JPS5954966A - Immunological measuring reagent - Google Patents

Immunological measuring reagent

Info

Publication number
JPS5954966A
JPS5954966A JP16585082A JP16585082A JPS5954966A JP S5954966 A JPS5954966 A JP S5954966A JP 16585082 A JP16585082 A JP 16585082A JP 16585082 A JP16585082 A JP 16585082A JP S5954966 A JPS5954966 A JP S5954966A
Authority
JP
Japan
Prior art keywords
antibody
antigen
measured
antibodies
monoclonal antibodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16585082A
Other languages
Japanese (ja)
Inventor
Takashi Kudo
隆 工藤
Toshiyuki Sugawara
菅原 敏行
Suguru Mochida
持田 英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mochida Pharmaceutical Co Ltd
Original Assignee
Mochida Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mochida Pharmaceutical Co Ltd filed Critical Mochida Pharmaceutical Co Ltd
Priority to JP16585082A priority Critical patent/JPS5954966A/en
Publication of JPS5954966A publication Critical patent/JPS5954966A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/577Immunoassay; Biospecific binding assay; Materials therefor involving monoclonal antibodies binding reaction mechanisms characterised by the use of monoclonal antibodies; monoclonal antibodies per se are classified with their corresponding antigens

Abstract

PURPOSE:To achieve a higher measuring sensitivity and a shorter measuring time in the immunological measuring method by using several kins of monoclonal antibodies. CONSTITUTION:This measuring reagent features the use of an insoluble antibody which comprises one or more kinds of monoclonal antibodies 2b and 2c capable recognizing different antigenic determinants of same antigen 3 to be measured to bond to and a labelled antibody comprises more than one different kinds of monoclonal antibodies 1b and 1c capable of recognizing antigenic determinants different from those mentioned above of the antigen 3 being measured to bond to. This eliminates competition between the monoclonal antibodies 2b and 2c as the insoluble antibody and the monoclonal antibodies 1b and 1c to bond to antigenic determinants 6b and 6c of the antigen 3 being measured for a short space of time thereby achieving a shorter measuring time and a higher measuring accuracy.

Description

【発明の詳細な説明】 本発明は免疫学的測定試薬に関する。[Detailed description of the invention] The present invention relates to immunological measurement reagents.

近年、免疫学の進歩により、従来、未知の分野であった
抗体の研究が進み、その産生の制御機構や抗体本体の生
化学的組成、性質等が詳細に調べられてき工、いる。
In recent years, due to advances in immunology, research on antibodies, which was previously an unknown field, has progressed, and the control mechanism of their production and the biochemical composition and properties of the antibodies themselves have been investigated in detail.

1975年、C.Mllstein らはマウスのミエ
ローマ細癲と牌臓中の抗体産生細胞とを細胞融合するこ
とによって、単クローン性抗体の産生に成功した。この
単クローン性抗体は免疫学の基礎的研究の発展に大きく
寄与することが期待され、その方面の研究が盛んに行わ
れている。
In 1975, C. Mllstein et al. succeeded in producing monoclonal antibodies by cell fusion of mouse myeloma epilepsy and antibody-producing cells in the spleen. This monoclonal antibody is expected to greatly contribute to the development of basic research in immunology, and research in this direction is being actively conducted.

高感度で、かつ、定量的な免疫学的測定法としては、従
来、放射免疫測定法(RIA)及び酵素免疫測定法(E
IA)が用いられておシ、特にこイtらの方法をペース
とするサンドイッチ法は操作が簡便なこと、測定感度が
高いことから多用さ2ているが、測定に1日〜4日が必
要であるので、この時間をできるだけ短くすることが望
まれている。更に、近年の臨床医学の進歩から、検査結
果を迅速に知り、直ちに必要な措置をとることが要求さ
れるようになったため、この面がらも検査時間の短縮が
熱望されている。
Conventionally, highly sensitive and quantitative immunoassay methods include radioimmunoassay (RIA) and enzyme immunoassay (E
In particular, the sandwich method based on the method of these authors is frequently used because it is easy to operate and has high measurement sensitivity, but it takes 1 to 4 days for measurement. Since this is necessary, it is desirable to make this time as short as possible. Furthermore, with recent advances in clinical medicine, it has become necessary to know test results quickly and take necessary measures immediately, so there is a strong desire to shorten test times in this respect as well.

しかし、従来のサンドイッチ法では後記のような理由に
より、反応時間を短縮すると測定感度及び精度が低下す
るという問題があり、大巾な時間短縮は不可能であった
However, the conventional sandwich method has a problem in that measurement sensitivity and accuracy decrease when the reaction time is shortened, and it has not been possible to significantly shorten the reaction time for reasons described below.

本発明者らは、この問題を解決するために研究を重ねた
結果、従来、不溶化抗体と標識抗体として同一の抗原を
投与して得た、ほぼ同一の抗体、いわゆる多クローン性
抗体を使用していたものを、本発明においては同一の抗
原の異なる抗原決定部位を認識して結合する抗体、いわ
ゆる単クローン性抗体を複数種使用することによって測
定精度を低下させることなく、測定感度の大巾な向上お
よび測定時間の大巾な短縮に成功したものである。
As a result of repeated research to solve this problem, the present inventors have conventionally used almost identical antibodies, so-called polyclonal antibodies, obtained by administering the same antigen as insolubilized antibodies and labeled antibodies. However, in the present invention, by using multiple types of antibodies that recognize and bind to different antigen-determining sites of the same antigen, so-called monoclonal antibodies, measurement sensitivity can be widened without reducing measurement accuracy. This has resulted in significant improvements and a significant reduction in measurement time.

以下、本発明を従来法と対比して詳細に説明する。なお
、説明の便宜上、EIAに基づくサンドイッチ法を例と
して説明するが、FIA(螢光免疫測定法)でも同様で
ある。
Hereinafter, the present invention will be explained in detail in comparison with a conventional method. For convenience of explanation, a sandwich method based on EIA will be described as an example, but the same applies to FIA (fluorescence immunoassay).

従来の測定法は第1図の模式図に示すように次の順序に
よって行わnる。  。
The conventional measurement method is performed in the following order as shown in the schematic diagram of FIG. .

i)被測定抗原3に対する抗体を不溶性担体(同相)4
に結合させた不溶化杭体2aと被測定抗原3とを反応さ
せて、同相上の抗体2aに被測定抗原3を結合させる。
i) An antibody against the antigen to be measured 3 is transferred to an insoluble carrier (in phase) 4
The insolubilized pile 2a bound to the antibody 2a is reacted with the antigen 3 to be measured, and the antigen 3 to be measured is bound to the antibody 2a on the same phase.

ii)固相4を洗浄して未反応物質を除去する。ii) Washing the solid phase 4 to remove unreacted substances.

iii)洗浄した固相4に、被測定抗原3に対する抗体
に酵素5を結合させた酵素標識抗体1a(以下、単に標
識抗体という〕を反応させて、固相4に結合している被
測定抗原3の未反応部位に標識抗体1aを結合させる。
iii) The washed solid phase 4 is reacted with an enzyme-labeled antibody 1a (hereinafter simply referred to as labeled antibody), which is an antibody against the antigen to be measured 3 bound to an enzyme 5, to remove the antigen to be measured bound to the solid phase 4. Labeled antibody 1a is bound to the unreacted site of 3.

iV)固相4を洗浄して過剰の標識抗体1aを除去した
後、酵素基質を添加して酵素反応を行わしめる。   
        、。
iV) After washing the solid phase 4 to remove excess labeled antibody 1a, an enzyme substrate is added to perform an enzyme reaction.
,.

固相4には、被測定抗原3と標識Rg体1aとが結合し
ているので、この酵素の存在量に比例した酵素反応が起
き、その結果生ずる反応生成物の量から被測定抗原3の
量を測定する。
Since the antigen to be measured 3 and the labeled Rg body 1a are bound to the solid phase 4, an enzymatic reaction occurs in proportion to the amount of this enzyme present, and the amount of the antigen to be measured 3 is determined from the amount of the resulting reaction product. measure quantity.

一般にサンドインチ法は非競合反応法に分類されている
ため、競合反応はまったく生じないかのように考えがち
であるが、分類上、そう言われているだけであって、実
際は平衡関係が成立していると考えら孔、これを模式的
に示すと次のようになる。
Generally, the Sand Inch method is classified as a non-competitive reaction method, so it is easy to think that no competitive reaction occurs at all. However, this is just the classification; in reality, an equilibrium relationship is established. A schematic diagram of this is shown below.

(ここに、{Ab}は不溶化抗体、Agは被測定抗原、
Ab*は標識抗体、a、a’,b,b’、c,c′、d
,d’、e、e’はそれぞれ平衡定数を表わし、−は抗
原と抗体が結合していることを表わす。)即ち、第二反
応において不溶化抗体と被測定抗原との結合物に標識抗
体を反応させると、不溶化抗体と標識抗体とが、被測定
抗原に対するそれそれの親和力に応じて、被測定抗原を
奪い合うこととな21ため(不溶化抗体と標識抗体とは
ほぼ同一の抗体であるから、被測定抗原に対する親和力
は件は同等と季えられる)、第一反応によって生じた不
溶化抗体−被測定抗原結合物が解離して、前記のよ?な
種々の結合状態の結合物を生ずることとなる。
(Here, {Ab} is the insolubilized antibody, Ag is the antigen to be measured,
Ab* is labeled antibody, a, a', b, b', c, c', d
, d', e, and e' each represent an equilibrium constant, and - represents that the antigen and antibody are bound. ) That is, in the second reaction, when the labeled antibody is reacted with the bond between the insolubilized antibody and the antigen to be measured, the insolubilized antibody and the labeled antibody compete for the antigen to be measured according to their respective affinities for the antigen to be measured. (Since the insolubilized antibody and the labeled antibody are almost the same antibody, their affinities for the antigen to be measured are considered to be the same.) Is it dissociated and mentioned above? This results in the formation of conjugates with various bond states.

このことは、次の実験によって示される。即ち、抗HC
G−βサブユニット坑体を結合させたイラスチック製試
験管にパ−オキシデースで標識したHCG−βを反応さ
せた後、洗浄する。これに、坑HcG−β坑体を反応さ
せると、一旦、固相に結合した酵素標識HCG−βは、
時間の経過と共に固相から解離して、液相に移行する。
This is demonstrated by the following experiment. That is, anti-HC
A plastic test tube bound with a G-β subunit antibody is reacted with peroxidase-labeled HCG-β, and then washed. When this is reacted with an anti-HcG-β antibody, the enzyme-labeled HCG-β bound to the solid phase becomes
As time passes, it dissociates from the solid phase and transitions to the liquid phase.

第2図はこの状態を示したものである。FIG. 2 shows this state.

ただし、第一反応の時間を十分に長くすると一部の坑原
抗体結合は非可逆的となるため、この結合物に標識抗体
を加えても結合物の解離は生じ難くなる。又、第二反応
の時間を十分に長時間とするど、反応は不溶化抗体−被
測定抗原−標識抗体結合物の生成する方向に進むといわ
れている。そのため、従来療ではこれらのネ応時間を十
分に長時間とすることが必須の要件であった。したがっ
て、第一反応を行なわないか又は極端に短<Lた場合、
例えば、不溶化抗体と標識抗体とを同時に被測定抗原に
反応させた場合には第二反応の反応時間の遷延化、測定
感度及び精度の低下が生じ、又、第二反応の反応時間を
短くすると測定感度及び精度の大巾な低下が生じる。こ
のような理由により、従来法では測定感度及び精度の低
下を生ずることなく1反応時間を短縮することは不可能
であった。なお、このような競合反応が存在すること及
び反応時間を十分に長くすると、反応が一部非可逆化す
ることは市原ら〔臨床病理、26、1027(1978
))によっても報告されている。
However, if the first reaction time is sufficiently prolonged, some of the antigen-antibody binding becomes irreversible, so that even if a labeled antibody is added to the bound product, dissociation of the bound product becomes difficult to occur. It is also said that if the second reaction time is made sufficiently long, the reaction proceeds in the direction of producing an insolubilized antibody-analyte antigen-labeled antibody conjugate. Therefore, in conventional therapy, it is essential to make the response time sufficiently long. Therefore, if the first reaction is not performed or is extremely short <L,
For example, if an insolubilized antibody and a labeled antibody are reacted with the antigen to be measured at the same time, the reaction time of the second reaction will be prolonged and the measurement sensitivity and accuracy will be reduced, and if the reaction time of the second reaction is shortened, A significant reduction in measurement sensitivity and accuracy occurs. For these reasons, it has been impossible with conventional methods to shorten one reaction time without reducing measurement sensitivity and accuracy. It should be noted that Ichihara et al. [Clinical Pathology, 26, 1027 (1978
)) was also reported.

このように、従来の測定法における反応様式が複雑、非
効率的で、かつ、長時間を要するのは、使用する抗体が
多クローン性抗体であっで、不溶化抗体と標識抗体とが
ほぼ同一の抗体からなるため、両者が同一抗原の同−抗
原決定部位に対して競合的に反応するためであると考え
られる。
As described above, the reason why the reaction mode in conventional measurement methods is complicated, inefficient, and takes a long time is that the antibodies used are polyclonal antibodies, and the insolubilized antibody and labeled antibody are almost identical. This is thought to be due to the fact that both antibodies react competitively to the same antigen-determining site of the same antigen.

本発明は不溶化抗体の抗体と標識抗体の抗体とが、同じ
被測定抗原の異なる抗原決定蔀位を認識して結合するこ
とか可能な抗体、あ名いは、一方の抗体が抗原に結合す
Δどと―よっそ他方の抗体の結合を妨害するような近接
部位を避りで、互に干渉のない部位に結谷するよらな坑
体からなることを特徴とするものである。
The present invention is an antibody in which an insolubilized antibody and a labeled antibody can recognize and bind to different antigen-determining positions of the same antigen to be measured; otherwise, one antibody can bind to the antigen. It is characterized by being composed of a wide array of antibodies that connect to sites where they do not interfere with each other, avoiding adjacent sites that would interfere with the binding of the other antibody.

このような抗体として、単クローン性抗体が適している
が、抗原抗体反応をさらに効果的に行なわせるためには
不溶化抗体として1種以上の、標識抗体として2種以上
の、各々抗原認識部位の異なった単クローン性抗体を使
用するのが好ましい。
Monoclonal antibodies are suitable as such antibodies, but in order to make the antigen-antibody reaction more effective, one or more types of insolubilized antibodies and two or more types of labeled antibodies, each with an antigen recognition site, are used. Preferably, different monoclonal antibodies are used.

単クローン性の抗体はミエローマ細胞と抗体産生細胞を
Milsteinらの方法(Nature、256,4
95(1975))によって融合させた細胞由来の抗体
であり、同一クローンの抗体産生細胞から産生された抗
体であるので、その抗体は完全に同一であり、抗原に対
する特異性も岑全に同−であると考えられる。被測定抗
原は通常、いく2かの抗原決定部位を持っているので、
不溶化抗体及び標識抗体として、それぞれ異なった杭原
決定部位に対する単クローン性抗体を組合せて用いれば
、抗体間の競合は起きず、特異性9高い測定を行なうこ
とがで竺る。さらに、このような競合を起こさない単り
ローン性抗体を、不溶化抗体及び標識抗体として、2種
以上混合して用いることにより反応時間の短楠と一層高
い感度と信頼性が得られる。
For monoclonal antibodies, myeloma cells and antibody-producing cells were prepared using the method of Milstein et al. (Nature, 256, 4).
95 (1975)) and produced from antibody-producing cells of the same clone, the antibodies are completely identical and have the same specificity for the antigen. It is thought that. Since the antigen to be measured usually has several antigen-determining sites,
It can be concluded that by using a combination of monoclonal antibodies directed against different Kakehara-determined sites as the insolubilized antibody and the labeled antibody, competition between the antibodies does not occur and a measurement with high specificity 9 can be performed. Furthermore, by using a mixture of two or more types of single antibodies that do not cause competition as an insolubilized antibody and a labeled antibody, a short reaction time and even higher sensitivity and reliability can be obtained.

単クローン性抗体は特異性が非常に高いため、これらの
抗体を混合して用いると、逆に全体どしての特異性が低
下するのではないがという懸念が存在するが、混合する
各々の抗体の特異性が十分に高ければ、全体としての特
異性が低下することは全くない。
Since monoclonal antibodies have very high specificity, there is a concern that if these antibodies are used in combination, the overall specificity will decrease. If the specificity of an antibody is sufficiently high, there is no reduction in overall specificity.

所望する測定感度、反応速度を得るために混合する単ク
ローン性抗体の種類は2〜5種類が適当であり、これ以
上の種類を混合しても、測定感度、反応速度のよリ以上
の向上は認められない。
It is appropriate to mix 2 to 5 types of monoclonal antibodies to obtain the desired measurement sensitivity and reaction rate; even if more than 5 types are mixed, the measurement sensitivity and reaction rate will improve more than just that. It is not allowed.

本発明における測定は従来と同様に行なうことができる
。しかし、その反応機構は次に示すように、不溶化抗体
と標識抗体とが競合せず、従来法に比べて単純になって
いると考えら杆る。
Measurements in the present invention can be performed in the same manner as conventional methods. However, the reaction mechanism is considered to be simpler than the conventional method, as the insolubilized antibody and labeled antibody do not compete with each other, as shown below.

p>>p’、q>>q′、r>>r’、s>>s′(と
こに、{Ab}、Ag、Ab*、−は前記と同じ意味を
表わし、p、p’、q,q’、r,r’、s,s’はそ
れぞれ平衡定数を表わす。〕 即ち、不溶化抗体と標識抗体との抗原に対する結合部位
が互に異なる場合には、両者の競合は生じないので、反
応は、反応液中の成分が不溶化抗体−抗原−標識抗体結
合物を生成する方向に進行する。
p>>p', q>>q', r>>r', s>>s' (where {Ab}, Ag, Ab*, - represent the same meaning as above, p, p', q, q', r, r', s, and s' each represent an equilibrium constant.] In other words, if the antigen-binding sites of the insolubilized antibody and the labeled antibody are different from each other, competition between the two does not occur. The reaction proceeds in a direction in which the components in the reaction solution produce an insolubilized antibody-antigen-labeled antibody conjugate.

このことは、次の実験から裏づけられる。即ち、従来法
において述べたものと同じ実験系において、不溶化抗体
及び標識抗体として、HCGの異なる抗原決定部位を認
識する2種類の単クローン性抗HCG抗体を用いて、同
様に実験を行なった。結果は第3図に示したように、一
旦不溶化抗体と結合した抗原は、これに、異なった抗原
認識部位をもつ抗HCG抗体を加えても不溶化抗体(固
相)からの解離は認められず、抗原に対する抗体間の競
合は生じていないと考えられる。この反応様式は不溶化
抗体および標識抗体としてそれぞれ抗原認識部位の異な
る複数種の単クローン性抗体金同時に用いた場合でも同
様であり、反応効率はさらに向上するものと考えられる
。したがって、本発明においては、不溶化抗体、被測定
抗原及び標識抗体の三者を同時に反応させても、不溶化
抗体と被測定抗原とを混合した後標識抗抹を反応させて
も、更には、不溶化抗体と被測定抗原とを反応さぜた後
、しばらく間隔をおいて標識抗体を反応させても同様な
結果が得られるので、反応順序は全く制限されない。こ
のようなうとは多クローン性抗体を用いる従来の試薬で
は不可能であった。
This is supported by the following experiment. That is, in the same experimental system as described in the conventional method, experiments were conducted in the same manner using two types of monoclonal anti-HCG antibodies that recognize different antigen-determining sites of HCG as an insolubilized antibody and a labeled antibody. As shown in Figure 3, once the antigen bound to the insolubilized antibody, no dissociation from the insolubilized antibody (solid phase) was observed even when an anti-HCG antibody with a different antigen recognition site was added. , it is thought that there is no competition between antibodies against the antigen. This reaction pattern is the same even when multiple types of monoclonal antibodies having different antigen recognition sites are used simultaneously as an insolubilized antibody and a labeled antibody, and the reaction efficiency is thought to be further improved. Therefore, in the present invention, the insolubilized antibody, the antigen to be measured, and the labeled antibody may be reacted simultaneously, the insolubilized antibody and the antigen to be measured may be mixed, and then the labeled antibody may be reacted. Similar results can be obtained even if the labeled antibody is reacted with the antibody and the antigen to be measured after a certain interval, so the reaction order is not limited at all. Such an effect was not possible with conventional reagents using polyclonal antibodies.

本発明の反応様式を第4図に模式図で示した。The reaction mode of the present invention is schematically shown in FIG.

不溶化抗体2b及び2cと標識抗体1b及び1cとは競
合しないので、より短時間た、より多くの標識抗体1b
及び1Cが被測定抗原3の各々の抗原決定部位6b、6
cと結合することが可能であり、測定時間の短縮化とと
もに、測定精度及び感度を高めることができる。
Since insolubilized antibodies 2b and 2c do not compete with labeled antibodies 1b and 1c, more labeled antibodies 1b can be produced in a shorter time.
and 1C are the antigen-determining sites 6b and 6 of the antigen to be measured 3, respectively.
It is possible to combine with c, and it is possible to shorten measurement time and increase measurement accuracy and sensitivity.

第1表はα−フェトプロティン(AFP)を測定した場
合の本発明の方法を多クローン性抗体を用いた従来法お
よび不溶化粒体と標識抗体とに抗原認識部位の異なる、
単クローン性抗体各一種類傘用いた方法(比較法1)と
比較したものである。表から叩らかなように、測定時間
の大巾な短縮、測定操作の簡易化、測定精度及び感度の
向上等多くの利点が得られる。
Table 1 shows the method of the present invention when measuring α-fetoprotein (AFP), the conventional method using a polyclonal antibody, and the method using the insolubilized particles and the labeled antibody, which have different antigen recognition sites.
This is a comparison with a method using one type of monoclonal antibody (comparative method 1). As is obvious, many advantages can be obtained, such as a significant reduction in measurement time, simplification of measurement operations, and improvement in measurement accuracy and sensitivity.

なお、検体は妊婦血清、固相はポリスチロール製試験管
、標識酵素は西洋ワサビバ−オキシデース、基質はフロ
レチン酸を用いて、螢光光度計にて測定した。
The measurement was carried out using a fluorophotometer using pregnant woman's serum as the specimen, a polystyrene test tube as the solid phase, horseradish peroxidase as the labeled enzyme, and phloretic acid as the substrate.

又、不溶化抗体と標識抗体のいずれか一方を単クローン
性抗体とし、他方を従来から用いられている多クローン
性抗体とすることも可能である。しかし、この場合は単
クローン性抗体と多クローン性抗体とが共有する抗原決
定部位で競合が生じ、かつ、多クローン性抗体との親和
力が強く働くと考えられるため、両抗体とも単クローン
性抗体である場合は勿論、従来法に比べでも、その測定
精度及び感度は低下することとガる。
It is also possible to use either the insolubilized antibody or the labeled antibody as a monoclonal antibody, and the other as a conventionally used polyclonal antibody. However, in this case, competition occurs at the antigen-determining site shared by the monoclonal antibody and polyclonal antibody, and the affinity with the polyclonal antibody is thought to be strong. Of course, if this is the case, the measurement accuracy and sensitivity will be lower than that of the conventional method.

第5図は不溶化抗体と標識抗体とを第2表のように組合
せたCEA(癌胎児性蛋白)測定系における標準曲線を
示したものである。本発明め組合せによる測定系が最も
優れていることは明らかである。
FIG. 5 shows a standard curve in a CEA (carcinoembryonic protein) measurement system in which insolubilized antibodies and labeled antibodies are combined as shown in Table 2. It is clear that the measurement system based on the combination of the present invention is the most excellent.

なお、単クローン性抗体は後記の実施例2に準じてマウ
スミエローマ細胞を用いた細胞融合法によって得た抗原
認識部位の互に異なるクローン由来のものを使用し、多
クローン性抗体はDAKO社製(デンマーク)を用い、
不溶性担体はポリスチロール試験管、酵素は西洋ワサビ
パー−オキシ7’−ス、基質はo−フェニレンジアミン
を用いた。
The monoclonal antibodies used were those derived from clones with different antigen recognition sites obtained by a cell fusion method using mouse myeloma cells according to Example 2 below, and the polyclonal antibodies were obtained from DAKO. (Denmark)
A polystyrene test tube was used as the insoluble carrier, horseradish peroxy 7'-ase was used as the enzyme, and o-phenylenediamine was used as the substrate.

単クローン性抗体を得るためのミエローマ細胞と抗体産
生細胞との組合せは、各細胞が融合して、増殖しつつ抗
体を産生ずることが可能であれば、それぞれの細胞の由
来する動物の種類は限定されず、任意の組合せでよい。
The combination of myeloma cells and antibody-producing cells to obtain monoclonal antibodies can be carried out using the following methods: As long as each cell can fuse and produce antibodies while proliferating, the type of animal each cell is derived from can be determined. There is no limitation, and any combination may be used.

本発明における不溶性担体としてはポリスチレン、ポリ
エチレン、ポリアクリル、テフロン、紙、ガラス、アガ
ロース等、従来の免疫学的測定において使用されている
ものはすべて使用しうる。又、その形状はロレット状、
球状、棒状、盤状あるいは容器状、例えば光学セル、試
験管等のものが使用しうるが、他の形状であってもよい
。、             ・標識剤としては、E
IAではバ−オキシデース、β−D−ガラグトジデース
、アルカリホスファテース等が、FIAではフルオレッ
センインチオサイアエート等が通常使用されるが、その
標識剤の活性が測定可能であれば、その他のものであっ
てもよい。
As the insoluble carrier in the present invention, all those used in conventional immunoassays, such as polystyrene, polyethylene, polyacrylic, Teflon, paper, glass, agarose, etc., can be used. Also, its shape is rollet-like,
Spherical, rod-shaped, disc-shaped, or container-shaped shapes such as optical cells, test tubes, etc. can be used, but other shapes are also possible. , ・As a labeling agent, E
In IA, peroxidase, β-D-galagtodide, alkaline phosphatase, etc. are usually used, and in FIA, fluorescein inthiocyate, etc. are usually used, but other labeling agents can be used as long as the activity of the labeling agent can be measured. It may be.

標識剤が酵素である場合は、その活性を測定するために
基質を必要とする。この基質としては、対応する抗索と
反応して生成された生成物の量又は基質の減少量若しく
は残存量が容易に測定し得るものであればよい。例えば
、パ−オキシデースの基質どしては5−アミノサリチル
酸−H2O2、o−フェニレンジアミン−H2O2,4
−アミノアンチビリンーH2O2、フロレチン酸−H2
O2等、β−D−ガラクトシデースの基質としてはフル
オレゼイン−ジー(β−D−ガラクトピラノシド),o
−ニトロフェノール−β−D一ガラクトビラノシド、4
−メチルウンペリフェリルーβ−Dーガラクトシド等を
挙げることができる。
If the labeling agent is an enzyme, a substrate is required to measure its activity. Any substrate may be used as long as it is possible to easily measure the amount of the product produced by reacting with the corresponding rope, or the amount of reduction or remaining amount of the substrate. For example, peroxidase substrates include 5-aminosalicylic acid-H2O2, o-phenylenediamine-H2O2,4
-aminoantibiline-H2O2, phloretic acid-H2
As a substrate for β-D-galactosidase such as O2, fluoresin-di(β-D-galactopyranoside), o
-Nitrophenol-β-D-galactobiranoside, 4
-Methylumperipheryl β-D-galactoside and the like.

本発明の試薬によって測定し得る物質は、一分子中に抗
原決定部位を3個以上持つことが必要であるが、従来、
サンドイッチ法で測定していた物質は大部分、3個以上
の抗原決定部位を持っているので、実質上、従来法で測
定し得た物質はすべて測定可能である。例を挙げれば、
γ−グルタミルトランスベプチデース(γ−GTP)、
アルカリフォスファテース、糖転位酵素等の酵素類,甲
状腺刺激ホルモン(TSH),黄体刺激ホルモン(LH
)、胎盤性性腺刺激ホルモン(HCG)、インスリン、
セクレチン,成長ホルモン(GH)等の蛋白性ホルモン
類,フィブリン分解物(FDP)、C−反応性蛋白(C
RP)、α1−酸性グリコプロデイン(α1−AG)、
α1−アンチトリプシン(α1−AT),α2−プラス
ミンインヒビター(α2−PI)、β2−ミクログロブ
リン(β2−MG)、免疫グロブリン等の血漿蛋白類、
α−フェドプロテイン(AFP)、癌胎児性蛋白(CE
A)、胎児性フェリチン等の癌胎児性蛋白類、リンパ球
、微生物等の細胞、細胞表面坑原、細胞分画等である。
Substances that can be measured by the reagent of the present invention must have three or more antigen-determining sites in one molecule, but conventionally,
Since most of the substances measured by the sandwich method have three or more antigen-determining sites, virtually all substances that can be measured by the conventional method can be measured. For example,
γ-glutamyl transbetide (γ-GTP),
Alkaline phosphatase, enzymes such as glycosyltransferase, thyroid stimulating hormone (TSH), luteinizing hormone (LH)
), placental gonadotropin (HCG), insulin,
Secretin, proteinaceous hormones such as growth hormone (GH), fibrin degradation product (FDP), C-reactive protein (C
RP), α1-acidic glycoprodein (α1-AG),
Plasma proteins such as α1-antitrypsin (α1-AT), α2-plasmin inhibitor (α2-PI), β2-microglobulin (β2-MG), and immunoglobulin,
α-Fedoprotein (AFP), carcinoembryonic protein (CE)
A), oncofetal proteins such as fetal ferritin, lymphocytes, cells such as microorganisms, cell surface antigens, cell fractions, etc.

本発明の試薬は、前記のように、不溶化抗体、被測定抗
原及び標識抗体の反応順序は何ら制限されないので、不
溶化抗体と標識抗体を予め混合しておくことが可能であ
る。即ち、不溶性担体として適当な容器を用い、この内
壁に抗体を結合させて不溶化させると共に、標識抗体を
収納することができる。収納標識抗体は溶液状であって
も、その溶液を凍結乾燥したものであっ゛てもよく、さ
らに、錠剤、顆粒又は粉末状であってもよい。
As described above, in the reagent of the present invention, the reaction order of the insolubilized antibody, the antigen to be measured, and the labeled antibody is not limited in any way, so it is possible to mix the insolubilized antibody and the labeled antibody in advance. That is, a suitable container can be used as an insoluble carrier, and the antibody can be bound to the inner wall of the container to make it insoluble, and the labeled antibody can be stored therein. The stored labeled antibody may be in the form of a solution or a lyophilized product of the solution, and may also be in the form of tablets, granules, or powder.

本発明の試薬は不溶化抗体と標識抗体とから構成される
が、この試薬の使用を便ならしめるために、種々の補助
剤を包含させることができる。例えば、標識抗体が固体
状である場合にそれを溶解させるための溶解剤、不溶化
抗体と被測定抗原とを反応させた後及びこれに標識抗体
を反応させた後に固相を洗浄するための洗浄液、標識剤
が酵素である場合にその酵素活性を測定するための基質
、及び酵素反応を停止するための反応停止剤を任意の組
合せで包含させることができる。
Although the reagent of the present invention is composed of an insolubilized antibody and a labeled antibody, various auxiliary agents can be included to facilitate the use of this reagent. For example, a solubilizing agent for dissolving the labeled antibody when it is in a solid state, a washing solution for washing the solid phase after reacting the insolubilized antibody with the antigen to be measured, and after reacting the labeled antibody with the insolubilized antibody. , a substrate for measuring the enzyme activity when the labeling agent is an enzyme, and a reaction terminator for stopping the enzyme reaction can be included in any combination.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例1 AFP測定試薬 、     ′a)精製A
FPの製造 肝癌患者腹水5lから硫酸アンモニウムによる塩析法(
45%上清、70%沈殿)により、AFP粗抽出物16
.2gを得た。これを、兎抗AFP抗体結合セファロー
ネ4B(1mg/mlセファロース)50mlを用いた
アフィニティークロマトグラフィーにより精製して、精
製AFP924mgを得た。
Example 1 AFP measurement reagent, 'a) Purification A
Production of FP Salting out method using ammonium sulfate from 5 liters of ascites of a liver cancer patient (
AFP crude extract 16
.. 2g was obtained. This was purified by affinity chromatography using 50 ml of rabbit anti-AFP antibody-conjugated Sephalone 4B (1 mg/ml Sepharose) to obtain 924 mg of purified AFP.

b)単クローン性抗AFP抗体の製造 前記a)で製造した精製AFP50μgを完全フロイン
トアジュバント(CFA)と共に雌性BALB/cマウ
ス皮下に投与した。1週毎に4回投与した後、4日目に
脾臓を摘出して脾細胞を採取した。Dulbecco’
s modified MEM培地(以下D−MEMと
略す)にて洗浄した後1×108個を計測して、1X1
07個のマウスミエローマ細胞(P3−NSI/1−A
g 4.1)と混ぜ、37℃の42.5%ポリエチレン
グリコ−ル+1540および7.5%ジメチルスルフォ
キシドを含むD−MEM1ml中で1分間融合させた。
b) Production of monoclonal anti-AFP antibody 50 μg of the purified AFP produced in a) above was subcutaneously administered to female BALB/c mice together with complete Freund's adjuvant (CFA). After administration four times every week, the spleen was removed on the fourth day and splenocytes were collected. Dulbecco'
After washing with modified MEM medium (hereinafter abbreviated as D-MEM), 1 x 108 cells were measured and 1 x 1
07 mouse myeloma cells (P3-NSI/1-A
g 4.1) and fused for 1 minute in 1 ml of D-MEM containing 42.5% polyethylene glycol + 1540 and 7.5% dimethyl sulfoxide at 37°C.

この細胞にHAT培地(ヒボキサンチン、アミノプテリ
ン、チミジン、10%牛胎児血清を含むRPMI−16
40培地)を20mlになるように加えて、96ウェル
 マイクロプレートに0.2mlずつ分注して2週間培
養した後、増殖したウェル中の培養上清の抗体活性を測
定した。
The cells were mixed with HAT medium (RPMI-16 containing hypoxanthine, aminopterin, thymidine, and 10% fetal bovine serum).
40 medium) was added to make 20 ml, and 0.2 ml each was dispensed into a 96-well microplate and cultured for 2 weeks. After that, the antibody activity of the culture supernatant in the wells where the cells were grown was measured.

次に、活性の認められたウェルの細胞をBALB/Cマ
ウス胸腺細胞を含む10%牛胎児血清加RPMI−16
40培地40ml中に添加した。この細胞浮遊液を96
ウェル マイクロプレート2枚に分注し.1週間培養し
て9株の抗AFP抗体産生性ハイブリドーマを得た。
Next, the cells in the wells in which activity was observed were added to RPMI-16 containing 10% fetal bovine serum containing BALB/C mouse thymocytes.
40 medium in 40 ml. 96% of this cell suspension
Dispense into two well microplates. After culturing for one week, 9 strains of anti-AFP antibody-producing hybridomas were obtained.

これらを大量に培養し、それぞれ得られた培養上清10
lを精製AFPを結合したセ7ァロース4B(0.5m
gAFP/mlセファロース)50mlを用いたアフィ
ニティークロマトクラフィーにより精製を行い、それぞ
れ4.2〜11.6mlの単クロ−ン炸抗体を得た。各
抗体のLotNo.を1〜9とした。
These were cultured in large quantities, and 10% of each culture supernatant was obtained.
Separose 4B (0.5 m
Purification was performed by affinity chromatography using 50 ml of gAFP/ml Sepharose to obtain 4.2 to 11.6 ml of each monoclonal antibody. Lot No. of each antibody. was set as 1 to 9.

c)抗原認識部位の同定 i)抗AFP抗体感作試験管の製造 0.05Mリン酸緩衝生理食塩水pH6,4(以後PB
Sと喘ず)にて洗浄したポリスチレン製試験管にLot
No.1〜9の単クローン性抗AFP抗体0.2mgを
それぞれ含むPBS2mlを別々の試験管に加え、56
°C20分間反応を行った後PBSで洗浄して感作試験
管を製造した。
c) Identification of antigen recognition site i) Production of anti-AFP antibody sensitized test tube 0.05M phosphate buffered saline pH 6.4 (hereinafter PB
Place the lot in a polystyrene test tube washed with
No. Add 2 ml of PBS containing 0.2 mg each of monoclonal anti-AFP antibodies 1 to 9 to separate test tubes,
After reacting at °C for 20 minutes, the tubes were washed with PBS to prepare sensitized test tubes.

ii)酵素標識抗AFP抗体の製造 西洋ワサビパ−オキシデース(ベーリンガー・マンハイ
ム社 グレード1;以後HRPOと略す)5mlをO.
3M重炭酸ナトリウム緩衝液1.0mlに溶解し、これ
に0.1mlの1% 1−フルオロー2.4−ジニトロ
ベンゼンエタノール溶液を功え、1時間反応させこ。
ii) Production of enzyme-labeled anti-AFP antibody 5 ml of horseradish peroxidase (Boehringer Mannheim Grade 1; hereinafter abbreviated as HRPO) was added to the O.I.
Dissolve in 1.0 ml of 3M sodium bicarbonate buffer, add 0.1 ml of 1% 1-fluoro-2,4-dinitrobenzene in ethanol, and react for 1 hour.

さらに、1.0mlの0.06M過ヨウ素酸ナトリウム
溶液を加えて30分間反応させ、次に、1.0mlの0
.16Mエチレングリコール浴液を加えて1時間反応さ
せた後、0.01M 炭酸ナトリウム溶液pH9.5に
対して透析した。この溶液に、前記b〕において製造し
た9種の抗AFP抗体5mgをそれそれ加え、室温で3
時間反応させた後に5mgの水素化硼素ナトリウムを加
えて1晩反応させた。ざらに、0.01M PBS p
H7.2に対して透析してHRPO標識抗AFP抗体を
得た。
Furthermore, 1.0 ml of 0.06 M sodium periodate solution was added and reacted for 30 minutes, and then 1.0 ml of 0.06 M sodium periodate solution was added and reacted for 30 minutes.
.. After adding a 16M ethylene glycol bath solution and reacting for 1 hour, the mixture was dialyzed against 0.01M sodium carbonate solution, pH 9.5. To this solution, 5 mg of the 9 types of anti-AFP antibodies prepared in b) above were added, and
After reacting for an hour, 5 mg of sodium borohydride was added and reacted overnight. Zarani, 0.01M PBS p
HRPO-labeled anti-AFP antibody was obtained by dialysis against H7.2.

iii)抗原認識部位の同定 前記1)で製造した各抗AFP抗体感作試験管にPBS
1.5ml、前記a)で製造したAFPを100ng/
mlとなるようPBSで希釈した標準液0.1mlおよ
び前記ii)で製造したHRPO標識抗AFP抗体10
0倍希釈溶液0.4ml加え、30分間反応を行った。
iii) Identification of antigen recognition site Add PBS to each anti-AFP antibody sensitized test tube prepared in 1) above.
1.5 ml, 100 ng/AFP produced in a) above
0.1 ml of the standard solution diluted with PBS to make 10 ml of the HRPO-labeled anti-AFP antibody prepared in ii) above.
0.4 ml of the 0x diluted solution was added, and the reaction was carried out for 30 minutes.

反応終了後、洗浄液で洗浄し.100mg/mlの0−
フェニレンジアミンおよび0.01%過酸化水素を含む
酵素基質溶液3mlを加え30分間反応を行った。、4
M硫酸0.05mlを加えて酵素反応を停止した後、4
50nmにおける吸光度を測定し、反応の得られた組合
せを+.得られなかった組合せを−とじて第3表に示し
た。
After the reaction is complete, wash with washing solution. 100mg/ml 0-
3 ml of an enzyme substrate solution containing phenylenediamine and 0.01% hydrogen peroxide was added, and the reaction was carried out for 30 minutes. , 4
After stopping the enzyme reaction by adding 0.05 ml of M sulfuric acid,
The absorbance at 50 nm was measured and the resulting combination of reactions was +. Combinations that could not be obtained are shown in Table 3.

抗原認識部位の差より前記b)で得られた9株の単クロ
−ン性抗AFP抗体はLot No.1、2.3,5.
7の5株とLot No.6の1株と、Lot No.
4.8、9の3株との3種類に分別することができ、そ
れぞれ抗AFP抗体〔A〕,(B)及び〔C〕とじた。
Based on the difference in antigen recognition sites, the nine monoclonal anti-AFP antibodies obtained in b) above were Lot No. 1, 2.3, 5.
7 of 5 stocks and Lot No. 6 and 1 strain, Lot No.
It could be divided into three types, 4.8 and 9, and the anti-AFP antibodies [A], (B) and [C] were labeled respectively.

d)AFP測定試薬の製造 前記b〕により製造した単クローン性抗体のうちの〔A
)を用いて、前記c−i〕の方法によって抗AFP抗体
感作試験管を製造した。
d) Production of AFP measurement reagent [A] of the monoclonal antibodies produced according to b] above.
), an anti-AFP antibody sensitized test tube was produced by the method of c-i] above.

又、C−ii)の方法により、単クロ−ン性抗体(B〕
および〔C〕にHRPOを標識した後、これを、PBS
にて10倍に希釈して、2mlづつに充填した。次いで
、この両者を凍結乾燥した後密栓して、AFP測定試薬
を製造した。
In addition, monoclonal antibody (B) can be obtained by the method of C-ii).
After labeling [C] with HRPO, this was added to PBS.
The solution was diluted 10 times and filled into 2 ml portions. Next, both were freeze-dried and sealed to produce an AFP measurement reagent.

e)AFPの測定 前記d)で製造した抗AFP抗体感作試験管にPBS1
.8mlを加えた後、前記a)で製造したAFPを10
00、100、10、1、0ng/ulとなるよう健常
人血清で希釈した各@度の標準液0.1mlおよび前記
d)で製造したHRPO標識抗AFP抗体を2mlの精
製水にて溶解した液0、1mlを加え、10分間反応を
行った。反応終了後、0.005% ツィーン20を含
む生理食塩水(以下洗浄剤と略す)で洗浄し、300m
g/Ulのフロレチン酸および0.01%過酸化水素を
含む酵素基質溶液3mlを加え10分間反応を行った。
e) Measurement of AFP Add PBS1 to the anti-AFP antibody sensitized test tube prepared in d) above.
.. After adding 8 ml, add 10 ml of AFP prepared in a) above.
0.1 ml of each standard solution diluted with healthy human serum to give 0, 100, 10, 1, 0 ng/ul and the HRPO-labeled anti-AFP antibody prepared in step d) above were dissolved in 2 ml of purified water. 0.1 ml of the solution was added and the reaction was carried out for 10 minutes. After the reaction was completed, it was washed with physiological saline containing 0.005% Tween 20 (hereinafter abbreviated as detergent) and washed for 300 m.
3 ml of an enzyme substrate solution containing g/Ul of phloretic acid and 0.01% hydrogen peroxide was added, and the reaction was carried out for 10 minutes.

5%亜硫酸ナトリウム0.1mlを加え酵素反応を停止
した後、螢光々度計を用いて励起波長325nm、螢光
波長420nmにて螢光強度を測定した。得られた標準
曲線を第6図に示した。
After 0.1 ml of 5% sodium sulfite was added to stop the enzyme reaction, the fluorescence intensity was measured using a fluorometer at an excitation wavelength of 325 nm and a fluorescence wavelength of 420 nm. The obtained standard curve is shown in FIG.

実施例2 CEA測定試薬 a)精製CEAの製造 大腸癌組織40gを細切し、これに100mlの蒸留水
金加えホモジナイザーを用いて破砕した。この液に、同
量の1.2M過塩素酸を加えて、攪拌下に30分間抽出
を行った。遠心分離により上清を得、これを蒸留水に対
して透析してCEA粗抽出物を得た。
Example 2 CEA measurement reagent a) Production of purified CEA 40 g of colon cancer tissue was cut into small pieces, and 100 ml of distilled water was added thereto and crushed using a homogenizer. The same amount of 1.2M perchloric acid was added to this liquid, and extraction was performed for 30 minutes while stirring. A supernatant was obtained by centrifugation, and this was dialyzed against distilled water to obtain a CEA crude extract.

この粗抽出物を10mlに濃縮して、あらかじめ生理食
塩水にて平衡化しておいた Sepharose 4Bを用いてゲル濾過を行い、第
1分画を得た。これを同様に平衡化したSephade
x G−200にて再びゲル濾過を行い、第2分画を採
取して2mlに濃縮して精製CEA135μgを得た。
This crude extract was concentrated to 10 ml and subjected to gel filtration using Sepharose 4B equilibrated with physiological saline to obtain a first fraction. Sephade equilibrated in the same way
Gel filtration was performed again using x G-200, and the second fraction was collected and concentrated to 2 ml to obtain 135 μg of purified CEA.

b)単クローン性抗CEA抗体の製造 前記a)で製造した精製CEAを用いて実施例1−b)
と同じ操作で抗CEA産生性ハイブリドーマ23株を得
た。
b) Production of monoclonal anti-CEA antibody Example 1-b) using the purified CEA produced in a) above
Twenty-three anti-CEA-producing hybridoma strains were obtained by the same procedure.

なお、マウスの免疫は各投与共に精製CEA゛30μg
を用いた。あらかじめ、腹腔に0.5mlのプリスタン
(2,6、10,14−テトラメチルペンタデカン;和
光純薬)を投与した雌性BALB/Cマウスの腹腔に、
1X1O6個の各ハイブリドーマを接種して、2週間後
に腹水を採取した。各腹水を0.01Mりン酸緩衝液p
H7.0で平衡化したDEAE−セルロースによりクロ
マトグラフィーを行ない、未吸着分画を単クローン性抗
CEA抗体として得た。実施例1−C)に準じた抗原認
識部位の同定試験の結果、各抗体は9種類にわけられ、
各々9Lot、5Lot、3Lot、あとは1Lotず
つであり、それぞれ抗CEA抗体〔A〕、〔B〕、〔C
〕、〔D〕、〔E〕、〔F〕、〔G〕、〔H〕・および
(J〕とした。
The mice were immunized with 30 μg of purified CEA for each administration.
was used. Into the abdominal cavity of a female BALB/C mouse, 0.5 ml of pristane (2,6,10,14-tetramethylpentadecane; Wako Pure Chemical Industries, Ltd.) was administered into the abdominal cavity in advance.
1×106 hybridomas were inoculated, and ascitic fluid was collected 2 weeks later. Each ascites was diluted with 0.01M phosphate buffer p
Chromatography was performed using DEAE-cellulose equilibrated with H7.0, and the unadsorbed fraction was obtained as a monoclonal anti-CEA antibody. As a result of the antigen recognition site identification test according to Example 1-C), each antibody was divided into nine types,
There are 9 Lots, 5 Lots, 3 Lots each, and 1 Lot each, each with anti-CEA antibodies [A], [B], and [C
], [D], [E], [F], [G], [H], and (J).

c)抗CEA抗体感作試験管の製造 ポリスチレン製試験管をPBSにて洗浄した後、前記b
)で製造した抗CEA抗体〔A〕、〔E〕(1mg/m
l)各々1ml入れて、56℃20分間反応させた。反
応後PBSで洗浄して抗CEA抗体(A)、(E)感作
試験管を製造した。    ・ d)CEA測定試薬の製造 前記b)で製造した抗CEA抗体〔B〕、〔C)。
c) Production of anti-CEA antibody sensitized test tube After washing the polystyrene test tube with PBS,
) anti-CEA antibodies [A], [E] (1 mg/m
l) 1 ml of each was added and reacted at 56°C for 20 minutes. After the reaction, the tubes were washed with PBS to produce anti-CEA antibody (A) and (E) sensitized test tubes. - d) Production of CEA measurement reagent Anti-CEA antibodies [B] and [C) produced in b) above.

〔D〕および〔G〕を用いて実施例1−c−ii)に準
じてHRPO標識抗CEA抗体〔B),(C〕、〔D〕
、〔G〕を得た。これを生理食塩水にて50倍に希釈し
て、前記c)で製造した抗CEA抗体〔A)、〔E〕感
作試験管に0.2mlずつ分注して凍結乾燥を行い、C
EA測定試薬を製造した。
HRPO-labeled anti-CEA antibodies [B), (C], [D] according to Example 1-c-ii) using [D] and [G]
, [G] was obtained. This was diluted 50 times with physiological saline, 0.2 ml each was dispensed into the anti-CEA antibody [A) and [E] sensitized test tubes prepared in c) above, and lyophilized.
An EA measurement reagent was manufactured.

e)CEAの測定 前記a)で製造した精製CEAを健常人血清で希釈して
100、30,10,3.1,0.3,0.1ng/m
lの濃度とし、各々0.2mlと蒸留水各々0.8ml
とを前記d)で製造したCEA測定試薬に同時に加え、
15分間攪拌下で反応させた。反応終了後、試験管を洗
浄剤にて洗浄した後に、500mg/ulのo−フェニ
レンジアミンおよび0.02%過酸化水素を含む基質溶
液0.5mlを加え10分間反応させた。2N亜硫酸0
.1mlを加えて反応を停止した後、分光々度計を使用
して波長492nmにおける吸光度を測定した。
e) Measurement of CEA The purified CEA produced in a) above was diluted with healthy human serum to give 100, 30, 10, 3.1, 0.3, 0.1 ng/m.
0.2 ml each and 0.8 ml each of distilled water.
and simultaneously added to the CEA measurement reagent prepared in d) above,
The reaction was allowed to proceed for 15 minutes under stirring. After the reaction was completed, the test tube was washed with a detergent, and then 0.5 ml of a substrate solution containing 500 mg/ul of o-phenylenediamine and 0.02% hydrogen peroxide was added and reacted for 10 minutes. 2N sulfite 0
.. After adding 1 ml to stop the reaction, absorbance at a wavelength of 492 nm was measured using a spectrophotometer.

得られた標準曲線を第7図に示した。The obtained standard curve is shown in FIG.

実施例3  HCG−β測定試薬 a)HCG−βサブユニットの製造 HCG(2000iu/mg)1gを2ml0.025
Mリン酸緩衝液pH5.6に溶解し、あらかじめ同じ緩
衝液にて平衡化したDEAE−SephadexA−5
0 3gを用いでクロマトグラフィーを行った。0.0
5Mリン酸緩衝液pH5,6溶出分画を採取し蒸留水に
対して透析して精製HCG308mgを得、これを凍結
乾燥した。このうち300mgを10M尿素(pH4,
5)10mlに溶解し、40℃ 1時間反させた。あら
がじめ0.03M グリシンおよび10M尿素を含む溶
液で平衡化したDEAE−Sephadex A−50
2gを用いてクロマドグラフィーを行い、0.2Mグリ
シン、1M NaClおよび8M尿素を含む溶液で溶出
して得た分画を生理食塩水に対して透析してHCG−β
サブユニット147mgを得た。
Example 3 HCG-β measurement reagent a) Production of HCG-β subunit 1g of HCG (2000iu/mg) to 2ml0.025
DEAE-Sephadex A-5 dissolved in M phosphate buffer pH 5.6 and equilibrated with the same buffer in advance
Chromatography was performed using 3 g of 0.03 g. 0.0
The 5M phosphate buffer pH 5.6 elution fraction was collected and dialyzed against distilled water to obtain 308 mg of purified HCG, which was lyophilized. Of this, 300mg was added to 10M urea (pH 4,
5) Dissolved in 10 ml and incubated at 40°C for 1 hour. DEAE-Sephadex A-50 pre-equilibrated with a solution containing 0.03M glycine and 10M urea.
Chromatography was performed using 2 g of HCG-β, and the fraction obtained by elution with a solution containing 0.2 M glycine, 1 M NaCl, and 8 M urea was dialyzed against physiological saline.
147 mg of subunit was obtained.

b)抗HCG−β抗体の製造 抗原を膜力する動物をBALB/cマウスの代りにウィ
スター系ラットを用いて実施例2−b〕の方法に準じ、
17 Lotの抗HCG−β抗体を製造した。これらの
抗体について、実施例1−c)の方法に準じて抗原認識
部位の同定を行ない、それぞれ7、5、4、及び1 L
ot を包含する4種類に分別し、それぞれ抗HCG−
β抗体〔A〕、〔B〕、〔C)および〔D〕とした。
b) Production of anti-HCG-β antibody According to the method of Example 2-b], Wistar rats were used instead of BALB/c mice as the animals to which the antigen was applied.
17 lots of anti-HCG-β antibodies were produced. The antigen recognition sites of these antibodies were identified according to the method of Example 1-c), and 7, 5, 4, and 1 L were obtained, respectively.
The anti-HCG-
The β antibodies were designated as [A], [B], [C) and [D].

c)抗HCG−β抗体感作ビーズ(不溶化担体)の製造 ポリエチレンピーズ100個を前記b)で製造した抗H
CG−β抗体〔A〕、〔B〕各々25mgを含む100
mlのPBS中に加え、56℃20分間反応を行なった
後PBSで洗浄して、抗HCG−β抗体(A〕、〔B〕
感作ビーズを製造した。
c) Production of anti-HCG-β antibody-sensitized beads (insolubilized carrier)
100 containing 25 mg each of CG-β antibodies [A] and [B]
ml of PBS, reacted at 56°C for 20 minutes, washed with PBS, and prepared anti-HCG-β antibodies (A), [B].
Sensitized beads were produced.

d)酵素標識抗HCG−β抗体の製造 前記b)により製造した抗HCG−β抗体(C)、〔D
〕を用いて、実施例1−c−ii)と同様に操作した後
、PBSで200倍に希釈して、HRPO標識抗HCG
−β抗体〔C〕、〔D〕を製造した。
d) Production of enzyme-labeled anti-HCG-β antibodies Anti-HCG-β antibodies (C) and [D
] and operated in the same manner as in Example 1-c-ii), diluted 200 times with PBS, and prepared HRPO-labeled anti-HCG.
-β antibodies [C] and [D] were produced.

e)洗浄剤の製造 9gのNaClおよび50ulのツィ−ン20を精秤し
て精製水にて100mlとした。この溶液をバイアルに
充填して、洗浄剤10倍濃縮液を製造した。
e) Preparation of detergent 9 g of NaCl and 50 ul of Tween 20 were accurately weighed and made up to 100 ml with purified water. This solution was filled into a vial to produce a 10-fold concentrated detergent solution.

f)酵素基質の製造 5−アミノサリチル酸26.40g、およびリン酸−カ
リウム54.34gおよびリン酸二ナトリウム5.72
gを乳鉢にて混合微粒化した後、500mgを精秤して
バイアルに充填した。過酸化水素(30%溶液)1.5
mlを精製水にて100m1となるよう希釈した後、1
mlを測りアンブルに充填して熔閉した。以上により酵
素基質を製造した。
f) Production of enzyme substrate 26.40 g of 5-aminosalicylic acid, and 54.34 g of potassium phosphate and 5.72 g of disodium phosphate.
After mixing and atomizing g in a mortar, 500 mg was accurately weighed and filled into a vial. Hydrogen peroxide (30% solution) 1.5
After diluting the ml with purified water to 100 ml, 1
ml was measured, filled into an amble, and melted. An enzyme substrate was produced in the above manner.

g)酵素反応停止剤の製造 アジ化ナトリウム2gを精秤して100mlの精製水に
溶解した後2mlずつアンプルに充填し、熔閉して僚索
反応停止剤を製造した。
g) Production of enzymatic reaction terminator 2 g of sodium azide was accurately weighed, dissolved in 100 ml of purified water, 2 ml each was filled into ampoules, and the mixture was melted and closed to produce a fibrillation reaction terminator.

h)HCG測定試薬の作成 前記c)〜g)にて製造した材料を下記の如く組合わせ
て、HCG測定試薬を作成した。
h) Preparation of HCG measurement reagent The materials produced in steps c) to g) above were combined as shown below to prepare an HCG measurement reagent.

1.抗HCG−β抗体(A)、〔B)感作ビーズ 2、HRPO標識抗HCG−β抗体(C)、〔D〕3.
洗浄剤(10倍暉縮液) 4、酵素基質(5−アミノサリチル酸、過酸化水素) 5.酵素反応停止剤 i)HCGの測定 前記h)で作成したHCG測定試薬を用いて以下の測定
を行った。HRPO標識抗HCG−β抗体〔C〕、〔D
〕0.4mlを試験管にとり、これに抗HCG−β抗体
〔A〕、〔B〕感作ビーズ1個を加え、次に日本薬局方
収載のHCGを健常人血清で5000,500,50,
5,0.5miu/mlに希釈した標準液各0.1ml
を加え10分間反応を行った。反応終了後洗浄剤を精製
水にて10倍に希釈して、これを用いてビーズを洗浄し
、次に酵素基質の全量を精製水150mlに溶解した基
質溶液3mlを加え、30分間反応を行った。その後酵
素反応停止剤0.025mlを加えて反応を停止させ、
反応液の500nmにおける吸光度を測定した。得られ
た椰準曲線を第8図に示した。
1. Anti-HCG-β antibody (A), [B) sensitized beads 2, HRPO-labeled anti-HCG-β antibody (C), [D]3.
Cleaning agent (10x diluted solution) 4. Enzyme substrate (5-aminosalicylic acid, hydrogen peroxide) 5. Enzyme Reaction Terminator i) Measurement of HCG The following measurements were performed using the HCG measurement reagent prepared in h) above. HRPO-labeled anti-HCG-β antibody [C], [D
] Transfer 0.4 ml to a test tube, add one anti-HCG-β antibody [A] and one [B] sensitized bead, and then add HCG listed in the Japanese Pharmacopoeia to 5000, 500, 50,
5, 0.1 ml each of standard solutions diluted to 0.5 miu/ml
was added and the reaction was carried out for 10 minutes. After the reaction, the detergent was diluted 10 times with purified water and used to wash the beads. Next, 3 ml of a substrate solution in which the entire amount of enzyme substrate was dissolved in 150 ml of purified water was added, and the reaction was carried out for 30 minutes. Ta. After that, 0.025 ml of enzyme reaction terminator was added to stop the reaction.
The absorbance of the reaction solution at 500 nm was measured. The obtained palm standard curve is shown in FIG.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のサンドイッチ法における反応様式を示す
模式図、第2図及び第3図は抗体間の競合が存在するか
否かの実験結果を示すグラフ、第4図は本発明の反応様
式を示す模式図、第5図は本発明と従来法との比較を示
すグラフ、第6図は実施例1の結果を示すグラフ、第7
図は実施例2の結果を示すグラフ、第8図は実施例4の
結果を示すグラフである。 1a、1b、1c、・・・標識抗体、2a、2b、2c
・・・不溶化抗体、3・・・被測定抗原、4・・・不溶
性担体(固相)、5・・・標識剤(酵素等)、6b、6
c・・・抗原決定部位
Figure 1 is a schematic diagram showing the reaction pattern in the conventional sandwich method, Figures 2 and 3 are graphs showing the experimental results of whether competition exists between antibodies, and Figure 4 is the reaction pattern of the present invention. FIG. 5 is a graph showing a comparison between the present invention and the conventional method, FIG. 6 is a graph showing the results of Example 1, and FIG. 7 is a graph showing the results of Example 1.
The figure is a graph showing the results of Example 2, and FIG. 8 is a graph showing the results of Example 4. 1a, 1b, 1c, ... labeled antibody, 2a, 2b, 2c
... Insolubilized antibody, 3... Antigen to be measured, 4... Insoluble carrier (solid phase), 5... Labeling agent (enzyme, etc.), 6b, 6
c...antigen-determining site

Claims (7)

【特許請求の範囲】[Claims] (1)サンドイッチ法による免疫学的測定試薬において
、不溶化抗体が同一被測定抗原のそれぞれ異なる抗原決
定部位を認識して結合することが可能な1種以上の単ク
ローン性抗体からなり、標識抗体が前記被測定抗原の前
記とは異なる抗原決定部位を認識して結合することか可
能な2種以上の互いに異なった単クローン性抗体からな
ることを特徴とする免疫学的測定試薬。
(1) In an immunoassay reagent using a sandwich method, the insolubilized antibody is composed of one or more monoclonal antibodies that can recognize and bind to different antigen-determining sites of the same antigen to be measured, and the labeled antibody is An immunological measurement reagent comprising two or more different monoclonal antibodies capable of recognizing and binding to antigen-determining sites different from the above-mentioned antigen-determining sites of the antigen to be measured.
(2)不溶性担体がガラスもしくはプラスチック製容器
又はプラスチック製ビーズである特許請求の範囲第1項
記載の試薬。
(2) The reagent according to claim 1, wherein the insoluble carrier is a glass or plastic container or plastic beads.
(3)標識剤が酵素又は螢光物質である特許請求の範囲
第1項記載の試薬。
(3) The reagent according to claim 1, wherein the labeling agent is an enzyme or a fluorescent substance.
(4)標識抗体を、抗体を不溶化するための不溶性担体
であるガラスもしくはプラスチック製容器に収納してな
る特許請求の範囲第1項記載の試薬。
(4) The reagent according to claim 1, wherein the labeled antibody is housed in a glass or plastic container that is an insoluble carrier for insoluble the antibody.
(5)不溶化抗体および標識抗体が凍結乾燥物である特
許請求の範囲第1項ないし第4項のいずれか一項に記載
の試薬。
(5) The reagent according to any one of claims 1 to 4, wherein the insolubilized antibody and the labeled antibody are lyophilized products.
(6)次の構成成分からなる特許請求め範囲第1項記載
の試薬: a)不溶化抗体、 b)標識抗体、 c)溶解剤、洗浄剤、基質及び反応停止剤から選ばれた
1種乃至4種の補助剤。
(6) The reagent according to claim 1, consisting of the following components: a) an insolubilized antibody, b) a labeled antibody, c) one or more selected from a solubilizer, a detergent, a substrate, and a reaction terminator. 4 types of adjuvants.
(7)サンドイッチ法による免疫学釣用測定方法におい
て、同一被測定抗原のそれぞれ異なる抗原決定部位を認
識じて結合することが可能な1種以上の単クローン性抗
体を含む不溶化抗体と、前記被測定抗原の前記とは異カ
る抗原決定部位を認識して結合することが可能な2種以
上の互いに異なる単クローン性抗体を含む標識抗体とを
被測定抗原に同時に反応させることを特徴とする免疫学
的測定方法。
(7) In an immunological measurement method using a sandwich method, an insolubilized antibody containing one or more monoclonal antibodies capable of recognizing and binding to different antigen-determining sites of the same antigen to be measured; It is characterized by simultaneously reacting the antigen to be measured with a labeled antibody containing two or more different monoclonal antibodies capable of recognizing and binding to antigen-determining sites different from those described above on the antigen to be measured. Immunological measurement method.
JP16585082A 1982-09-22 1982-09-22 Immunological measuring reagent Pending JPS5954966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16585082A JPS5954966A (en) 1982-09-22 1982-09-22 Immunological measuring reagent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16585082A JPS5954966A (en) 1982-09-22 1982-09-22 Immunological measuring reagent

Publications (1)

Publication Number Publication Date
JPS5954966A true JPS5954966A (en) 1984-03-29

Family

ID=15820180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16585082A Pending JPS5954966A (en) 1982-09-22 1982-09-22 Immunological measuring reagent

Country Status (1)

Country Link
JP (1) JPS5954966A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231168A (en) * 1984-05-01 1985-11-16 Teijin Ltd Immunoassay reagent and kit employing monoclonal antibody for human alpha2-plasmin inhibitor
JPS61213671A (en) * 1985-03-20 1986-09-22 Teijin Ltd Method for measuring human plasmin-alpha2-plasmin inhibitor compound body
JPS61213670A (en) * 1985-03-20 1986-09-22 Teijin Ltd Method for measuring human alpha2-plasmin inhibitor
JPS62500686A (en) * 1984-10-31 1987-03-19 アルコン ラボラトリ−ズ インコ−ポレイテツド Qualitative antigen testing, products and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158718A (en) * 1980-04-09 1981-12-07 Nat Res Dev Monoclonal antibody against hepatitis b virus
JPS5786051A (en) * 1980-07-28 1982-05-28 Akzo Nv Determination of antigen employing two or more monochronal antibodies
JPS57118159A (en) * 1980-08-04 1982-07-22 Hybritech Inc Immunological inhibition test using signle coulomb- oriented antibody

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158718A (en) * 1980-04-09 1981-12-07 Nat Res Dev Monoclonal antibody against hepatitis b virus
JPS5786051A (en) * 1980-07-28 1982-05-28 Akzo Nv Determination of antigen employing two or more monochronal antibodies
JPS57118159A (en) * 1980-08-04 1982-07-22 Hybritech Inc Immunological inhibition test using signle coulomb- oriented antibody

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231168A (en) * 1984-05-01 1985-11-16 Teijin Ltd Immunoassay reagent and kit employing monoclonal antibody for human alpha2-plasmin inhibitor
JPS62500686A (en) * 1984-10-31 1987-03-19 アルコン ラボラトリ−ズ インコ−ポレイテツド Qualitative antigen testing, products and methods
JPS61213671A (en) * 1985-03-20 1986-09-22 Teijin Ltd Method for measuring human plasmin-alpha2-plasmin inhibitor compound body
JPS61213670A (en) * 1985-03-20 1986-09-22 Teijin Ltd Method for measuring human alpha2-plasmin inhibitor
JPH0535827B2 (en) * 1985-03-20 1993-05-27 Teijin Ltd
JPH0535826B2 (en) * 1985-03-20 1993-05-27 Teijin Ltd

Similar Documents

Publication Publication Date Title
GB2095831A (en) Monoclonal antibody reagent and method for immunological assay
US4200436A (en) Immunochemical measuring process
US4804626A (en) Immunometric assay for the detection of human chorionic gonadotropin
AU584332B2 (en) Antibodies, manufacture and use
JPH0340341B2 (en)
JPH01254868A (en) Method of measuring antigen material with extra-high sensitivity
Karawajew et al. Production and ELISA application of bispecific monoclonal antibodies against fluorescein isothiocyanate (FITC) and horseradish peroxidase (HRP)
CN100593721C (en) Immunoassay method and kit for an early and simulataneous detection of biochemical markers in a patient&#39;s sample
EP0421392B1 (en) Anti-hCG-beta core monoclonal antibody, its production and use
JPH0736016B2 (en) Immunoglobulin quantification method
Barnard et al. The measurement of progesterone in serum by a non-competitive idiometric assay
JPS5954966A (en) Immunological measuring reagent
CA2012740C (en) A monoclonal antibody recognizing c-terminus of anp
CA2036237A1 (en) Immunoassay methods using noncross reactive cea gene family member antibodies
KR890003591B1 (en) Process and reagent for the determination of the luteinising hormone and monoclonal antibodies suitable therefor
JP3615006B2 (en) Monoclonal antibody, immunoassay method and reagent using the antibody
JP2518602B2 (en) Immunological assay reagent and kit using monoclonal antibody against human protein S
JPH0532705B2 (en)
EP0504423A1 (en) Method and kit for immunoassay of propeptide of osteocalcin and proosteocalcin
JPH04108397A (en) Monoclonal antibody and method for measuring tsh with the same
JPS5924256A (en) Immunological measuring method and reagent
JPS62185169A (en) Multipurpose immunochemical measuring method and reagent
JP2949637B2 (en) Measurement method using bispecific antibody
JP3152429B2 (en) Anti-hCG-β core monoclonal antibody producing hybridoma, said monoclonal antibody and use thereof
JPS6117065A (en) Measuring reagent for human chorionic gonadotropin