long thin film sensor that does not require a reduction optical system, that is, has the same length as the original width. A typical example of this is an inditch type sensor in which amorphous silicon is used as a photoconductor and is sandwiched between a transparent EiA electrode and a metal electrode.

ところで、このような非晶質シリコンを用いたサンドイ
ッチ型のセンサは、0.1 m5ec以下の光応答性馨
もち、かつ20Or以上の耐熱性を有することわら実用
的なセンサとして有望であるが、いまだ開発途上にあっ
て特に分光感度特性に対する配慮は不十分であった。
Incidentally, such a sandwich type sensor using amorphous silicon is promising as a practical sensor as it has a photoresponsiveness of 0.1 m5ec or less and a heat resistance of 20Or or more. Since it is still in the development stage, there has been insufficient consideration given to spectral sensitivity characteristics.

この発明は上記実情に鑑みてなされたものであり、光導
電体として非晶質シリコンを用いた光電変換素子であっ
て、使用する光源の波長特性に適合する分光感度特性を
有する光電変換素子を提供することを目的とする。
This invention has been made in view of the above circumstances, and provides a photoelectric conversion element that uses amorphous silicon as a photoconductor and has spectral sensitivity characteristics that match the wavelength characteristics of the light source used. The purpose is to provide.

すなわちこの発明は、上記非晶質シリコンの上面に着膜
する透明電極の膜厚な、可視領域である4000A乃至
7000Aの波長領域でその反射が極小となる厚さ、例
えば400A乃至1000Aの厚さとすることにより、
該透明電極が干渉フィルタの役割も兼ねることとなって
この光電変換素子と゛しての分光感度特性も実際に使用
する光源の波長特性に良好に適合するようになることに
着目し、基板上に所定形状に形成した金属電極の上から
光導電体として非晶質シリコンヲ漸膜した後、この上面
に例えば上記400A乃至1000Aの膜厚で透明電極
を着膜して光電変換素子を形成するようにしたものであ
る。なお、この透明電極としては酸化インジウムスズ薄
膜を用いることが好ましい。
That is, the present invention provides a film thickness of the transparent electrode deposited on the upper surface of the amorphous silicon, such that the reflection is minimal in the visible wavelength range of 4000A to 7000A, for example, a thickness of 400A to 1000A. By doing so,
Focusing on the fact that the transparent electrode also serves as an interference filter, the spectral sensitivity characteristics of this photoelectric conversion element will match well with the wavelength characteristics of the light source actually used, and After gradually forming a film of amorphous silicon as a photoconductor on a metal electrode formed in a predetermined shape, a transparent electrode is formed on the upper surface with a film thickness of, for example, 400A to 1000A to form a photoelectric conversion element. This is what I did. Note that it is preferable to use an indium tin oxide thin film as this transparent electrode.

以下、この発明にがかる光電変換素子を添附図面に示す
実施例にしたがって詳aK説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a photoelectric conversion element according to the present invention will be described in detail with reference to embodiments shown in the accompanying drawings.

はじめに・第1図を参照してこの発明にがかる光電変換
素子の製造方法を説明する。なお、第1図はこの発明に
かかる光電変換素子の製造方法をその製造工程にしたh
′−って示すものであり、第1図(a)に金属電極の形
成態様を、第1図(b)に光導電体の形成態様を、また
第1図(C)に透明電極の形成態様をそれぞれ示J−0 ここでは光導電体としての非晶質シリコンをはさむ金属
電極にクロム(Or)を、また透明電極にインジウム(
In)とスズ(Sn)との酸化物をそれぞれ使用する場
合を例にとって説明する。
Introduction: A method for manufacturing a photoelectric conversion element according to the present invention will be explained with reference to FIG. Note that FIG. 1 shows a manufacturing process using the method for manufacturing a photoelectric conversion element according to the present invention.
Figure 1(a) shows the formation of the metal electrode, Figure 1(b) shows the formation of the photoconductor, and Figure 1(C) shows the formation of the transparent electrode. Chromium (Or) is used as the metal electrode sandwiching amorphous silicon as a photoconductor, and indium (Indium) is used as the transparent electrode.
An example will be explained in which oxides of In) and tin (Sn) are used.

まずはじめに、ガラス等の絶縁基板1上にクロム(Cr
)を300OA程電子ビ一ム蒸着し、この後例えばフォ
トリソグラフィ圧よってエツチングを施すことにより第
1図(a)に示すような所定パターンの金属電極2を形
成する。次いでその上に光導電体3としての非晶質シリ
コン(a−8i:H)をグロー放電法により約1μm着
膜する(第1図(→参照)。なおこの着膜に際゛しては
、100%シラyガス(EliH,)7用いるものとし
、RF(高周波)パワー20〜50W1ガス流量20〜
51 secM(標準ac分〕、圧力0.2〜0.5’
rorr、基板視度200〜300t、’の条件で30
分乃至1時間程行なうのが好ましい。そして最後に、透
明電極4YDO(直流)スパッタリング法により400
〜100OA M膜する(第1図(C)参照)。
First of all, chromium (Cr) is placed on an insulating substrate 1 such as glass.
) is electron beam evaporated to a thickness of about 300 OA, and then etched using, for example, photolithography pressure to form a metal electrode 2 in a predetermined pattern as shown in FIG. 1(a). Next, a film of about 1 μm of amorphous silicon (a-8i:H) as the photoconductor 3 is deposited on the photoconductor 3 by a glow discharge method (see Fig. 1 (→). , 100% Sily gas (EliH,) 7 shall be used, RF (high frequency) power 20~50W1 gas flow rate 20~
51 secM (standard ac minute), pressure 0.2-0.5'
rorr, board diopter 200-300t, 30 under the condition of '
It is preferable to carry out the treatment for about one minute to one hour. Finally, the transparent electrode 4YDO (direct current) sputtering method
~100OAM film (see FIG. 1(C)).

なおこの際のターゲットには酸化インジウムスズ(90
mol!%工nFO3+ 10m0j?9oSnOt 
)を用いるものとし、着膜条件はDCパワー150〜2
00W。
The target at this time was indium tin oxide (90
Mol! %Eng nFO3+ 10m0j? 9oSnOt
), and the film deposition conditions are DC power 150~2
00W.

アルゴン(Ar)と酸素(0りとの全ガス圧1〜5 X
 I Q ’Torr、酸素分圧1〜2 XIQ ’T
orrとする。
Total gas pressure of argon (Ar) and oxygen (0)
I Q 'Torr, oxygen partial pressure 1-2 XIQ 'T
orr.

次に、このようKして製造した光電変換素子のセンサ面
での反射スペクトルの波長特性についてその測定結果を
第2図に示す。ただし同第2図において、破線で示すL
lは上記透明電極4の)膜厚を550Aとしたときの反
射スペクトラムの波長特性を示す特性曲線、一点鎖線で
示すL2は上記透明電極4の膜厚を85OAとしたとき
の反射スペクトラムの波長特性を示す特性曲線、実線で
示すL3は上記透明電極4を着膜しなかった場合、すな
わち光導電体3としての非晶質シリコン膜面における反
射スペクトラムの波長特性を示す特性曲線である。
Next, FIG. 2 shows the measurement results of the wavelength characteristics of the reflection spectrum on the sensor surface of the photoelectric conversion element manufactured in this manner. However, in Figure 2, L shown by the broken line
l is a characteristic curve showing the wavelength characteristics of the reflection spectrum when the film thickness of the transparent electrode 4 is 550A, and L2 shown by a dashed dotted line is the wavelength characteristic of the reflection spectrum when the film thickness of the transparent electrode 4 is 85OA. The characteristic curve L3 shown by a solid line is a characteristic curve showing the wavelength characteristics of the reflection spectrum on the amorphous silicon film surface as the photoconductor 3, when the transparent electrode 4 is not deposited.

さて同第2図をみると、少なくとも透明電極4を着膜す
ることによってセンサ面での反射率が大幅に減少するこ
とがわかる。また、特に透明電極4の膜厚を550Aと
したときには約+100又の波長で(曲線b1参照)、
同じ(透明電極波長で(曲線L2参照)それぞれ反射率
がほぼ0%となっている。これは、上記透明電極4が干
渉フィルタとしての役割を兼ね具えていることを裏付け
る重要な特性である。
Now, looking at FIG. 2, it can be seen that by depositing at least the transparent electrode 4, the reflectance on the sensor surface is significantly reduced. In addition, especially when the thickness of the transparent electrode 4 is 550A, at a wavelength of about +100 (see curve b1),
At the same transparent electrode wavelength (see curve L2), the reflectance is approximately 0%. This is an important characteristic that proves that the transparent electrode 4 also serves as an interference filter.

また第3図は、上述した透明電極4の膜厚を550Aと
した光電変換素子と、850人とした光電変換素子との
それぞれの分光感度特性についてその測定結果を示すも
のであり、先の第2図と同様、破線で示す曲線Llで透
明電極4の膜厚を550Aとした光電変換素子の分光感
度特性を、一点鎖線で示す曲線L2で透明電極4の膜厚
を850″Aとした光電変換素子の分光感度特性をそれ
ぞれ示している。
Furthermore, FIG. 3 shows the measurement results of the spectral sensitivity characteristics of the photoelectric conversion element with the transparent electrode 4 having a film thickness of 550A and the photoelectric conversion element with 850 people. Similarly to Figure 2, the curve Ll shown by the broken line shows the spectral sensitivity characteristics of the photoelectric conversion element when the thickness of the transparent electrode 4 is 550A, and the curve L2 shown by the dashed dotted line shows the spectral sensitivity characteristics of the photoelectric conversion element when the film thickness of the transparent electrode 4 is 850''A. The spectral sensitivity characteristics of each conversion element are shown.

この図によれば、第2図に示した反射スペクトラムの波
長特性にそれぞれ対応して、透明電極4の膜厚を55O
Aとした光電変換素子は4000A付近の比較的短波長
領域でその分光塵が向上しく第3図曲線L1参照)、透
明電極4の膜厚比較的長波長領域でその分光感度が向上
している(第3図曲線L2参照)ことがわかる。
According to this figure, the film thickness of the transparent electrode 4 is set to 55°, corresponding to the wavelength characteristics of the reflection spectrum shown in FIG.
The photoelectric conversion element designated as A has improved spectral dust in the relatively short wavelength region around 4000A (see curve L1 in Figure 3), and its spectral sensitivity has improved in the relatively long wavelength region with the thickness of the transparent electrode 4. (See curve L2 in Figure 3).

すなわち、使用する光源の光の強度が最大となる波長で
センサ面での反射が極小となる透明電極4の膜厚を求め
れば、光源の光’+!Ii度に適合した分光感度特性を
有する光電変換素子を得ることができる。
That is, if we find the thickness of the transparent electrode 4 that minimizes reflection on the sensor surface at the wavelength where the intensity of the light from the light source used is maximum, then the light from the light source '+! A photoelectric conversion element having spectral sensitivity characteristics suitable for Ii degrees can be obtained.

実際に、これら透明電極4の膜厚(これをdとする)と
反射率が極小となる波長(これをλとする)との間には
、 nl(λ)a=λ/4.(n、 cλ))”  = n
t(λ)ただし、n、(λ)およびn、(λ)は、波長
λにおける透明電極4および光導電体3としての非晶質
シリコンの屈折率。
Actually, there is a relationship between the film thickness of the transparent electrode 4 (denoted as d) and the wavelength at which the reflectance becomes minimum (denoted as λ): nl(λ)a=λ/4. (n, cλ))” = n
t(λ) where n, (λ) and n, (λ) are the refractive indexes of amorphous silicon as the transparent electrode 4 and photoconductor 3 at the wavelength λ.

という関係が成り立っており、可視の波長領域である4
000A〜7000Aの領域で該光電変換素子に良好な
分光感度を供する透明電極4の膜厚dの値は、先の製造
方法でも示した400A〜1000Aとなる。
The following relationship holds true, and the visible wavelength range is 4.
The value of the film thickness d of the transparent electrode 4 that provides good spectral sensitivity to the photoelectric conversion element in the range of 000A to 7000A is 400A to 1000A as shown in the above manufacturing method.

なお、上記実施例においては、酸化インジウムスズをタ
ーゲットとしたDCスパッタリング法によって透明電極
4を形成するようにしたが、他に例えば亜鉛(zn)、
カドミウム(Cd)、スズ(Sn)、インジウム(工n
)、アンチモン(sb)の単体および合金、あるいはこ
れらの酸化物を組成成分としたターゲットを用いたDC
スパッタリング法やRFスパッタリング法、さらには上
記材料を蒸着材料に用いた真空蒸着法などによって上記
透明電極4を形成してもよいことは勿論である。
In the above embodiment, the transparent electrode 4 was formed by a DC sputtering method using indium tin oxide as a target, but other materials such as zinc (zn),
Cadmium (Cd), tin (Sn), indium (N)
), antimony (sb) alone, alloys, or oxides of these targets.
Of course, the transparent electrode 4 may be formed by a sputtering method, an RF sputtering method, or a vacuum evaporation method using the above-mentioned material as a deposition material.

以上説明したように、この発明にかかる光電変換素子に
よれば、使用する光源の波長特性に良好に適合する分光
感度特性が得られることから、能率の良い駆動が図れる
とともに、特に原稿読取装置に実採用したような場合に
その読取精度の大幅な向上が期待できる。
As explained above, according to the photoelectric conversion element of the present invention, it is possible to obtain spectral sensitivity characteristics that suit well the wavelength characteristics of the light source used. When it is actually adopted, it is expected that the reading accuracy will be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にがかる光電変換素子の製造方法を段
階的に示す斜視図、第2図および第3図はそれぞれこの
発明Kかかる光電変換素子のセンサ而での反射スペクト
ルの波長特性、および分光感度特性を示す線図である。 1・・・絶縁基板、2・・・金属電極、3・・・光導電
体、4・・・透明電極 −39′ 第1図 第2図 第3図 濠   支(A)
FIG. 1 is a perspective view showing step-by-step a method for manufacturing a photoelectric conversion element according to the present invention, and FIGS. 2 and 3 respectively show the wavelength characteristics of the reflection spectrum of the photoelectric conversion element according to the present invention in a sensor, and FIG. 3 is a diagram showing spectral sensitivity characteristics. 1... Insulating substrate, 2... Metal electrode, 3... Photoconductor, 4... Transparent electrode -39' Figure 1 Figure 2 Figure 3 Moat Support (A)

Claims (3)

【特許請求の範囲】[Claims] (1)  絶縁基板上に所定形状に形成した金属電極の
上から光導電体として非晶質シリコンを着膜した後さら
にこの上面に透明電極を着膜して形成する光電変換素子
において、前記透明電極の膜厚を可視の波長領域で反射
の極小をもつ所定の厚さとしたことを特徴とする光電変
換素子。
(1) In a photoelectric conversion element formed by depositing amorphous silicon as a photoconductor on a metal electrode formed in a predetermined shape on an insulating substrate, and then depositing a transparent electrode on the upper surface of the amorphous silicon, the transparent A photoelectric conversion element characterized in that the film thickness of the electrode is set to a predetermined thickness that minimizes reflection in the visible wavelength region.
(2)前記所定の厚さは400A乃至1000Aである
特許請求の範囲第(1)項記載の光電変換素子。
(2) The photoelectric conversion element according to claim (1), wherein the predetermined thickness is 400A to 1000A.
(3) 前記透明電極として酸化インジウムスズ薄膜を
用いた特許請求の範囲第(2)項記載の光電変換素子。
(3) The photoelectric conversion element according to claim (2), wherein an indium tin oxide thin film is used as the transparent electrode.
JP57168137A 1982-09-27 1982-09-27 Photoelectric conversion element Pending JPS5957481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57168137A JPS5957481A (en) 1982-09-27 1982-09-27 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57168137A JPS5957481A (en) 1982-09-27 1982-09-27 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
JPS5957481A true JPS5957481A (en) 1984-04-03

Family

ID=15862516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57168137A Pending JPS5957481A (en) 1982-09-27 1982-09-27 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPS5957481A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544793A (en) * 1978-09-25 1980-03-29 Rca Corp Amorphous silicon solar battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544793A (en) * 1978-09-25 1980-03-29 Rca Corp Amorphous silicon solar battery

Similar Documents

Publication Publication Date Title
CN108627889B (en) Germanium substrate wide-spectrum infrared anti-reflection optical window
US4970376A (en) Glass transparent heater
JPS59143362A (en) Passivation film
US4957358A (en) Antifogging film and optical element using the same
JPS63265625A (en) Transparent conductive film having reflection preventive function
JP2001521201A (en) Multi-layer conductive anti-reflective coating
JPS5860701A (en) Reflection preventing film
JPS5957481A (en) Photoelectric conversion element
JPH0812302B2 (en) Method for producing titanium oxide thin film
JPS5910268A (en) Manufacture of photoelectric conversion element
KR0161371B1 (en) Liquid crystal light valve and its fabrication method
JPH0444260A (en) Manufacture of semiconductor device
JPH10268107A (en) Synthetic resin lens with antireflection film
US4240006A (en) Photoconductive layer and target structure for image pickup tube
JPS60189704A (en) Multi-layered oxide film having periodicity
JPS6212676B2 (en)
JPS59143373A (en) Manufacture of photoelectric conversion element
JPS62137873A (en) Manufacture of photoelectric conversion device
JPS5884457A (en) Long thin film reading device
US4445131A (en) Photoconductive image pick-up tube target
JPS5990966A (en) Optoelectric conversion element
JPS58142567A (en) Manufacture of image reading element
JPS6314872B2 (en)
JPH036868A (en) Photoelectric converter
JPH08262225A (en) Optical thin film