JPS5956516A - Method for adjusting flow rate of cooling water - Google Patents

Method for adjusting flow rate of cooling water

Info

Publication number
JPS5956516A
JPS5956516A JP16633282A JP16633282A JPS5956516A JP S5956516 A JPS5956516 A JP S5956516A JP 16633282 A JP16633282 A JP 16633282A JP 16633282 A JP16633282 A JP 16633282A JP S5956516 A JPS5956516 A JP S5956516A
Authority
JP
Japan
Prior art keywords
pressure
water supply
water
feed water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16633282A
Other languages
Japanese (ja)
Other versions
JPS6249126B2 (en
Inventor
Masaji Matsumoto
正次 松本
Hideo Katayama
秀夫 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16633282A priority Critical patent/JPS5956516A/en
Publication of JPS5956516A publication Critical patent/JPS5956516A/en
Publication of JPS6249126B2 publication Critical patent/JPS6249126B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To optimize the flow rate of feed water and to economize driving power consumtion by changing the number of revolutions of a feed water pump which supplies cooling water in compliance with the temp. of feed water and controlling the flow rate of the water in accordance with the change in the temp. CONSTITUTION:A titled method consists of a stage for detecting the temp. and pressure for feed water, a stage for calculating the pressure of the feed water from the temp. signal thereof by a calculator 20 for determining pressure, a stage for inputting the calculated pressure signal of the feed water and the above-mentioned detection signal for the pressure of the feed water to a pressure controller 28 and calculating the pressure deviation between both and a stage for controlling the number of revolutions of a feed water pump 4. The detection of the above-described temp. and pressure is accomplished by a water temp. detector 18 and a water pressure detector 22 provided on the discharge side of the pump 4. The flow rate of feed water is optimized by the above-mentioned method and driving power consumption is economized.

Description

【発明の詳細な説明】 4・発明は冷却水流h1調整方法に係り、!持に給水ポ
ンプの消費動力を低減できる方法に関する。
[Detailed Description of the Invention] 4. The invention relates to a cooling water flow h1 adjustment method, and! This invention relates to a method that can reduce the power consumption of water pumps.

一般に製造工場においては美大な量の冷却水が使用され
ている。従来の冷却給水系統の1例として@1図の製鉄
圧延工場について説明する。給水槽2の水は給水ポンプ
4により昇圧され、給水管6を経て、自動水114節弁
8あるいは手動水!調節弁10で刺部され冷却器12に
給水され、戻水管14.冷却塔16′!i−経て循環し
ている。
Generally, a huge amount of cooling water is used in a manufacturing factory. As an example of a conventional cooling water supply system, a steel rolling mill shown in Fig. 1 will be explained. The water in the water tank 2 is pressurized by the water pump 4, passes through the water pipe 6, and then is connected to automatic water 114 valve 8 or manual water! Water is supplied to the cooler 12 through a control valve 10, and a return pipe 14. Cooling tower 16'! circulating through i-.

このよう々冷却給水系統において、従来次のよう々問題
点があった。
Conventionally, such cooling water supply systems have had the following problems.

(イ)給水量が減少すると不必要にポンプ出口の圧力が
一ヒ昇し、エネルギーの無駄を生じる。後記第6図のポ
ンプ特性図に示される如く、給水量の減少によって給水
圧が上昇し、給水蓄当りの′電力費が増加する。
(a) When the amount of water supplied decreases, the pressure at the pump outlet increases unnecessarily, resulting in wasted energy. As shown in the pump characteristic diagram of FIG. 6, which will be described later, the water supply pressure increases due to the decrease in the amount of water supply, and the electric power cost per unit of stored water increases.

(ロ)給水温度が低下すると、必要とする給水量は減少
する。冷却水給水装置の給水量と給水圧の股引は夏季の
最も高くなる給水温度をもとにして々ネれているので、
夏季以外の季節においては、給水温度が低いため、真に
必要な給水iはこの股引値よりも少なくカリ、また真に
必要々給水圧力も給水量の減少に伴って低く々る。従っ
て夏季以外においてけポンプ出口の圧力が不必要に一ト
眉する傾向がある。
(b) When the water supply temperature decreases, the required amount of water supply decreases. The water supply amount and water pressure of the cooling water supply system are adjusted based on the highest water supply temperature in the summer, so
In seasons other than summer, the water supply temperature is low, so the truly necessary water supply i is less than this cutoff value, and the truly necessary water supply pressure also decreases as the amount of water supply decreases. Therefore, the pressure at the pump outlet tends to fluctuate unnecessarily except in summer.

一般に製鉄所には溶鉱炉、転炉をはじめ各種加熱炉が多
数あり、これらの装置ll熱から保護するための@1図
の如き冷却給水系統が装置毎IC設けである。
Generally, a steelworks has a large number of various heating furnaces including blast furnaces and converters, and each device is equipped with a cooling water supply system as shown in Figure 1 to protect these devices from heat.

各装置には冷却用配管とバルブが取付けらhでいるが、
バルブの数が無数にある几め1m!8−変化による細か
い水量調整ができず5年間を通して一定のバルブ開度で
冷却水を使用していることが多い。
Each device is equipped with cooling piping and valves,
1m long with an infinite number of valves! 8- It is not possible to finely adjust the amount of water due to changes, and cooling water is often used at a constant valve opening for five years.

オた設備によっては流量調節弁を設けて流量を調節した
りあるいは人手によりバルブ金開閉して流量を調節[7
ているが、工場全体紮みると冷却給水系統の流量管理は
できているとは言えない。
Depending on the equipment, a flow control valve may be installed to adjust the flow rate, or the flow rate may be adjusted manually by opening and closing the valve [7]
However, when looking at the entire factory, it cannot be said that the flow rate of the cooling water supply system is managed properly.

本発明の目的は上記従来技術の問題点ケ解決し。The object of the present invention is to solve the problems of the prior art described above.

給水温度によって自動的に流…゛ゲm14節きる冷却水
流量調整方法全提供するにある。
We provide a complete method for adjusting the flow rate of cooling water that automatically adjusts the flow rate according to the temperature of the water supply.

本発明の要旨とするところは次のとおりである。The gist of the present invention is as follows.

す々わち、供給する冷却水温に適した流量調整方法にお
いて、給水ポンプ吐出側に設けられた水温検知器と水圧
検知器にて給水する温度と圧力を検知する段階と、前書
旧の知(7た給水温U (>(+i′を圧力決定演9器
V受け[)[1配給水温度に適し斤給水用カケ演算する
段階と、前記検知した給水圧力信号と前記演19給水圧
力Gi ””)を圧力制御器に蛍は両者の圧力偏差′(
r締出する段階と、前記圧力偏差信号を回転数制御装置
に受は前記給水ポンプの回転数を制御する段階と、ゲ有
]7て成ること?%徴とする冷却水離船調整方法である
In other words, in the flow rate adjustment method suitable for the supplied cooling water temperature, there are two steps: detecting the temperature and pressure of the water supply using a water temperature detector and a water pressure detector installed on the discharge side of the water supply pump, and (7) Feed water temperature U (>``'') is the pressure controller, and the firefly calculates the pressure deviation ′(
and a step of receiving the pressure deviation signal to a rotation speed control device to control the rotation speed of the water supply pump. This is a cooling water departure adjustment method based on the % characteristic.

本発明の詳細を実施例とその図面により説明する。第2
図17を第1図で示(7た従来の冷却給水系統に新たに
1点鎖線で囲った自動調節機能?付加した本発明の冷却
給水系統図である。すなわち、給水ポンプ4の吐出側の
給水管6に設けた水温検知器18によって給水隠匿全検
知し、これにより必要な給水圧力P ?次の(1)式か
ら圧力決足演算器20ニヨって演算決足する。
The details of the present invention will be explained with reference to examples and drawings thereof. Second
17 is a diagram of the cooling water supply system of the present invention in which an automatic adjustment function is newly added to the conventional cooling water supply system shown in FIG. The water temperature detector 18 installed in the water supply pipe 6 detects the hidden water supply, and the necessary water supply pressure P? is calculated by the pressure calculation unit 20 from the following equation (1).

ただ1.P:給水圧力(kg/crl )te:給水温
度(冷却水温度)(℃) PO:最小必要給水圧力   (℃) K hm:m冷却器の最高給水温度時の給水装置全体の圧力
損失(ky、/cJ ) Q:m冷却器の抜熱皐(Kcal /h )qm:m冷
却器の最高給水温度時の給水歇(kg/hl Te:m冷却器における被冷却物の冷却器入口温度(℃
) Td:m冷却器における被冷却物の冷却器出口温度(℃
) Arm冷却器の伝熱面P*(イ) Kpm冷却器の熱貫流率(Kcal /rr?h℃)な
おm冷却器とけその冷却水系統の冷却器の中で、それぞ
れの給水m度において最も高い給水圧力を必要とする冷
却器のことである。
Just 1. P: Water supply pressure (kg/crl) te: Water supply temperature (cooling water temperature) (℃) PO: Minimum required water supply pressure (℃) K hm: Pressure loss of the entire water supply system at the maximum water supply temperature of m cooler (ky , /cJ) Q: Heat removal rate of the m cooler (Kcal/h) qm: Water supply interval at the maximum water supply temperature of the m cooler (kg/hl) Te: Cooler inlet temperature of the object to be cooled in the m cooler ( ℃
) Td:m Cooler outlet temperature of the object to be cooled in the cooler (°C
) Heat transfer surface P* of the Arm cooler This is the cooler that requires the highest water supply pressure.

一方、給水ポンプ4の吐出(111]の給水管6に設け
た水圧検知器22Mよって給水圧力を検知[7、演1!
El、た給水圧力どの圧力偏差全圧力制御器24におい
て算出し、この圧力偏差信号を回転数制御装置26にて
変換1.て給水ポンプ4のモータ28の回転数ケ制御す
る。かくして第3灰に示す如く。
On the other hand, the water pressure detector 22M installed in the water supply pipe 6 at the discharge (111) of the water supply pump 4 detects the water supply pressure [7, Performance 1!
The total pressure controller 24 calculates the pressure deviation of El, water supply pressure, etc., and this pressure deviation signal is converted by the rotation speed control device 26. The number of revolutions of the motor 28 of the water supply pump 4 is controlled. Thus, as shown in the third ash.

給水温度π適1.たポンプ回転数、吐出圧力で給水ポン
プ’ 4 )1軍転ができる。
Supply water temperature π suitable 1. The water supply pump'4) can be turned around depending on the pump rotation speed and discharge pressure.

実施例 第2図f示す冷却給水系統を有する製鉄圧延工場におい
て1本発明法πより給水温度、圧カケ検知し、給水ポン
プの回転数を制御して冷却水用調整ケ行ったが、冷却水
系統の仕様は次のとおりである。
Example 2 In a steel rolling factory with a cooling water supply system shown in Fig. 2f, the temperature and pressure of the water supply were detected using the method π of the present invention, and the rotational speed of the water pump was controlled to adjust the cooling water. The specifications of the system are as follows.

最高給水温度        32℃ 給水ポンプ最大吐出量  1450 d/h給水ポンプ
最犬揚程     42m 冷却器の台数        36台 冷却器の13台Cま冷却水の皺を自動調節するため自動
調節弁ゲ有しているが、残りの23台の冷7al器は投
11効果を考慮1.て自動調節弁を有していない。
Maximum water supply temperature: 32℃ Maximum discharge rate of water supply pump: 1450 d/h Maximum head of water supply pump: 42m Number of coolers: 36 units 13 units of coolers have an automatic control valve to automatically adjust wrinkles in the cooling water However, the remaining 23 cold 7AL units took into consideration the effect of 1. It does not have an automatic control valve.

この実施例の成績を第4〜8図の線図において。The results of this example are shown in the diagrams of Figures 4-8.

冷却給水温度による自動調節機能を有(2ない従来例と
比較して示し几。なお第4〜8図において。
It has an automatic adjustment function based on the temperature of the cooling water supply (shown in comparison with a conventional example).

線Aは本発明の実施例、線Y3に従来例ケ示1−5てい
る。
Line A shows the embodiment of the present invention, and line Y3 shows the conventional examples 1-5.

第4図は給水温度と給水量との関係を示すもので1本発
明例と従来例の給水量の差は自動調節弁k ’4にしな
い冷却器圧おいて1本発明?適用lまた効果により過剰
な冷却水が流れなく々つたためである。
Figure 4 shows the relationship between the water supply temperature and the water supply amount.1 The difference in the water supply amount between the example of the present invention and the conventional example is the difference in the cooler pressure without using the automatic control valve k'4. This is also due to the fact that excess cooling water did not flow due to the application l effect.

第5図は給水温度とポンプ消費動力との関係を示すもの
で、低温側において本発明例のポンプ消費動力は署[2
く減少し、本発明の自動制御の効果の大きいことが分る
FIG. 5 shows the relationship between the water supply temperature and the pump power consumption. On the low temperature side, the pump power consumption of the example of the present invention is equal to
It can be seen that the automatic control of the present invention is highly effective.

第6図は給水温度とポンプ吐出圧力すなわち給水圧力と
の関係を示すもので、給水温度によって圧力を変更する
本発明例は従来例より著しく低圧となっている。
FIG. 6 shows the relationship between the water supply temperature and the pump discharge pressure, that is, the water supply pressure, and the example of the present invention in which the pressure is changed depending on the temperature of the water supply has a significantly lower pressure than the conventional example.

第7図は給水温度の月平均の季節推移全示し。Figure 7 shows all the monthly average seasonal trends in water supply temperature.

第8図は月平均のポンプ所要動力の推移を示すもので、
本発明例び)消費型、力Vま従来例に比17年平均で9
5 KW ’9・節減1−、%にその効果に寒冷期にお
いて著しいことを示している。
Figure 8 shows the trends in monthly average pump power requirements.
Example of the present invention) Consumption type, power V is 9 on average for 17 years compared to conventional example
5 KW '9・Reduction of 1-% shows that the effect is remarkable in the cold season.

本発明&−’ 、、t、’、 %’2実施例からも明ら
かな如く、冷却水の給水量(i′1において、給水温度
によって、給水ポンプの回転In変化をせ、給水比カケ
調節することによって給水ポンプの消費電力を大幅に節
減する効果をあげることができた。
As is clear from the present invention &-',,t,',%'2 Examples, in the amount of cooling water supplied (i'1), the rotation In of the water supply pump is changed depending on the temperature of the water supply, and the water supply ratio is adjusted. By doing so, we were able to significantly reduce the power consumption of the water pump.

本発明法は製鉄工場以外の冷却にも広く適用できるのは
勿論であるが、製鉄関係設備においても次の如く広く応
用が可能である。
It goes without saying that the method of the present invention can be widely applied to cooling other than steel factories, but can also be widely applied to iron manufacturing related equipment as described below.

(イ) 圧延機のロール冷却水 (ロ) 熱間圧延機におけるストIJツブの冷却水(ハ
)海水全1史用する次の部門の冷却水酸巣発生工場 発電所 高炉炉底 に)高炉ステーブの冷却水
(b) Roll cooling water for rolling mills (b) Cooling water for hot rolling mills (c) Cooling water for the following departments that uses seawater for the entire time stave cooling water

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷却給水系統図、第2図は本発明の冷却
給水系統図、第3図は本発明の給水gA度と給水ポンプ
回転数および給水ポンプ吐出圧力との関係を示す線図、
第4図は給水温度と給水量との関係を示す線、第5図は
給水温度とポンプ消費動力との関係を示す線図−1−第
6図は給水温度とポンプ吐出力との関係を示す線図、第
7図Cゴ年間の給水m[の変化を示す線図、第8図は年
間における月平均ポンプ消費動力の変化を示す線図であ
る。 4・・・給水ポンプ、     6・・・給水管。 12・・・冷却器、     18・・・水温検知器。 20・・・圧力決定演算器、22・・・水圧検知器、2
4・・・圧力制御器、   26・・・回転数制御装置
。 代理人 中 路 武 雄 ψ 111!!「、0− ■朽ハト伽懺り 圭¥bハト回暮嘉き 第4図 遥々ε1ノ1(1廣 (0c) 給本4廣(’C1 第6図 蛤A< ;茎皮(0c) 瑚4岬ばと
Figure 1 is a conventional cooling water supply system diagram, Figure 2 is a cooling water supply system diagram of the present invention, and Figure 3 is a diagram showing the relationship between the water supply gA degree, the water pump rotation speed, and the water pump discharge pressure of the present invention. ,
Figure 4 is a line showing the relationship between feed water temperature and water supply amount, and Figure 5 is a line showing the relationship between feed water temperature and pump power consumption.Figure 1-6 is a line showing the relationship between feed water temperature and pump discharge force. Figure 7 is a diagram showing changes in annual water supply m[, and Figure 8 is a diagram showing changes in monthly average pump power consumption over the year. 4... Water supply pump, 6... Water supply pipe. 12...Cooler, 18...Water temperature detector. 20...Pressure determination calculator, 22...Water pressure detector, 2
4... Pressure controller, 26... Rotation speed control device. Agent Takeo Nakaji ψ 111! ! ", 0- ) Go 4 Misakibato

Claims (1)

【特許請求の範囲】[Claims] (1)供給する冷却水温に適した流計調整方法においで
、給水ポンプ吐出側に設けられた水温検知器と水IE検
知器にて給水する温度と圧力を検知する段階と、前記検
知した給水m開信号を圧力決定演算器に受は前記給水温
度に適した給水圧力を演W′する段階と、前記検知した
給水圧力信号と前記演算給水圧カイA号を圧力1tNI
御器に受は両者の圧力偏差な−J)Illする段階と、
^[(配圧力偏差信号を回転数制御装置に受は前Ae給
水ポンプの回転砂を制御する段]潜と1 會イ1°して
成ること?特徴と−する冷却水流h1調整方θミ。
(1) A flow meter adjustment method suitable for the supplied cooling water temperature, which includes the steps of: detecting the temperature and pressure of the water supply using a water temperature detector and a water IE detector provided on the discharge side of the water supply pump; The m open signal is sent to the pressure determining calculator, which calculates the water supply pressure suitable for the water supply temperature, and the detected water supply pressure signal and the calculated water supply pressure A are converted to a pressure of 1 tNI.
The pressure difference between the two is J) Ill stage;
^ [(The stage where the distribution pressure deviation signal is sent to the rotational speed control device is the stage that controls the rotating sand of the front Ae water supply pump] What is the difference between 1° and 1°? Characteristics - Cooling water flow h1 adjustment method θ mi .
JP16633282A 1982-09-24 1982-09-24 Method for adjusting flow rate of cooling water Granted JPS5956516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16633282A JPS5956516A (en) 1982-09-24 1982-09-24 Method for adjusting flow rate of cooling water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16633282A JPS5956516A (en) 1982-09-24 1982-09-24 Method for adjusting flow rate of cooling water

Publications (2)

Publication Number Publication Date
JPS5956516A true JPS5956516A (en) 1984-04-02
JPS6249126B2 JPS6249126B2 (en) 1987-10-17

Family

ID=15829396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16633282A Granted JPS5956516A (en) 1982-09-24 1982-09-24 Method for adjusting flow rate of cooling water

Country Status (1)

Country Link
JP (1) JPS5956516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834661B2 (en) * 2004-05-06 2011-12-14 ライカ ジオシステムズ アクチェンゲゼルシャフト Measure, level measuring device and measure using the Measure
TWI460030B (en) * 2010-01-29 2014-11-11 Toshiba Mitsubishi Elec Inc Pressure control device in the rolling line, water injection control method, water injection control program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465314U (en) * 1990-10-18 1992-06-05

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847501U (en) * 1971-10-06 1973-06-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847501U (en) * 1971-10-06 1973-06-22

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834661B2 (en) * 2004-05-06 2011-12-14 ライカ ジオシステムズ アクチェンゲゼルシャフト Measure, level measuring device and measure using the Measure
TWI460030B (en) * 2010-01-29 2014-11-11 Toshiba Mitsubishi Elec Inc Pressure control device in the rolling line, water injection control method, water injection control program
US9180505B2 (en) 2010-01-29 2015-11-10 Toshiba Mitsubishi-Electric Industral Systems Corporation Water injection controller, water injection control method, and water injection control program for rolling lines

Also Published As

Publication number Publication date
JPS6249126B2 (en) 1987-10-17

Similar Documents

Publication Publication Date Title
CN106168404A (en) The secondary pump air-conditioner water system flow-changing control method of temperature difference correction and device
JP5274222B2 (en) Heat source control system for air conditioning equipment
US11167332B2 (en) Cooling section with coolant flows which can be adjusted using pumps
CN105543443A (en) Antisurge control system of converter gas pressuring machine and method
CN109654680B (en) Robustness-enhanced air conditioner chilled water heat exchanger primary side water pump control method
CN106686944A (en) Liquid cooling frequency converter heat dissipation system
JPH04165242A (en) Variable water flow control method in aqueous heat source air conditioner
JPS5956516A (en) Method for adjusting flow rate of cooling water
US20120085107A1 (en) Heat transfer processes and equipment for industrial applications
CN106996713A (en) A kind of constant temperature cooperative control method of many water cooling towers of multi fan
JPH0131877Y2 (en)
US3635041A (en) Heating and cooling refrigeration apparatus
JP3688694B2 (en) Air conditioning system
JPH0634236A (en) Heat pump for sewage heat source
JP2957781B2 (en) Control method of indoor electric valve in air conditioner
JP2003207190A (en) Air conditioning system
JPH0145005Y2 (en)
CN210772978U (en) Novel cooling device
KR102624688B1 (en) Cooling water bypass apparatus for maintaining the vacuum degree of the condenser and controlling method of the same
JPS59560Y2 (en) Liquid supply device using pure fluid control element
JPH07174436A (en) River water utilizing heat recovery system
JP3073090B2 (en) Mixing ratio control method just before re-watering in instantaneous water heater
CN209744608U (en) Water inlet treatment device of air conditioner water system
JPH0694269A (en) Method of measuring concentration of ice in ice slurry
JPS5919257B2 (en) How to control the flow rate of a water cooler/heater pump