JPS5957174A - Method and apparatus for measuring output characteristic of solar battery - Google Patents

Method and apparatus for measuring output characteristic of solar battery

Info

Publication number
JPS5957174A
JPS5957174A JP57167592A JP16759282A JPS5957174A JP S5957174 A JPS5957174 A JP S5957174A JP 57167592 A JP57167592 A JP 57167592A JP 16759282 A JP16759282 A JP 16759282A JP S5957174 A JPS5957174 A JP S5957174A
Authority
JP
Japan
Prior art keywords
current
voltage
solar cell
circuit
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57167592A
Other languages
Japanese (ja)
Inventor
Toshio Yokota
利夫 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP57167592A priority Critical patent/JPS5957174A/en
Publication of JPS5957174A publication Critical patent/JPS5957174A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

PURPOSE:To achieve a quick measurement of output characteristic with limited error by selecting voltage and current ranges in the measuring system by performing a specified preliminary measurement to choose the optimum measuring range accurately for a short time. CONSTITUTION:When with voltage and current ranges set at max., voltage the same as that on the side of the cathode of an auxiliary power source 6 for forced short-circuiting is applied to a gate with a gate voltage control mechanism 4 to turn OFF an FET, the output terminal of a solar battery to be measured connected between terminals 7 and 9 is opened. Consequently, a fine current for forced opening in the opposite direction of the output current flows to the solar battery through a constant current source 5. At this point, when the voltage across output terminals of the solar battery is read with a voltage detector 10, the max. range voltage based on the open voltage is given irrelevant to internal resistance of the solar battery. Likewise, the max. range current is selected based on the short-circuit current. Thus, a quick measurement of the output characteristic of the battery can be performed with limited errors depending on the selection of the optimum range determined accurately for a short time by this preliminary measurement.

Description

【発明の詳細な説明】 本発明は太陽電池の出力特性測定方法及び装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for measuring output characteristics of a solar cell.

太陽光発電システムに用いる太陽電池は、大出力7得る
ためCニパネル型の太陽電池ユニットを多数直列または
並列に接続して構成されている。そして効率的に゛電力
を得るためには、太陽電池の出力特性を知ることが必要
であり、このため実際に太陽光が照射されている状態に
おいて太陽電池の出力電圧と出力電流の関係を測定する
ことが行なわれている。1ところで太陽電池の出力特性
の測定においては、通常その測定誤差が十0.5%以内
となることが要請されており、そして太陽電池はその構
成によって種々の異なる出力特性を有するものであるた
め、測定系において多数の測定レンジを設けておくこと
が必要である。
A solar cell used in a solar power generation system is constructed by connecting a large number of C double-panel type solar cell units in series or in parallel in order to obtain a large output. In order to obtain power efficiently, it is necessary to know the output characteristics of the solar cells, and for this reason, we measure the relationship between the output voltage and output current of the solar cells under actual sunlight irradiation. things are being done. 1. By the way, when measuring the output characteristics of solar cells, it is normally required that the measurement error be within 100.5%, and solar cells have various different output characteristics depending on their configuration. , it is necessary to provide a large number of measurement ranges in the measurement system.

従来においては、測定に係る太陽電池の出力特性を測定
者が予め勘によって推量し、その推量によって測定系の
測定レンジ全選定して測定2行なう方法、或いは、従来
の測定系(二おいては太−電池の内部抵抗に起因する誤
差を除去し得ないために厳密な開放電圧及び短絡電流音
測定できないところから、測定系の測定レンジ奮予め最
大レンジとした上で予備的な測定を行なって太陽電池の
開放電圧及び短絡電流の近傍値を測定し、そしてこの近
傍値をもとじしてコンピュータなどによるソフト計算に
よって実際には測定し得ない開放電圧及び短絡電流の概
略値を求め、得られた概略値をもとにして測定レンジを
選定した後にあらためて出力特性の測定を行なう方法な
どの方法により太陽電池の出力特性の測定が行なわれて
いる。
Conventionally, the measurer estimates the output characteristics of the solar cell to be measured in advance by intuition, selects all measurement ranges of the measurement system based on that estimate, and performs two measurements, or the conventional measurement system (in the second case, Since it is not possible to accurately measure the open circuit voltage and short circuit current sound because errors caused by the internal resistance of the thick battery cannot be removed, preliminary measurements were made by setting the measurement range of the measurement system to the maximum range in advance. The approximate values of the open circuit voltage and short circuit current of the solar cell are measured, and the approximate values of the open circuit voltage and short circuit current, which cannot actually be measured, are obtained by software calculation using a computer or the like based on these nearby values. The output characteristics of solar cells are measured by methods such as selecting a measurement range based on the approximate values obtained and then measuring the output characteristics again.

しかしなから前者の方法では、測定レンジの選定が相当
に大雑把であるため、必ずしも適正な測定レンジが選定
されるとは限らす、このため試行錯誤によって相当な労
力を要して適正な測定レンジを選定しなければならず、
或いは誤って小さテぎる測定レンジを選定することもあ
り、この場合には測定できないこととなる。一方後者の
方法では、開放電比及び短絡電流の概略値を求めるのに
コンピュータなどによるソフト計算ン行なわなければな
らないため、相当に手間を要する上測定系の構成が複雑
なものとなる。
However, in the former method, the selection of the measurement range is quite rough, and the appropriate measurement range cannot necessarily be selected. must be selected,
Alternatively, a measurement range that is too small may be selected by mistake, and in this case, measurement cannot be performed. On the other hand, in the latter method, software calculations using a computer or the like must be performed to obtain approximate values of the open circuit current ratio and short-circuit current, which requires considerable effort and requires a complicated configuration of the measurement system.

本発明は以上の如き事情に基いてなされたものであって
、その目的は、測定に係る太陽電池に最適の測定レンジ
を短時間で確実に選定することができて誤差の小さい測
定を迅速に行なうことができる太陽′@池の出力特性測
定方法を提供することにある。
The present invention has been made based on the above circumstances, and its purpose is to be able to reliably select the optimal measurement range for the solar cell to be measured in a short time, and to quickly perform measurements with small errors. The object of the present invention is to provide a method for measuring the output characteristics of a solar pond.

本発明の他の目的は、本発明方法を確実に達成すること
ができる太陽電池の出力特性測定装置を提供することに
ある。
Another object of the present invention is to provide a solar cell output characteristic measuring device that can reliably accomplish the method of the present invention.

以下本発明を具体的に説明する。The present invention will be specifically explained below.

本発明方法の一例においては、測定に係る太陽′電池に
太陽光を照射せしめて起電力が発生している状態とし、
まずはじめに太陽電池の開放電圧及び短絡電流の概略値
を予め測定する予備測定を行なう。即ちまず当該太陽電
池の出力端子間を開放状態とした上で、例えば定電流源
による強制開放用微小電流を当該太陽電池にその出力電
流が流れる方向とは逆方向に流してそのときにおける当
該太陽電池の出力端子間の電圧を、予め当該太陽電池の
出力端子間に接続された例えば電圧計(二よりその最大
レンジにおいて測定して開放電圧の概略値を得る。
In one example of the method of the present invention, the solar cell to be measured is irradiated with sunlight to generate an electromotive force,
First, preliminary measurements are performed to measure approximate values of the open-circuit voltage and short-circuit current of the solar cell. That is, first, the output terminals of the solar cell are opened, and then, for example, a small current for forced opening from a constant current source is passed through the solar cell in the opposite direction to the direction in which the output current flows. The voltage between the output terminals of the battery is measured in advance with, for example, a voltmeter (two voltmeters) connected between the output terminals of the solar cell at its maximum range to obtain an approximate value of the open-circuit voltage.

次いで前記太陽電池の出力端子間に電流計を接続して出
力端子間を短絡状態として出力電流を流した上で、強制
短絡用電流を当該太陽電池にその出力電流が流れる方向
と開方、向に強制的に流し、そのときにおける当該太陽
電池の出力端子間に流れる電流を前記電流計によりその
最大レンジにおいて測定して短絡電流のm略値を得る。
Next, an ammeter is connected between the output terminals of the solar cell, the output terminals are short-circuited, and an output current is caused to flow, and a forced short-circuit current is applied to the solar cell in the direction in which the output current flows, the opening direction, and the direction in which the output current flows. The current flowing between the output terminals of the solar cell at that time is measured using the ammeter at its maximum range to obtain the approximate value of the short circuit current m.

そして以上のようにして得られた開放電圧及び短絡電流
の概略値をもとにしてこの概略値を最大レベルとする電
圧レンジ及び電流レンジを選定し、この選定された電圧
レンジ及び電流レンジのもとで、次に太陽電池の出力端
子間に負荷を接続し、この負荷の抵抗値を例えば無限大
から零に変化せしめてその抵抗値に対応する出力端子間
の電圧及び出力端子間に流れる電流を測定して、以って
太陽電池の出力特性を得る。
Then, based on the approximate values of the open circuit voltage and short circuit current obtained as above, a voltage range and a current range that have the maximum level as these approximate values are selected, and the voltage range and current range that have been selected are also Next, connect a load between the output terminals of the solar cell, change the resistance value of this load from, for example, infinity to zero, and calculate the voltage between the output terminals and the current flowing between the output terminals corresponding to the resistance value. is measured, thereby obtaining the output characteristics of the solar cell.

以上のような方法によれば、予備測定において、太陽電
池の出力端子間を開放状態とした上で、さらに太陽電池
にその出力電流の流れる方向とは逆方向に強制開放用微
小電流を流して開放電圧の測定を行なうため、太陽電池
の内部抵抗に起因する誤差が相殺される上、実際の開放
電圧よりは少し大きめの値がその概略値として測定され
るため、この概略値を最大レベルとする電圧レンジを選
定することζ二より、実際の開放電圧の値をそのレンジ
内に確実に含む最適の′電圧レンジとすることができ、
そして太陽電池の出力端子間を短絡状態として出力電流
を流した上に、さらにこの出力電流と同方向に強制短絡
用電流7加えて流して短絡′電流の測定を行なうため、
太陽電池の内部抵抗に起因する誤差が相殺される上、実
際の短絡電流よりは少し大きめの値がその概略値として
測定されるため、この概略値Z最大レベルとする電流レ
ンジを選定することにより、実際の短絡電流の値をその
レンジ内に確実(=含む最適の電流レンジとすることが
できる。そしてこのような予備測定は機械的に短時間の
うちζ1行なうことができるので、測定糸における最適
測定レンジの選定を短時間で行なうことができる。この
ように予備測定において短時間でしかも確実C二最虐測
定しンレン選定することができるので、結局太陽電池の
出力特性の測定を誤差の小さいものとすることができし
かも5迷に行なうことができる。
According to the method described above, in preliminary measurements, the output terminals of the solar cell are opened, and then a minute current for forced opening is passed through the solar cell in the opposite direction to the direction in which the output current flows. Since the open-circuit voltage is measured, errors caused by the internal resistance of the solar cell are canceled out, and a value slightly larger than the actual open-circuit voltage is measured as an approximate value, so this approximate value is used as the maximum level. By selecting the voltage range for
Then, in addition to short-circuiting the output terminals of the solar cell and flowing an output current, a forced short-circuit current 7 is also flowed in the same direction as this output current to measure the short-circuit current.
Errors caused by the internal resistance of the solar cell are canceled out, and the approximate value measured is slightly larger than the actual short-circuit current, so by selecting the current range that takes this approximate value Z to its maximum level , the value of the actual short-circuit current can be ensured within that range (= the optimal current range).And since such a preliminary measurement can be mechanically performed in a short time ζ1, it is possible to The optimum measurement range can be selected in a short time.In this way, the preliminary measurement can be carried out in a short time and reliably to make the most accurate measurement of C, so that the output characteristics of the solar cell can be measured without error. It can be made small and can be carried out in five steps.

次に本発明の実施(=好適な装置の一例について説明す
る。
Next, an example of a suitable device for carrying out the present invention will be described.

本発明装置の一例においては、第1図に示すように、例
えばMOS型の電界効果トランジスタ(以下単にr F
ET Jと把子。)1のソースSに自己バイアス回路2
乞設けた、当該pg’riの多数を並列に接続してFE
’l’並列回路3を形成し、このB” E T並列回路
3の各F M ’I’ 1のゲートG側には、当該ゲー
トG側に供給する電圧を制御するゲート電圧制御機構4
を接続し、IT並列回路3の各111ET1のドレイン
D(ljl≦−は、当該ドレインD側に倣小定電流暑供
給テる定電流源5を接続し、FkA’並列回路3の各F
h、T1のソースS側には自己バイアス回路2を介して
ソース電流Isと同一方向に強制短絡用電流を流子強制
短絡用補助電源(以下単に「補助電源」と把子。)6の
陰極側を接続し、FET並列回路3の各FETIのドレ
インD側には一方の外部接続端子772接続し、l” 
E T並列回路3の各1”E’r1のソースS側には、
前記補助電源6を介して電流検出器8を接続し、さらに
この電流検出器8C二他方の外部接続端子9を接続し、
前記一方の外部接続端子7と他方の外部接続端子9との
間には電圧検出器10を接続し、この電圧検出器10及
び電流検出器8を共に電圧・電流測定機構11に接続す
る。12は外部接続端子7,9間に接続された電圧極性
検出器であり、外部接続端子7.9間の電圧の極性が変
化したときにこれを検出してこの検出信号によりわずか
な時間おくれをもってゲート電圧制御機構4によるF 
E T並列回路3の各FETxのゲートGへの゛電圧供
給を停止せしめるものである。補助電源6の陽極側はア
ース電位即ち零電位に保持されている。
In one example of the device of the present invention, as shown in FIG.
ET J and Hanako. )1 self-bias circuit 2 to source S
FE by connecting a large number of the pg'ri in parallel.
'l' parallel circuit 3 is formed, and on the gate G side of each F M 'I' 1 of this B''ET parallel circuit 3, there is a gate voltage control mechanism 4 that controls the voltage supplied to the gate G side.
The drain D (ljl≦-) of each 111ET1 of the IT parallel circuit 3 is connected to the constant current source 5 that supplies a small constant current to the drain D side, and the FkA' of each F of the parallel circuit 3 is connected.
h, on the source S side of T1, there is a cathode of a forced short circuit auxiliary power source (hereinafter simply referred to as "auxiliary power source") 6 which supplies a current for forced short circuit in the same direction as the source current Is through a self-bias circuit 2. one external connection terminal 772 is connected to the drain D side of each FETI in the FET parallel circuit 3, and
On the source S side of each 1"E'r1 of the E T parallel circuit 3,
A current detector 8 is connected via the auxiliary power supply 6, and the other external connection terminal 9 of the current detector 8C is connected,
A voltage detector 10 is connected between the one external connection terminal 7 and the other external connection terminal 9, and both the voltage detector 10 and the current detector 8 are connected to a voltage/current measuring mechanism 11. 12 is a voltage polarity detector connected between the external connection terminals 7 and 9, which detects when the polarity of the voltage between the external connection terminals 7 and 9 changes, and uses this detection signal to detect the change with a slight delay. F by gate voltage control mechanism 4
This is to stop the voltage supply to the gate G of each FETx in the ET parallel circuit 3. The anode side of the auxiliary power source 6 is held at ground potential, that is, zero potential.

前記電圧°電流測定機構11は、例えは電圧レンジ切換
機構と、゛電流レンジ切換機構と、検出電圧及び検出電
流乞自動的に読み取る自動記録読み収り機構とにより構
成されている。
The voltage/current measuring mechanism 11 is composed of, for example, a voltage range switching mechanism, a current range switching mechanism, and an automatic recording/reading mechanism that automatically reads the detected voltage and detected current.

前記にETIの各々C二股けた自己パイ“アス回路2は
例えば、バイアス抵抗21と補助バイアス抵抗22の直
列回路と、このバイアス抵抗21に並列に接続した、l
!’ETIのソース電流Isに対して順方向となるよう
多数直列に接続したダイオード群23とにより構成され
ている。
The self-biasing circuit 2 having each of the ETIs divided into two parts includes, for example, a series circuit of a bias resistor 21 and an auxiliary bias resistor 22, and a circuit connected in parallel to the bias resistor 21.
! It is composed of a large number of diodes 23 connected in series so as to be in the forward direction with respect to the ETI source current Is.

以上の構成によれば、測定(=係る太陽電池な外部接続
端子7及び9間に接続して、当該太陽電池に太陽光が照
射されて起電力か発生している状態において、まずはじ
めに、電圧レンジ切換機構及び電流レンジ切換機構によ
り電圧レンジ及び電流レンジを予め最大レンジに設定し
、ゲート電圧制御機構4によりl、1E Fi+並列回
路3の各FWTtのグー)G(二与えるゲート電圧を補
助電源6の陰極側と同じ電圧にして各F lu T 1
を丁べてオフ状態とすると、太陽電池の出力端子間がい
わば開放状態となり、定電流源5により太陽電池にその
出力電流とは逆方向に強制開放用微小電流が流れる。こ
のときの太陽電池の出力端子間電圧を′屯圧検出器10
を介して電圧・電流測定機構11により読み取り、電圧
レンジ切換機構によりその電圧値を最大レベルとする電
圧レンジに切換える。
According to the above configuration, measurement (= when the solar cell is connected between the external connection terminals 7 and 9 and the solar cell is irradiated with sunlight and an electromotive force is generated, the voltage The range switching mechanism and the current range switching mechanism set the voltage range and current range to the maximum range in advance, and the gate voltage control mechanism 4 sets the gate voltage of each FWTt of 1, 1E Fi + parallel circuit 3 to the auxiliary power source. Each F lu T 1 is set to the same voltage as the cathode side of 6.
When the output terminals of the solar cell are placed in an OFF state, the output terminals of the solar cell become in an open state, and a small current for forced opening flows through the solar cell from the constant current source 5 in the opposite direction to the output current. At this time, the voltage between the output terminals of the solar cell is measured by the pressure detector 10.
The voltage/current measuring mechanism 11 reads the voltage via the voltage/current measuring mechanism 11, and the voltage range switching mechanism switches the voltage range to the voltage range that makes the voltage value the maximum level.

そして次にゲート′重圧制御機構4によりFET並列回
路3の各I”ETIのゲートGに与えるゲート電圧乞例
えば階段状に増加せしめていくと、このゲート電圧の上
昇に伴ないソース電流isが増大すると共にドレイン′
電圧が減少していくが、補助′電源6によりソース電圧
が負になっているため、ドレイン電圧が零を越えて負極
性となってもソース電流isは流れ続けるので、電圧極
性検出器12によりドレイン電圧か零を越えて極性が変
わったこと全検出したときにおける太陽電池の出力端子
間に流れる電流を電流検出器8乞介して電圧・電流測定
機構11により読み収り、電流レンジ切換機構によりそ
の電流値を最大レベルとする電流レンジ(二切換える。
Then, when the gate voltage applied to the gate G of each I''ETI of the FET parallel circuit 3 is increased by the gate pressure control mechanism 4, for example, in a stepwise manner, the source current is increases as the gate voltage increases. At the same time, the drain′
The voltage decreases, but since the source voltage is made negative by the auxiliary power supply 6, the source current is continues to flow even if the drain voltage exceeds zero and becomes negative, so the voltage polarity detector 12 detects When it is detected that the drain voltage has exceeded zero and the polarity has changed, the current flowing between the output terminals of the solar cell is read by the voltage/current measuring mechanism 11 via the current detector 8, and the current is read by the current range switching mechanism. Current range (switch between two) with that current value as the maximum level.

このようにして電圧レンジ及び電流レンジの選定を完了
した後(=、再びゲート電圧制御機構4によi)1!”
12T並列回路3の各FET1のゲートGに与えるゲー
ト電圧を補助′電源6の陰極側と同じ電圧にして各1’
ET1のすべてをオフ状態として、太陽電池の開放電圧
、即ち太陽電池の出力電圧の最大値から実際の出力特性
の測定を開始する。この太陽電池の開放電圧の値は、定
゛屯流源5よりの強制開放微小電流のうち太陽電池を流
れる分が零となったとき、即ち電流検出器8により検出
される電流値が零のとき(−電圧検出器10により検出
される電圧値に等しくなる。
After completing the selection of the voltage range and current range in this way (=, again by the gate voltage control mechanism 4 i) 1! ”
The gate voltage applied to the gate G of each FET 1 of the 12T parallel circuit 3 is set to the same voltage as the cathode side of the auxiliary power supply 6, and each 1'
With all of ET1 turned off, measurement of the actual output characteristics is started from the open circuit voltage of the solar cell, that is, the maximum value of the output voltage of the solar cell. The value of the open circuit voltage of this solar cell is determined when the portion of the forced open minute current from the constant current source 5 that flows through the solar cell becomes zero, that is, when the current value detected by the current detector 8 becomes zero. When (- becomes equal to the voltage value detected by the voltage detector 10.

そしてゲート電圧制御機構4によりFET並列回路3の
各F1t’lJのゲー)Gに与える電圧を例えば階段状
に徐々に高くしていくが、その階段状の各ステップのゲ
ート電圧毎に電圧検出器10及び゛電流検出器8におけ
る検出電圧及び検出電流の値を電圧・電流測定機構11
により読み収り記録していく。即ちゲート電圧を1ステ
ップ高くすると、ソース電流Isが増加し、このソース
電流Isの増加によってドレイン電圧が降下するので、
いわばゲート電圧を1ステップ宛上げていくと)’kT
並列回路3の抵抗値か次第に小さくなり、このためゲー
ト電圧の各ステップ毎に記録した測定値は、太陽電池の
出力端子間に接続した負荷の抵抗値を無限大から零に変
えたときの出力特性に対応する。
Then, the gate voltage control mechanism 4 gradually increases the voltage applied to the gate of each F1t'lJ of the FET parallel circuit 3 in, for example, a stepwise manner. 10 and ``The voltage/current measurement mechanism 11 detects the values of the detected voltage and detected current in the current detector 8.
I read it and recorded it. That is, when the gate voltage is increased by one step, the source current Is increases, and this increase in source current Is causes the drain voltage to drop.
So to speak, if you increase the gate voltage by one step)'kT
The resistance value of the parallel circuit 3 gradually decreases, so the measured value recorded at each step of the gate voltage is the output when the resistance value of the load connected between the output terminals of the solar cell is changed from infinity to zero. Corresponds to the characteristics.

そしてゲート電圧が高(なって、ドレイン電圧が零にな
ると、太陽電池の出力端子間の電圧も零となり、このと
きに電流検出器8により検出される電流値が太陽電池の
実際の短絡電流の値に等しくなる。
When the gate voltage becomes high (and the drain voltage becomes zero, the voltage between the output terminals of the solar cell also becomes zero, and the current value detected by the current detector 8 at this time is equal to the actual short-circuit current of the solar cell). equals the value.

このように上記構成の装置によれば、太陽電池の開放電
圧を当該太陽電池に電流が流れていない状態において測
定できるので当該太陽電池の内部抵抗の如何(二よらず
確実な値を得ることができ、そして短絡電流を太陽電池
の出力端子間の電圧を完全(1零とした状態で測定でき
るので当該太陽電池の内部抵抗の如何によらず確実な値
を得ることができる。従って予備測定において最大レン
ジで開放゛電圧及び短絡電流の測定を行なっても得られ
る概略値の精度が高く、従って測定レンジの選定(二お
いて誤まりなく確実(二適正な測定レンジの選定を行な
うことができる。そして適正な測定レンジのもとで行な
う実際の出力特性の測定においても、太陽電池の完全な
開放状態における開放電圧の値から、太陽電池の完全な
短絡状態における短絡電流の値に至るまでの電圧・電流
特性を確実に測定することかできる。
In this way, according to the device with the above configuration, the open circuit voltage of the solar cell can be measured in a state where no current is flowing through the solar cell, so it is possible to obtain a reliable value regardless of the internal resistance of the solar cell. Since the short circuit current can be measured with the voltage between the output terminals of the solar cell completely set to 1 zero, a reliable value can be obtained regardless of the internal resistance of the solar cell.Therefore, in preliminary measurements, Even when measuring open circuit voltage and short circuit current at the maximum range, the approximate values obtained are highly accurate. .In actual measurement of output characteristics under an appropriate measurement range, the values range from the open circuit voltage value when the solar cell is completely open to the short circuit current value when the solar cell is completely short-circuited. It is possible to reliably measure voltage and current characteristics.

そして上述したようシニ出力特性の測定を高電圧側から
次第に電圧が下がるようにゲート電圧を制御して行なう
ことにより、FET並列回路3に流れる電流が小さい値
から次第に増加するように当該FgT並列回路3を動作
せしめるので、各FETIにラッシュ電流などの流れる
おそれがなく、各1’ETIの使用寿命を長いものとす
ることかできる。
As described above, by controlling the gate voltage so that the voltage gradually decreases from the high voltage side, the current flowing through the FET parallel circuit 3 increases gradually from a small value in the FgT parallel circuit. 3 is activated, there is no risk of rush current flowing through each FETI, and the service life of each 1'ETI can be extended.

因に、出、力特性の測定ン零電圧から次第く二重圧が高
くなるよう(二ゲート電圧を制御して行なう場合には、
lI’ET並列回路3に最初がら大きな電流を流子こと
となり、各FHTx+二大きなラッシュ電流が流れるお
それが大きく、場合によってはに’M’l’xが破壊し
て装置が使用不能となる事態が生ずる。
Incidentally, when measuring the output and force characteristics, the double voltage should be gradually increased from zero voltage (when controlling the double gate voltage,
A large current will be applied to the lI'ET parallel circuit 3 from the beginning, and there is a strong possibility that a large rush current will flow in each FHTx+2, and in some cases, the 'M'l'x may be destroyed and the device may become unusable. occurs.

そして各FETIのそのソースS側に設けた自己バイア
ス回路2において、バイアス抵抗21ニ並列にノース電
流Is の順方向となるようダイオード群23を設けて
いるため、自己バイアス回路2によるバイアス電圧の上
昇を抑制することがでさろので大きなンース電流Isが
流れても各FE71を良好に動作せしめることかでざる
In the self-bias circuit 2 provided on the source S side of each FETI, a diode group 23 is provided in parallel with the bias resistor 21 so that the north current Is is in the forward direction. Since it is impossible to suppress this, it is necessary to make each FE 71 operate well even if a large source current Is flows.

以上のように不発明方法・によれば、測定圧検る太陽電
池に最適の測定レンジを短時間で確実に選定することか
できて誤差の小さい測定を迅速に行なうことかでさ、そ
して不づろ明装置によれば本発明方法を確実に達成する
ことができる。
As described above, according to the uninvented method, it is possible to reliably select the optimal measurement range for the solar cell to be tested for measurement pressure in a short time, and quickly perform measurements with small errors. The method of the present invention can be reliably achieved using the Zuromei apparatus.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一例を示す説明用ブロック回路図
である。 l・・・電界効果トランジスタ 2・・・自己バイアス回路 3・・・FET並列回路2
1・・・バイアス抵抗 22・・・補助バイアス抵抗  23・・・ダイオード
群4・・・ゲート電圧制御機構 5・・・定電流源6・
・・強制短絡用補助電源 7.9・・・外部接続端子  8・・・電流検出器10
・・・電圧検出器    11・・・電圧・電流測定機
構12・・・電圧極性検出器 代理人 弁理士 大 井 正 彦
FIG. 1 is an explanatory block circuit diagram showing an example of the device of the present invention. l...Field effect transistor 2...Self bias circuit 3...FET parallel circuit 2
1... Bias resistance 22... Auxiliary bias resistance 23... Diode group 4... Gate voltage control mechanism 5... Constant current source 6.
...Auxiliary power supply for forced short circuit 7.9...External connection terminal 8...Current detector 10
... Voltage detector 11 ... Voltage/current measuring mechanism 12 ... Voltage polarity detector Agent Patent attorney Masahiko Oi

Claims (1)

【特許請求の範囲】 1)測定に係る太陽電池の開放電圧及び短絡電流の概略
値を予め測定する予備測定を行ない、この予備測定によ
って得られた前記概略値に従って測定系の電圧レンジ及
び電流レンジを選定し、この選定された電圧レンジ及び
電流レンジのもとて太陽′電池の出力特性を測定する方
法であって、前記予備測定は、はじめに開放状態(=お
いて太陽電池にその出力電流とは逆方向の強制開放用微
小電流を流してそのときの当該太陽電池の両端電圧を測
定して開放電圧の概略値を得、次いで短絡状態において
太陽電池にその出力電流と同方向の強制短絡用電流を出
力゛電流に加えて流してそのときの当該太陽電池に流れ
る゛電流を測定して短絡電流の概略値を得る測定である
ことを特徴とする太陽電池の出力特性測定方法。 2)そのソース側に自己バイアス回路を設けた電界効果
トランジスタの多数を並列に接続した電界効果トランジ
スタ並列回路と、こめ電界効果トランジスタ並列回路の
ゲート側に接続した当該ゲート側C二与える電圧を制御
するゲート電圧制御機構と、前記゛龜界効果トランジス
タ並列回路のドレイン側(二接続した微小定電流を供給
する定電流源と、前記電界効果トランジスタ並列回路の
ソース側に接続した強制短絡用補助電源と、W1記電界
効果トランジスタ並列回路のドレイン側、及び前記強制
短絡用補助電源を介してソース側にそれぞれ接続した一
対の外部接続端子と、この一対の外部接続端子間の電圧
を検出する゛電圧検出器と、前記一対の外部接続端子間
に流れる電流を検出する電流検出器と、多数の測定レン
ジを有し、前記電圧検出器及び電流検出器よりの検出信
号を受けて電圧・電流値を測定する電圧・電流測定機構
とを具えて成ることを特徴とする太陽電池の出力特性測
定装置。
[Claims] 1) A preliminary measurement is performed in which approximate values of the open circuit voltage and short circuit current of the solar cell to be measured are measured in advance, and the voltage range and current range of the measurement system are determined in accordance with the approximate values obtained by this preliminary measurement. is selected, and the output characteristics of the solar cell are measured under the selected voltage range and current range, and the preliminary measurement is performed by first setting the solar cell in an open state (= its output current and A small current for forced opening in the opposite direction is applied, the voltage across the solar cell is measured at that time to obtain an approximate value of the open voltage, and then a forced shorting current is applied to the solar cell in the same direction as its output current in a short circuit state. A method for measuring the output characteristics of a solar cell, characterized in that the measurement is performed to obtain an approximate value of short-circuit current by passing a current in addition to the output current and measuring the current flowing through the solar cell at that time. 2) A field effect transistor parallel circuit in which a large number of field effect transistors each having a self-bias circuit provided on the source side are connected in parallel, and a gate voltage that controls the voltage applied to the gate side C2 connected to the gate side of the field effect transistor parallel circuit. a control mechanism, a constant current source supplying a minute constant current connected to the drain side of the parallel field effect transistor circuit, an auxiliary power source for forced shorting connected to the source side of the parallel field effect transistor circuit, W1; A pair of external connection terminals connected to the drain side of the field-effect transistor parallel circuit and the source side via the forced shorting auxiliary power supply, and a voltage detector for detecting the voltage between the pair of external connection terminals. , a current detector that detects the current flowing between the pair of external connection terminals, and a voltage that has multiple measurement ranges and measures voltage and current values in response to detection signals from the voltage detector and current detector. - A solar cell output characteristic measuring device characterized by comprising a current measuring mechanism.
JP57167592A 1982-09-28 1982-09-28 Method and apparatus for measuring output characteristic of solar battery Pending JPS5957174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57167592A JPS5957174A (en) 1982-09-28 1982-09-28 Method and apparatus for measuring output characteristic of solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57167592A JPS5957174A (en) 1982-09-28 1982-09-28 Method and apparatus for measuring output characteristic of solar battery

Publications (1)

Publication Number Publication Date
JPS5957174A true JPS5957174A (en) 1984-04-02

Family

ID=15852612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57167592A Pending JPS5957174A (en) 1982-09-28 1982-09-28 Method and apparatus for measuring output characteristic of solar battery

Country Status (1)

Country Link
JP (1) JPS5957174A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192884U (en) * 1984-11-22 1986-06-16
EP2282221A3 (en) * 2009-08-05 2012-06-27 Wagner & Co. Solartechnik GmbH Device and evaluation method for solar units
FR3067120A1 (en) * 2017-05-30 2018-12-07 Timmi Floume METHOD AND DEVICE FOR MANAGING A PHOTOVOLTAIC SYSTEM

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192884U (en) * 1984-11-22 1986-06-16
EP2282221A3 (en) * 2009-08-05 2012-06-27 Wagner & Co. Solartechnik GmbH Device and evaluation method for solar units
FR3067120A1 (en) * 2017-05-30 2018-12-07 Timmi Floume METHOD AND DEVICE FOR MANAGING A PHOTOVOLTAIC SYSTEM

Similar Documents

Publication Publication Date Title
US5757192A (en) Method and apparatus for detecting a bad cell in a storage battery
US6556019B2 (en) Electronic battery tester
TWI405984B (en) Diagnostic circuit and method therefor
US6163156A (en) Electrical connection for electronic battery tester
US6304087B1 (en) Apparatus for calibrating electronic battery tester
KR940701546A (en) Method and device for charging and testing the battery
US20040158418A1 (en) Battery state diagnosing device and battery state diagnosing method
JP2642512B2 (en) Semiconductor integrated circuit
US11774470B2 (en) Load detection system and load detection method thereof
JP2000206176A (en) Burn-in apparatus
US3997834A (en) State-of-charge indicator for zinc-mercuric oxide primary cells
JP4012657B2 (en) Solar cell characteristic measurement device
JPH10221418A (en) Device and method for judging deterioration of battery
JPH1131829A (en) Method for deciding go/no-go of solar battery
US3659199A (en) Rectifier test method
JPS59178376A (en) Method and device for measuring state of discharge of battery
US3307101A (en) Storage battery condition indicator with temperature and load current compensation
JPS5957174A (en) Method and apparatus for measuring output characteristic of solar battery
JPH0645909Y2 (en) IC test equipment
JPH0611510Y2 (en) Voltage applied current measuring device
Okazaki et al. Measurement of short circuit current for low internal resistance batteries
Timergalina et al. Application of new signal processing methods for electrochemical power source relaxation modes detection
CN115902567B (en) High-voltage transistor test circuit and system
JPS5823590B2 (en) Sokutei Souchi
JP2972291B2 (en) Inspection method of diode characteristics