JPS5956400A - Neutral atomic beam generator - Google Patents

Neutral atomic beam generator

Info

Publication number
JPS5956400A
JPS5956400A JP16740382A JP16740382A JPS5956400A JP S5956400 A JPS5956400 A JP S5956400A JP 16740382 A JP16740382 A JP 16740382A JP 16740382 A JP16740382 A JP 16740382A JP S5956400 A JPS5956400 A JP S5956400A
Authority
JP
Japan
Prior art keywords
ion
neutral
ions
electrode
atomic beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16740382A
Other languages
Japanese (ja)
Other versions
JPS6331920B2 (en
Inventor
御石 浩三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP16740382A priority Critical patent/JPS5956400A/en
Publication of JPS5956400A publication Critical patent/JPS5956400A/en
Publication of JPS6331920B2 publication Critical patent/JPS6331920B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高速の中性原子ビームを発生させる装置に関す
る、この種の装置は、中性原子ビームを試料に当て、試
料から放出される2次イオンについて質量分析等を行う
とか、試料面を削除する等の場合に原子ビーム源として
用いられるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for generating a high-speed neutral atomic beam. This type of apparatus applies a neutral atomic beam to a sample and performs mass spectrometry, etc. on secondary ions emitted from the sample. It is used as an atomic beam source when the sample surface is to be removed.

中性原子はそれ自身直接加速することができないが、同
種原子のイオンを別に発生させて、このイオンを加速し
、この加速されたイオンと同種原子との間の共鳴電荷交
換反応を利用して高速の中性原子を得ることができる。
Neutral atoms themselves cannot be accelerated directly, but by generating ions of the same atom separately, accelerating this ion, and utilizing the resonance charge exchange reaction between the accelerated ion and the same atom. Fast neutral atoms can be obtained.

共鳴電荷交換反応はイオンとそのイオンと同種の中性原
子との間で電荷のみの交換が行われ、イオンがその有し
ていた運動量及び運動のエネルギーを殆んど失わないで
中性原子に変換される反応である。数KVの電圧で加速
されたイオンビームを同種原子のガス中を通過させると
上述した電荷交換反応が起って、イオンビームを延長し
た形で数KeVのエネルギーをもった中性原子ビームが
形成されるが、イオンビームの中性原子ビームへの変換
効率を高めるために、中性原子ビームを発生させる空間
の中性原子密度を増加させると、即ちガス圧を上げると
発生した中性原子ビーム中の原子と中性原子ガス中の原
子との衝突の機会が増加して中性原子ビームの散乱が犬
となり、捷だイオンと中性原子との間の上述電荷交換反
応以外の反応の増加によってイオンビーム自体の減衰も
増加するため、成る程度以上に中性原子ビームを強める
ことはできない。
In a resonance charge exchange reaction, only charges are exchanged between an ion and a neutral atom of the same type, and the ion changes into a neutral atom without losing much of its momentum or kinetic energy. It is a reaction that is converted. When an ion beam accelerated with a voltage of several KV passes through a gas of similar atoms, the charge exchange reaction described above occurs, and a neutral atomic beam with an energy of several KeV is formed as an extension of the ion beam. However, in order to increase the conversion efficiency of the ion beam into a neutral atom beam, the neutral atom density in the space where the neutral atom beam is generated is increased, that is, the gas pressure is increased. The chances of collision between the atoms in the neutral atom gas and the atoms in the gas increase, and the scattering of the neutral atom beam increases, resulting in an increase in reactions other than the above-mentioned charge exchange reactions between the neutral ions and the neutral atoms. Since this also increases the attenuation of the ion beam itself, it is not possible to strengthen the neutral atomic beam beyond the extent that it is possible.

本発明は特別の工夫によってイオンビームの中2− 性原子ビームへの変換効率を高め低い入力のイオンビー
ムで強い中性原子ビームを得ることのできる中性原子ビ
ーム発生装置を提供しようとするものである。
The present invention aims to provide a neutral atom beam generator that can increase the efficiency of converting an ion beam into a neutral atom beam by special means and can obtain a strong neutral atom beam with a low input ion beam. It is.

本発明は中性原子ビーム発生空間にイオン反射電極を設
けてこの空間内でイオンを往復運動させることにより、
発生した中性原子ビームの原子と中性原子ガスの原子と
の衝突の機会を増大させることなしに、イオンと中性原
子との衝突の機会を増大させることによって、低入力で
強い中性原子ビームを得ることを特徴とするものである
。以下実施例によって本発明を詳述する。
The present invention provides an ion reflecting electrode in a neutral atomic beam generation space and causes ions to reciprocate within this space.
strong neutral atoms at low inputs by increasing the chances of collisions between ions and neutral atoms without increasing the chances of collisions between atoms of the generated neutral atom beam and atoms of the neutral atom gas It is characterized by obtaining a beam. The present invention will be explained in detail below with reference to Examples.

第1図は本発明の一実施例を示す。1は装置外筐でアー
ス電位であり不図示の排気ポンプに接続されて内部は1
0  ’Torr程度の真空になっている。D4はイオ
ン反射電極で中央に中性原子ビーム出射アパーチャA4
が開口させである。工4はこのイオン反射電極を外筐l
内に保持する絶縁体である。イオン反射電極D4から左
側が中性原子ビーム発生部であシ、ガス導入管glを通
してガスが導入されている。Sはイオン源で絶縁体Is
によって外筐内に支持され高電圧が印加されている。イ
オン源S内にもガス導入管g2を通1〜でガスが導入さ
れていて、イオン源S内の圧力はその外部より高くなっ
ている。イオン源S内には電子ビームが形成してあり、
導入されたガスの原子と電子との衝突によりイオンが発
生せしめられている。イオン源Sとイオン反射電極D4
との間の空間でDI、D2.D3は静電レンズ系を形成
する電極であり、DI、D3はアース電位であり、中央
のD2には適当な電圧が印加されており、レンズ系全体
としてイオンを収束させるようになっている。イオン源
Sには高電圧が印加されており、電極D1がアース電位
であるので、イオン源S内で発生したイオンは電極DI
によって引出され、イオン源Sと電極D ]、との間の
電位差によって加速されて、電極DI、D2.D3で囲
まれた衝突空間内に入射せしめられる。衝突空間に入射
したイオンは右方に進行しながら収束せしめられ、中性
原子ビーム出射アパーチャA4に向う。イオン反射電極
D4にはイオン源Sと同電位或はそれより若干高い高電
圧が印加してあシ、レンズ系の電極D3との間にはイオ
ン減速電界が形成されていて、アパーチャA4に向って
進行して来たイオンはこの電界により反射される。この
ため衝突空間に入射したイオンは同空間内を繰返し往復
運動する。このイオンの往復運動の間にイオンと衝突辛
子が生ずる。この中性原子は前述したようにもとのイオ
ンと同じ運動エネルギー及び運動量を有するので、結局
右方向と左方向に進行する中性原子ビームが形成され、
右方へ進学する中性原子ビームがアパーチャA4から右
方へ出射することになる。
FIG. 1 shows an embodiment of the invention. 1 is the outer casing of the device, which is at ground potential, and is connected to an exhaust pump (not shown), and the inside is 1.
The vacuum is about 0' Torr. D4 is an ion reflecting electrode with a neutral atom beam exit aperture A4 in the center.
is open. Step 4 is to attach this ion-reflecting electrode to the outer casing.
It is an insulator that holds it inside. The left side of the ion reflecting electrode D4 is a neutral atom beam generating section, into which gas is introduced through a gas introduction tube gl. S is an ion source and an insulator Is
It is supported within the outer casing by a high voltage. Gas is also introduced into the ion source S through the gas introduction pipe g2, and the pressure inside the ion source S is higher than that outside. An electron beam is formed within the ion source S,
Ions are generated by collisions between atoms of the introduced gas and electrons. Ion source S and ion reflecting electrode D4
In the space between DI, D2. D3 is an electrode forming an electrostatic lens system, DI and D3 are at ground potential, and an appropriate voltage is applied to D2 in the center, so that the lens system as a whole focuses ions. Since a high voltage is applied to the ion source S and the electrode D1 is at ground potential, ions generated in the ion source S are transferred to the electrode DI.
, and accelerated by the potential difference between the ion source S and the electrode D2, the ion source S and the electrode D2. It is made to enter the collision space surrounded by D3. The ions that have entered the collision space are converged while traveling to the right and head toward the neutral atom beam exit aperture A4. A high voltage that is the same potential as the ion source S or slightly higher than that is applied to the ion reflecting electrode D4, and an ion deceleration electric field is formed between the ion reflecting electrode D4 and the lens system electrode D3, and the ion is directed toward the aperture A4. The ions that have proceeded are reflected by this electric field. For this reason, the ions that have entered the collision space repeatedly move back and forth within the same space. During this reciprocating motion of the ions, collisions with the ions occur. As mentioned above, these neutral atoms have the same kinetic energy and momentum as the original ions, so a neutral atomic beam is eventually formed that travels to the right and left.
The neutral atomic beam traveling to the right will be emitted to the right from the aperture A4.

今共鳴電荷交換反応の反応断面積をσとし、衝突空間内
のガスの中性原子密度をn、イオンビームの強度をNi
、 中性原子ビームの強度をNnとすると、イオンが一
回衝突空間を通過したときの中性原子ビームの強度Nn
 1は Nn1=n・σ・Ni1− ・・・・・・・・・・・・
・・・(1)で表わされる。こ\で添数字は一回目の通
過を意味する。従来はイオン反射電極D4がなくてイオ
ンは衝突空間を一回通過するだけであったから得られる
中性原子ビームの強さは上記(1)式で与えられるもの
であった。この場合中性原子ビームの強度Nnlを犬に
するにはNilが一定ならnを増す必要があるが、nを
余り犬にすると前述したように折角発生した高エネルギ
ーの中性原子が衝突によって散乱されまたイオンと中性
原子との間の共鳴電荷交換反応以外の反応によるイオン
ビームの減衰が犬となって却って中性原子ビームの強度
が低下する。本発明では共鳴電荷交換反応以外の反応が
無視できる程度にnを設定している。そこでイオンの往
復運動でイオンの2回目の衝突空間通過を考えると、そ
のとき発生する中性原子ビーム強度Nn2は N n 2 = n a (Ni1−Nnl )−−・
−=・(2)で与えられる。−り式右辺0内でN n 
1を引いているのけ、イオンビーム・の一部が中性原子
ビームに変化した分だけイオンビーム強度が低下するこ
とを表わしたものである。以下同様にしてイオンのに回
目の衝突空間通過における中性原子ビーム強となる。図
で中性原子ビーム出射アパーチャA4から右方へ出射す
る中性原子ビームの強度Nは上記Nnl・・・NnK・
・・のうち奇数番目のものだけをとなり有効な中性原子
ビームの変換効率は50%となる。
Now let the reaction cross section of the resonance charge exchange reaction be σ, the neutral atom density of the gas in the collision space be n, and the intensity of the ion beam be Ni.
, If the intensity of the neutral atom beam is Nn, then the intensity of the neutral atom beam when an ion passes through the collision space once is Nn
1 is Nn1=n・σ・Ni1− ・・・・・・・・・・・・
...It is expressed as (1). Here, the subscript number means the first pass. Conventionally, the ion reflecting electrode D4 was not provided and the ions passed through the collision space only once, so the intensity of the resulting neutral atom beam was given by the above equation (1). In this case, in order to make the intensity Nnl of the neutral atom beam a dog, it is necessary to increase n if Nil is constant, but if n is made too large, the high-energy neutral atoms generated will be scattered by collisions as described above. Furthermore, the ion beam is attenuated by reactions other than the resonance charge exchange reaction between ions and neutral atoms, and the intensity of the neutral atom beam is reduced. In the present invention, n is set to such an extent that reactions other than resonance charge exchange reactions can be ignored. Therefore, considering the ion's second collision space passage due to the ion's reciprocating motion, the neutral atom beam intensity Nn2 generated at that time is N n 2 = na (Ni1 - Nnl ) ---
−=・Given by (2). - N n within 0 on the right side of the equation
Subtracting 1 indicates that the ion beam intensity decreases by the amount that a portion of the ion beam changes to a neutral atomic beam. In the same manner, the neutral atomic beam becomes stronger when the ions pass through the collision space for the second time. In the figure, the intensity N of the neutral atom beam emitted from the neutral atom beam exit aperture A4 to the right is the above Nnl...NnK.
. . , only the odd-numbered ones are used, and the effective neutral atomic beam conversion efficiency is 50%.

なお第1図で電極D1のイオン源Sに対向するアパーチ
ャには金網M1が張設してあり、また電極D3の電極D
4に対向するアパーチャにも金網λ Mtが張設しであるが、これらの金網は夫々イオン源S
と電極D1間及び電極D3.D4間のイオン加速及びイ
オン反射電界がD1〜D3間の衝突空間内に侵入するの
を遮蔽するだめに設けたものである。またイオン反射電
極D4の右側にも金網MJが張設しであるが、これはイ
オン反射電極に高電圧が印加しであるので、この電圧に
よる電界が図外右方の装置内空間にまで及ぶのを防ぐだ
めである。
In FIG. 1, a wire mesh M1 is stretched over the aperture of the electrode D1 facing the ion source S, and a wire mesh M1 is stretched over the aperture of the electrode D1 facing the ion source S.
A wire mesh λ Mt is also stretched over the aperture facing 4, and these wire meshes are connected to the ion source S.
and electrode D1 and between electrode D3. This is provided to prevent the ion acceleration and ion reflection electric fields between D4 from entering the collision space between D1 and D3. Also, a wire mesh MJ is stretched on the right side of the ion-reflecting electrode D4, but this is because a high voltage is applied to the ion-reflecting electrode, so the electric field due to this voltage extends to the space inside the device on the right side (not shown). There is no way to prevent this.

第2図は本発明の他の実施例を示す。この図においても
第1図の各部と対応する部分には同じ符号をつけ−々の
説明は省略し、第1図の実施例と異る点だけを説明する
。この実施例ではレンズ系のレンズDI、D3によって
囲まれた空間とは別に衝突室Cを設け、衝突室C内にガ
スを導入するようにしである。イオン源Sから引出され
Sと電極D1との間で加速されたイオンビームは電極D
1〜D3よりなるレンズ系で衝突室C内に収束され、衝
突室Cを通過したイオンは反射電極D4で反射されてイ
オン源Sの出射アパーチャ捷で戻9再び右方に加速され
て電極D4とイオン源Sとの間を往復する。この構成で
は衝突室Cに導入されるガスの排気損失が少く、微量の
ガス導入で充分な中性原子ビームが得られる利点がある
FIG. 2 shows another embodiment of the invention. In this figure as well, parts corresponding to those in FIG. 1 are designated by the same reference numerals, and a detailed description thereof will be omitted, and only points that are different from the embodiment shown in FIG. 1 will be described. In this embodiment, a collision chamber C is provided separately from the space surrounded by the lenses DI and D3 of the lens system, and gas is introduced into the collision chamber C. The ion beam extracted from the ion source S and accelerated between S and the electrode D1 is transferred to the electrode D1.
The ions are focused into the collision chamber C by a lens system consisting of lenses 1 to D3, and the ions that have passed through the collision chamber C are reflected by the reflection electrode D4 and returned to the exit aperture of the ion source S.9 They are again accelerated to the right and sent to the electrode D4. and the ion source S. This configuration has the advantage that the exhaust loss of the gas introduced into the collision chamber C is small, and a sufficient neutral atomic beam can be obtained with the introduction of a very small amount of gas.

本発明装置は上述したような構成で、イオンビームは衝
突空間内を往復するので略全部が共鳴電荷交換反応にあ
づかり高効率で中性原子ビームに変換される一方、発生
した中性原子ビームは衝突空間を最大で一回通過するだ
けであるから他の原子との衝突による散乱は殆んど全く
起らず、低パワーのイオン源であっても充分強い中性原
子ビームを得ることができる。
The device of the present invention has the above-mentioned configuration, and since the ion beam reciprocates within the collision space, almost all of the ion beam takes part in the resonance charge exchange reaction and is converted into a neutral atomic beam with high efficiency, while the generated neutral atomic beam Because it passes through the collision space only once at most, there is almost no scattering due to collisions with other atoms, making it possible to obtain a sufficiently strong neutral atomic beam even with a low-power ion source. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は夫々異る本発明の実施例の縦断側面
図である。 1・・・外筐、S・・・イオン源、D’l、D2.D3
・・・レンズ系を構成する電極、D4・・・イオン反射
電極、gl2g2・・・ガス導入管。 代理人 弁理士   係   浩  介9−
1 and 2 are longitudinal sectional side views of different embodiments of the present invention. 1...Outer casing, S...Ion source, D'l, D2. D3
. . . Electrode constituting the lens system, D4 . . . Ion reflecting electrode, gl2g2 . . . Gas introduction tube. Agent Patent Attorney Hirosuke 9-

Claims (1)

【特許請求の範囲】[Claims] イオン源において発生したイオンを加速する電極と、こ
の加速されたイオンを反射させる電極とを設け、両電極
間でイオンを往復運動させるようにすると共に、上記両
電極間に中性原子ガスを導入して、両電極間でイオン中
性化反応を起させるようにしだ中性原子ビーム発生装置
An electrode that accelerates the ions generated in the ion source and an electrode that reflects the accelerated ions are provided, and the ions are caused to reciprocate between the two electrodes, and a neutral atomic gas is introduced between the two electrodes. A neutral atom beam generator that generates an ion neutralization reaction between both electrodes.
JP16740382A 1982-09-24 1982-09-24 Neutral atomic beam generator Granted JPS5956400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16740382A JPS5956400A (en) 1982-09-24 1982-09-24 Neutral atomic beam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16740382A JPS5956400A (en) 1982-09-24 1982-09-24 Neutral atomic beam generator

Publications (2)

Publication Number Publication Date
JPS5956400A true JPS5956400A (en) 1984-03-31
JPS6331920B2 JPS6331920B2 (en) 1988-06-27

Family

ID=15849050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16740382A Granted JPS5956400A (en) 1982-09-24 1982-09-24 Neutral atomic beam generator

Country Status (1)

Country Link
JP (1) JPS5956400A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201200A (en) * 1989-01-30 1990-08-09 Nippon Telegr & Teleph Corp <Ntt> High speed atomic beam source device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175989A (en) * 1988-12-24 1990-07-09 Ishikawajima Harima Heavy Ind Co Ltd Rotary drying drum
JPH04343787A (en) * 1991-05-15 1992-11-30 Tlv Co Ltd Cylinder dryer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201200A (en) * 1989-01-30 1990-08-09 Nippon Telegr & Teleph Corp <Ntt> High speed atomic beam source device

Also Published As

Publication number Publication date
JPS6331920B2 (en) 1988-06-27

Similar Documents

Publication Publication Date Title
EP0237259A2 (en) Mass spectrometer
US4081677A (en) Isotope separation by magnetic fields
JPH06181100A (en) Microtron electron accelerator
US4549082A (en) Synthetic plasma ion source
US4794303A (en) Axisymmetric electron collector with off-axis beam injection
US4209704A (en) Tandem ion acceleration having a matter-free ion charge reversed zone
JPS5840814B2 (en) Multi-stage suppression collector
JPS5956400A (en) Neutral atomic beam generator
US4059761A (en) Separation of isotopes by time of flight
US3175120A (en) Collector comprising rings skewed to beam and increasing in diameter along beam
US4439395A (en) Neutral beamline with improved ion energy recovery
US4434131A (en) Neutral beamline with improved ion energy recovery
US4349505A (en) Neutral beamline with ion energy recovery based on magnetic blocking of electrons
EP0345769A2 (en) Wake field accelerator
EP0030328B1 (en) Multicavity klystron
US3551728A (en) High intensity linear accelerators
SU1067972A1 (en) Method of producing negative ions
US3378718A (en) Crossed-field traveling wave electron reaction device employing cyclotron mode interaction
Becker Electron beam ion sources and traps
JPS6186699A (en) Convergent high-speed atomic beam source
Kurilenkov et al. On the plasma quasineutrality under oscillatory confinement based on a nanosecond vacuum discharge
US2900559A (en) Double stream growing-wave amplifier
US3253402A (en) Apparatus for and method of emitting particles
RU2744218C1 (en) Method of forming bunches of high energy density in an electron beam and a transit klystron
Donets et al. Theory and simulations of electron beam ion source in reflex mode