JPS595503Y2 - Shield gas encapsulation structure of inert gas arc welding equipment - Google Patents

Shield gas encapsulation structure of inert gas arc welding equipment

Info

Publication number
JPS595503Y2
JPS595503Y2 JP13067380U JP13067380U JPS595503Y2 JP S595503 Y2 JPS595503 Y2 JP S595503Y2 JP 13067380 U JP13067380 U JP 13067380U JP 13067380 U JP13067380 U JP 13067380U JP S595503 Y2 JPS595503 Y2 JP S595503Y2
Authority
JP
Japan
Prior art keywords
groove
gas
layer
shield
shielding gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13067380U
Other languages
Japanese (ja)
Other versions
JPS57132775U (en
Inventor
清司 山下
桑太郎 山田
修造 須清
正信 浜崎
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP13067380U priority Critical patent/JPS595503Y2/en
Publication of JPS57132775U publication Critical patent/JPS57132775U/ja
Application granted granted Critical
Publication of JPS595503Y2 publication Critical patent/JPS595503Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【考案の詳細な説明】 この考案はTIG、MIG、Co2溶接などにおいて、
溶接個所とその周辺部を覆うシールドガスを、水もしく
は強風から保護するシールドガス被包構造に関する。
[Detailed explanation of the invention] This invention can be used in TIG, MIG, Co2 welding, etc.
This invention relates to a shielding gas enveloping structure that protects the shielding gas that covers the welding location and its surroundings from water or strong winds.

TIG、MIG、CO2などの不活性ガスアーク溶接を
、水中もしくは強風下において行う場合、溶接個所およ
びその周辺部、つまり、不活性ガスが噴出するトーチの
先端と、母材との間に形成される高熱空間内に、水また
は強風が浸入して、上記の不活性ガス雰囲気が破壊され
る事態を防止するため、従来、第8図のように、トーチ
本体20の内側ノズル20 Hに形成した環状の不活性
ガス通路21の外周に、多数の金属細線を細隙性を保有
させてスカート状に集束したシールドガス被包層22を
設けたものが知られている。
When inert gas arc welding, such as TIG, MIG, or CO2, is performed underwater or under strong winds, welding occurs at the welding point and its surroundings, that is, between the tip of the torch from which the inert gas is spouted and the base metal. In order to prevent water or strong wind from entering the high-temperature space and destroying the above-mentioned inert gas atmosphere, conventionally, as shown in FIG. It is known that a shield gas enveloping layer 22 is provided around the outer periphery of an inert gas passage 21 in which a large number of fine metal wires are made to have fine pores and are bundled into a skirt shape.

上記のシールドガス被包層22を設けた溶接装置を用い
ることによって、高熱空間23内のシールドガスは、シ
ールドガス被包層22によって外部から隔離保護される
ため、たとえば水中で溶接を行う場合、上記高熱空間2
3に水が浸入して、内部の不活性ガス雰囲気が破壊され
たり、強風下で溶接を行う場合に、高熱空間内部の不活
性ガス雰囲気が吹き飛ばされるような事態を防止して適
正な溶接を行うことができる。
By using the welding device provided with the above-mentioned shielding gas enveloping layer 22, the shielding gas in the high-temperature space 23 is isolated and protected from the outside by the shielding gas enveloping layer 22. For example, when welding is performed underwater, High heat space 2 above
3.Proper welding can be achieved by preventing the inert gas atmosphere inside the high-temperature space from being blown away when water enters and destroys the internal inert gas atmosphere, or when welding is performed under strong winds. It can be carried out.

しかしながら、上記従来の構成では、母材が薄板で開先
が浅い場合にしか適用できず、母材が厚板で開先が深い
場合には、この深い開先の深部までシールドガス被包層
22を形成する金属線が入り難く、開先内部に向けて噴
出したシールドガスの被包効果が悪くなって適正溶接が
できなくなる問題がある。
However, the above conventional configuration can only be applied when the base material is a thin plate and the groove is shallow; if the base material is a thick plate and the groove is deep, the shielding gas enveloping layer extends to the deep part of the deep groove. There is a problem in that it is difficult for the metal wire forming the groove 22 to enter, and the enveloping effect of the shielding gas ejected toward the inside of the groove becomes poor, making it impossible to perform proper welding.

この考案は上記の問題に鑑みなされたもので、開先の深
い厚板母材を溶接する場合でも、シールドガスを適確に
被包して適正溶接を行うことができる不活性ガスアーク
溶接装置のシールドガス被包構造を提供することを目的
とする。
This idea was created in view of the above problems, and is an inert gas arc welding device that can accurately enclose shielding gas and perform proper welding even when welding thick plate base materials with deep grooves. The purpose is to provide a shielding gas encapsulation structure.

以下、この考案の一実施例を図面にしたがって説明する
An embodiment of this invention will be described below with reference to the drawings.

第1図および第2図は、この考案を適用したMIG溶接
装置を例示するものであり、同図において、1はMIG
溶接トーチ本体で、中心部のコンタクトチップ2に電極
2aが摺動自在に嵌合されており、コンタクトチップ2
の外周に環状のガス通路3が形成され、この環状のガス
通路3の出口がらアルゴンやヘリウムなどの不活性ガス
が連続流として矢印a方向に噴出するようになっている
Figures 1 and 2 illustrate an MIG welding device to which this invention is applied, and in the figure, 1 is an MIG welding device.
In the welding torch body, an electrode 2a is slidably fitted to a contact tip 2 in the center.
An annular gas passage 3 is formed on the outer periphery of the annular gas passage 3, and an inert gas such as argon or helium is ejected as a continuous flow in the direction of arrow a from the outlet of the annular gas passage 3.

上記トーチ本体1は、内側ノズル1aと外側ノズル1b
によって構成されており、内側ノズル1aは外側ノズル
1bに対してその先端部が突没自在に自在に嵌合されて
いる。
The torch main body 1 has an inner nozzle 1a and an outer nozzle 1b.
The inner nozzle 1a is fitted into the outer nozzle 1b so that its tip part can be freely projected and retracted.

4は環状部材を示す。4 indicates an annular member.

この環状部材4は、外側ノズル1bの先端内周に、たと
えば螺合することによって取り付けられ、下向き開口の
環状溝5を形成しており、この環状溝5にシールドガス
被包層6の基端部6aを嵌入するとともに、環状部材4
の延出部4bに固定リング7を外嵌(たとえば螺着)す
ることによって、シールドガス被包層6を外側ノズル1
bの内周、すなわち内側ノズル1aの環状のガス通路3
の外周に固定している。
This annular member 4 is attached to the inner periphery of the tip of the outer nozzle 1b by, for example, screwing, and forms an annular groove 5 with a downward opening. While fitting the part 6a, the annular member 4
By fitting (for example, screwing) the fixing ring 7 onto the extending portion 4b of the outer nozzle 1,
The inner periphery of b, that is, the annular gas passage 3 of the inner nozzle 1a
It is fixed around the outer periphery of the

上記シールドガス被包層6は、直径0.03〜0.3m
mの、たとえばステンレス、銅、黄銅などの耐海水性の
極細で柔軟かつ弾性を有す金属線(ワイヤ)を横断面積
1cm2当り200〜1000本の密度で細隙性を保有
させてスカート状に集束して形成されている。
The shield gas enveloping layer 6 has a diameter of 0.03 to 0.3 m.
m of seawater-resistant, ultra-fine, flexible, and elastic metal wires (wires) made of stainless steel, copper, brass, etc., are made into a skirt shape at a density of 200 to 1000 wires per 1 cm2 of cross-sectional area. It is formed in a concentrated manner.

8.8は互いに対向して設けられたl対の開先内シール
ドガス被包層で、この被包層6も、たとえばステンレス
、銅、黄銅などの耐海水性の極細で柔軟かつ弾性を有す
金属線を横断面積1cm2当り200〜1000本の密
度で細隙性をもたせて刷毛状に集束して形成され、その
基端部8aは、たとえば外側ノズル1bに外環した外側
環状体9の溝9aに嵌入固定されている。
Reference numeral 8.8 denotes a pair of groove shielding gas enveloping layers provided facing each other, and this enveloping layer 6 is also made of ultrafine, flexible, and elastic seawater-resistant material such as stainless steel, copper, or brass. It is formed by converging metal wires into a brush shape with fine pores at a density of 200 to 1000 metal wires per 1 cm2 of cross-sectional area, and the base end 8a is formed by, for example, the outer annular body 9 attached to the outer nozzle 1b. It is fitted and fixed into the groove 9a.

10はシールドガスの流入通路11.11は開先12を
存して対向する母材である。
Reference numeral 10 denotes a base material in which a shielding gas inflow passage 11 and a shielding gas inflow passage 11 face each other with a groove 12 therebetween.

上記構成において、溶接を行う場合は、上記第1図およ
び第2図に示すように、母材11,11の表面にシール
ドガス被包層6の先端部を当接させるとともに、開先1
2内シ一ルドガス被包層8,8を開先12の内面に当接
する状態に嵌入したのち、開先12に沿ってトーチ本体
1を走行移動させればよい。
In the above configuration, when welding is performed, as shown in FIGS.
The torch body 1 may be moved along the groove 12 after the inner shield gas covering layers 8, 8 are fitted into the groove 12 so as to be in contact with the inner surface of the groove 12.

この場合、トーチ本体1の環状のガス通路3から不活性
ガス流が溶接個所およびその周辺を被包するように噴出
する。
In this case, an inert gas flow is ejected from the annular gas passage 3 of the torch body 1 so as to cover the welding location and its surroundings.

しかして、環状のガス通路3から母材11,11の表面
上に噴出した不活性ガスは、シールドガス被包層6によ
って被包されるから、外部すなわち海水や強風から隔離
保護され、細隙を通過して水中の場合は小気泡として放
出され、海水の浸入を防ぐ、また、上記環状のガス通路
3から開先12内に噴出した不活性ガスは開先内シール
ドガス被包層6によって被層され、上記母材11.11
の表面に噴出した不活性ガスと同様に海水や強風から隔
離保護され、溶接個所とその周辺部つまり高熱空間13
を完全な不活性ガス雰囲気にして適正溶接を可能にする
Since the inert gas ejected from the annular gas passage 3 onto the surfaces of the base materials 11, 11 is covered by the shield gas covering layer 6, it is isolated and protected from the outside, that is, from seawater and strong winds, and is protected from the slits. If the inert gas passes through the groove and is underwater, it is released as small bubbles to prevent seawater from entering.In addition, the inert gas ejected from the annular gas passage 3 into the groove 12 is absorbed by the shielding gas enveloping layer 6 inside the groove. coated with the base material 11.11
The welding area and its surrounding area, i.e. the high temperature space
to create a complete inert gas atmosphere to enable proper welding.

開先12内の溶接が進行して、ビード14が順次形成さ
れ、開先12が浅くなって行くにしたがい、第4図およ
び第5図で示す如く、開先内シールドガス被包層8,8
をビード14の表面および開先12の内面に当接するよ
うに適宜切断(この切断作業は手鎖によって容易に行う
ことができる。
As the welding within the groove 12 progresses, beads 14 are formed one after another, and the groove 12 becomes shallower, as shown in FIGS. 4 and 5, the shielding gas enveloping layer 8, 8
(This cutting operation can be easily performed with a hand chain.)

)しながら溶接を行うことで、開先12の深浅にかかわ
らず開先内シールドガス被包層8,8により開先12内
に噴出したシールドガスを保護して高熱空間13の不活
性ガス雰囲気を保つことができ、適正溶接を可能にする
) By performing welding while the groove 12 is deep or shallow, the shield gas blown out into the groove 12 is protected by the groove shield gas enveloping layers 8, 8, and the inert gas atmosphere in the high-temperature space 13 is maintained. This allows for proper welding.

一方、コンタクトチップ2から電極2aが突出する長さ
lは、溶接ビードの心振れや電極(ワイヤ)2 aの溶
融速度に影響するから、開先12内の溶接層数が増加し
ても上記突出長さlを変化させないために、内側ノズル
1aを第3図ないし第5図で明らかなように上昇移動さ
せることができる。
On the other hand, the length l of the electrode 2a protruding from the contact tip 2 affects the run-out of the weld bead and the melting rate of the electrode (wire) 2a, so even if the number of weld layers in the groove 12 increases, In order to keep the protrusion length l unchanged, the inner nozzle 1a can be moved upwardly, as can be seen in FIGS. 3 to 5.

他方、開先12がさらに深い場合には、開先内シールド
ガス被・色層8,8が長くなり、その結果集束厚さを増
大しなければ金属線の腰が弱くなって折曲し易くなり、
開先12内のシールドガスを適正に被包し得なくなるけ
れど、実際上集束厚さを増大することは、トーチ本体1
の外形が大きくなって使用し難くなるため、第6図およ
び第7図において明示するように、開先内シールドガス
被包層8゜8の外面に、ステンレス鋼板、銅板、黄銅板
などの耐海水性の薄板で形成した補強板15を、1〜−
−チ本体1の軸方向に往復移動可能に設定することによ
って、上記の腰折れを防止して開先12内のシールドガ
スを被包できる。
On the other hand, if the groove 12 is deeper, the shielding gas coating/color layers 8, 8 within the groove will become longer, and as a result, unless the focusing thickness is increased, the metal wire will become weaker and more likely to bend. Become,
In practice, increasing the focusing thickness may result in the torch body 1
Because the outer shape of the groove becomes large and it becomes difficult to use, as shown in Figs. The reinforcing plate 15 formed of a seawater thin plate is 1 to -
- By setting the chi main body 1 so that it can reciprocate in the axial direction, the shielding gas in the groove 12 can be covered while preventing the above-mentioned buckling.

上記両波色層6,8.8の内面を、上述の素材に代えて
、たとえば炭素繊維で形成することによって、さらに十
分な耐熱性と、スパッタ付着防止性の向上が期待できる
By forming the inner surfaces of the two-wave color layers 6, 8.8 from, for example, carbon fiber instead of the above-mentioned materials, it is expected that even more sufficient heat resistance and improvement in spatter adhesion prevention properties can be expected.

なお、上記実施例においては、開先内シールドガス被包
層8,8を、シールドガス被包層6の外側に設けた例に
ついて説明しているけれど、この考案はこれに限定され
るものではなく、開先内シールドガス被包層8,8をシ
ールドガス被包層6の内側に設けても上記実施例と同様
の効果を奏する。
Although the above embodiment describes an example in which the in-groove shielding gas covering layers 8, 8 are provided on the outside of the shielding gas covering layer 6, this invention is not limited to this. Even if the in-groove shielding gas covering layers 8, 8 are provided inside the shielding gas covering layer 6, the same effect as in the above embodiment can be obtained.

さらに、MIG溶接についてのみのべているけれど、T
IG、CO2およびプラズマ溶接などに適用可能である
ことはいうまでもない。
Furthermore, although it only talks about MIG welding, T
Needless to say, it is applicable to IG, CO2, plasma welding, and the like.

以上説明したように、この考案は開先内シールドガス被
包層を母材の開先内に嵌入し、しかも、ビードの形成に
よって開先が浅くなり、その横断面形状が変化するのに
追従して、開先内シールドガス被包層を切断するように
構成しているから、開先内に噴出したシールドガスを適
確に被包し得、水中溶接時における水の開先内部への浸
入や強風下溶接時における風の開先内浸入を防止して適
正に溶接を行い得ることができる利点がある。
As explained above, this idea fits the groove-internal shielding gas enveloping layer into the groove of the base material, and also follows the formation of a bead, which causes the groove to become shallower and its cross-sectional shape to change. Since the structure is configured to cut the shield gas enveloping layer inside the groove, the shield gas ejected into the groove can be accurately encapsulated, and water can be prevented from entering the inside of the groove during underwater welding. There is an advantage that it is possible to prevent wind from entering the groove during welding under strong wind conditions, and to perform welding appropriately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案を適用した不活性ガスアーク溶接装置
の一部正面図、第2図は同側面図、第3図ないし第5図
は使用状態の説明図、第6図および第7図は補強板取付
と動作状態を示す説明図、第8図は従来例の一部断面図
である。 1・・・・・・トーチ本体、1a・・・・・・内側ノズ
ル、1b・・・・・・外側ノズル、3・・・・・・不活
性ガス通路、4・・・・・・環状部材、6・・・・・・
シールドガス被包層、8,8・・・・・・開先内シール
ドガス被包層、11.11・・・・・・母材、12・・
・・・・開先、15・・・・・・補強板。
Fig. 1 is a partial front view of an inert gas arc welding device to which this invention is applied, Fig. 2 is a side view of the same, Figs. 3 to 5 are illustrations of the state of use, and Figs. 6 and 7 are FIG. 8, which is an explanatory diagram showing the attachment of the reinforcing plate and the operating state, is a partial sectional view of a conventional example. 1...Torch body, 1a...Inner nozzle, 1b...Outer nozzle, 3...Inert gas passage, 4...Annular Part, 6...
Shield gas enveloping layer, 8, 8... Shield gas enveloping layer in groove, 11.11... Base material, 12...
...Bevel, 15...Reinforcement plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 外側ノズルと内側ノズルとで形成されるトーチ本体の不
活性ガス通路の外周に多数の極細で柔軟かつ弾性を有す
る金属線を細隙性を保有させてスカート状に集束したシ
ールドガス被包層を形成してなる不活性、ガスアーク溶
接装置において、上記シールドガス被包層の外側もしく
は内側に互いに対向してそれぞれの先端部が母材の開先
内面に当接する状態に嵌入されかつ開先の深さ変化に対
応して当接可能に上記先端部を切断し得る極細で柔軟か
つ弾性を有す金属細線を細隙性を保有させて刷毛状に集
束した開先内シールドガス被包層を設け、上記シールド
ガス被包層の基端部は外側ノズルの先端内周部に取り付
けた環状部材に固定し、かつ内側ノズルを外側ノズルに
対して突没自在に嵌合するとともに上記開先内シールド
ガス被包層の外面にトーチ本体の軸方向に往復移動可能
な補強板を設定してなることを特徴とする不活性ガス溶
接装置のシールドガス被包構造。
A shielding gas enveloping layer consisting of a large number of ultra-fine, flexible and elastic metal wires that have fine pores and are gathered into a skirt shape is placed around the outer periphery of the inert gas passage of the torch body formed by the outer nozzle and the inner nozzle. In the inert, gas arc welding device formed by forming the shielding gas, the shielding gas encapsulating layer is fitted into the outside or inside of the layer so as to face each other so that the tips thereof are in contact with the inner surface of the groove of the base material, and the depth of the groove is A shielding gas enveloping layer is provided in the groove in which ultra-fine, flexible, and elastic metal thin wires are bundled into a brush shape and have fine porosity and can be brought into contact with and cut the tip in response to changes in the thickness. , the proximal end of the shield gas enveloping layer is fixed to an annular member attached to the inner periphery of the tip of the outer nozzle, and the inner nozzle is fit into the outer nozzle so as to be protrusive and retractable, and the shield in the groove A shield gas encapsulation structure for an inert gas welding device, characterized in that a reinforcing plate that is movable back and forth in the axial direction of a torch body is set on the outer surface of the gas encapsulation layer.
JP13067380U 1980-09-12 1980-09-12 Shield gas encapsulation structure of inert gas arc welding equipment Expired JPS595503Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13067380U JPS595503Y2 (en) 1980-09-12 1980-09-12 Shield gas encapsulation structure of inert gas arc welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13067380U JPS595503Y2 (en) 1980-09-12 1980-09-12 Shield gas encapsulation structure of inert gas arc welding equipment

Publications (2)

Publication Number Publication Date
JPS57132775U JPS57132775U (en) 1982-08-18
JPS595503Y2 true JPS595503Y2 (en) 1984-02-18

Family

ID=29924286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13067380U Expired JPS595503Y2 (en) 1980-09-12 1980-09-12 Shield gas encapsulation structure of inert gas arc welding equipment

Country Status (1)

Country Link
JP (1) JPS595503Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5538921B2 (en) * 2010-01-21 2014-07-02 バブ日立工業株式会社 Underwater welding equipment

Also Published As

Publication number Publication date
JPS57132775U (en) 1982-08-18

Similar Documents

Publication Publication Date Title
JP5364517B2 (en) Plasma torch and plasma arc welding method
US20030062356A1 (en) Versatile continuous welding electrode for short circuit welding
US4688691A (en) Process for attaching clad components and pressure vessel formed thereby
JPS595503Y2 (en) Shield gas encapsulation structure of inert gas arc welding equipment
GB1327621A (en) Cord primarily intended for arc-welding
JPS6120394B2 (en)
JPS6320466Y2 (en)
JPS6247630B2 (en)
JPS633747Y2 (en)
JPH07148593A (en) Underwater laser beam cutting device
JPS59178183A (en) Torch for arc welding
JPS598475B2 (en) High current MIG welding method
JP2529964Y2 (en) Flash shield device for stud welding machine
CN214602442U (en) Gas shielded welding contact tip and gas shielded welding gun
KR200479611Y1 (en) Trailing shield jig
JP2662293B2 (en) Underwater TIG welding torch
JPS6331306B2 (en)
JPS6110851Y2 (en)
JPS6245679B2 (en)
JPH0221194Y2 (en)
JPS5932459Y2 (en) Gas nozzle of wire skirt type underwater welding torch
KR900011268Y1 (en) Nozzle of gas welding device
JPH1128571A (en) Torch nozzle for underwater welding
JPS601898Y2 (en) Reverse polarity plasma welding torch
JPH10296446A (en) Plasma arc torch