JPS595406B2 - Aligned prepreg and its manufacturing method - Google Patents

Aligned prepreg and its manufacturing method

Info

Publication number
JPS595406B2
JPS595406B2 JP6837376A JP6837376A JPS595406B2 JP S595406 B2 JPS595406 B2 JP S595406B2 JP 6837376 A JP6837376 A JP 6837376A JP 6837376 A JP6837376 A JP 6837376A JP S595406 B2 JPS595406 B2 JP S595406B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
bundles
fluid
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6837376A
Other languages
Japanese (ja)
Other versions
JPS52151362A (en
Inventor
健二 福多
惟宏 長塚
純一 関口
俊雄 島田
征夫 久富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Nippon Carbon Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP6837376A priority Critical patent/JPS595406B2/en
Publication of JPS52151362A publication Critical patent/JPS52151362A/en
Publication of JPS595406B2 publication Critical patent/JPS595406B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は繊維強化プラスチックの成形材料として用いら
れる引揃えプリプレグに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aligned prepreg used as a molding material for fiber-reinforced plastics.

繊維強化プラスチック用のプレプレグは不織布状、ヤー
ン状、クロス状又はチョップストランド状の繊維、或は
一方向に引揃えた繊維、又はこれらを組み合わせたもの
に熱硬化性樹脂を含浸したもので、得られたプリプレグ
はこの製造に用いられた繊維によつてそれぞれの特徴が
生じ、その特徴に応じて各種の用途に向けられている。
Prepreg for fiber-reinforced plastics is made by impregnating thermosetting resin with nonwoven fabric, yarn, cloth, or chopped strand fibers, unidirectional fibers, or a combination of these. The prepared prepregs have different characteristics depending on the fibers used in their manufacture, and are used for various purposes depending on these characteristics.

これらのプリプレグのうち、一方向に引揃えた繊維を用
いて得たプリプレグは容易に薄いシート状、テープ状の
ものが得られるため長尺の管状体、積層板等の成形材料
として好適で、例えばゴルフのクラブシヤフト、スキー
のボデイ等のレジヤースポーツ用品や自動車、航空機材
などの高強度複合材料に用いられている。
Among these prepregs, prepregs obtained using fibers aligned in one direction can easily be made into thin sheets or tapes, so they are suitable as molding materials for long tubular bodies, laminates, etc. For example, it is used in high-strength composite materials such as leisure sports equipment such as golf club shafts and ski bodies, automobiles, and aircraft materials.

従来、この種のプリプレグは一方向に引揃えたマルチフ
イラメントの繊維の束に樹脂を含浸し、その繊維の束の
複数個を同方向にそれぞれの束が互いに隣接するように
並べてこれら繊維の束と束とをこれら束に含浸させた樹
脂によつて接合してシート状又はテープ状の形状に成形
することにより得られている。
Conventionally, this type of prepreg is made by impregnating resin into bundles of multifilament fibers aligned in one direction, and then arranging multiple fiber bundles in the same direction so that each bundle is adjacent to each other. and a bundle are joined together with a resin impregnated into these bundles and formed into a sheet or tape shape.

この従来方法により得られる一方向引揃えプリプレグは
未硬化の樹脂の結合力だけで一方向に並行するマルチフ
イラメントの繊維の束と束とが接合されているので、こ
のプリプレグは機械的ストレス、熱変化に対する抵抗力
が小さく、これら諸条件が加わることによつて繊維の束
と束との結合力が弱まる。
The unidirectionally aligned prepreg obtained by this conventional method is made up of bundles of multifilament fibers that are parallel to each other in one direction bonded together using only the bonding force of the uncured resin. The resistance to change is small, and the combination of these conditions weakens the binding force between the fiber bundles.

その結果従来のプリプレグは長期間の保存、使用のさい
の温度変化によつてプリプレグの繊維の束と束との間に
隙間を生じ、ときには層状的に離間するにいたり、また
運搬したり、このプリプレグを用いて成形品を製作する
さいにも機械的ストレス熱変化によつて繊維の束と束と
の結合力が弱まり隙間や離間が生じ易すくプリプレグと
して品質、又は成形品としての品質が低下する欠点を有
している。さらに一方向引揃えプリプレグを成形し、か
つその成形品の樹脂を硬化させて得られる繊維強化プラ
スチツク製品の引揃え方向とその直角方向の強度は硬化
樹脂自体の強度及び硬化樹脂と繊維との接着力によつて
決定されるが、従来法による一方向引揃えプリプレグは
前述したように硬化樹脂と繊維との接着力のみによつて
決まり比較的弱いので、このプリプレグを用いた繊維強
化プラスチツク製品の引揃え方向と直角方向の強tは高
い値を取ることが困難である。
As a result, when conventional prepregs are stored for long periods of time or used, temperature changes create gaps between the bundles of prepreg fibers, and sometimes they become separated in layers. When manufacturing molded products using prepreg, mechanical stress and thermal changes weaken the binding force between fiber bundles and create gaps and separations, which deteriorates the quality of the prepreg or the quality of the molded product. It has the disadvantage of Furthermore, the strength in the alignment direction and the direction perpendicular to the alignment direction of the fiber-reinforced plastic product obtained by molding the unidirectional aligned prepreg and curing the resin of the molded product is determined by the strength of the cured resin itself and the adhesion between the cured resin and the fibers. However, as mentioned above, the unidirectionally aligned prepreg by the conventional method is determined only by the adhesive force between the cured resin and the fibers, which is relatively weak. It is difficult to take a high value for the strength t in the direction perpendicular to the alignment direction.

とくに上記のように繊維の束と束との間に隙間が生じた
プリプレグを用いて得た製品の強度が低下し、かつ仕上
り(外観的)にも劣り、さらに製品の特性に大きなバラ
ツキが生ずるなどの問題点があつた。本発明の目的は機
械的ストレス及び又は熱変化によつて繊維と樹脂との結
合力が低下せず、マルチフイラメントの繊維の束と束と
の間に間隙が生じにくい引揃えプリプレグ及びその製造
法を提供するにある。
In particular, as mentioned above, the strength of products obtained using prepreg with gaps between the fiber bundles decreases, the finish (appearance) is also inferior, and furthermore, there are large variations in product properties. There were other problems. The object of the present invention is to provide an aligned prepreg in which the bonding strength between fibers and resin does not decrease due to mechanical stress and/or thermal changes, and in which gaps are not easily formed between bundles of multifilament fibers, and a method for producing the same. is to provide.

本発明の他の目的は取扱い、運搬、成形加工又は保管に
よつて品質低下しない引揃えプリプレグ及びその製造法
を提供するにある。
Another object of the present invention is to provide an aligned prepreg whose quality does not deteriorate due to handling, transportation, molding or storage, and a method for manufacturing the same.

本発明のさらに他の目的は繊維強化プラスチツク製品に
用いた場合、その製品の繊維引揃え方向と直角方向の強
度を増大し得、かつその他の諸特性をバラつかせない引
揃えプリプレグ及びその製造法を提供するにある。
Still another object of the present invention is to provide a drawn prepreg that, when used in fiber-reinforced plastic products, can increase the strength of the product in a direction perpendicular to the direction of fiber alignment, and that does not cause variations in other properties. It is in providing the law.

本発明者は前記目的を達成するため種々研究した結果完
成したもので、その引揃えプリプレグの特徴は一方向に
並行するマルチフイラメントの繊維の束の複数個を互い
に隣接し、かつその繊維の束内及び束間でフイラメント
が他のフイラメントと繊維軸に直角な方向に交錯絡合し
、樹脂で含浸されてなるものである。
The present inventor completed various researches to achieve the above object, and the characteristics of the aligned prepreg are that a plurality of bundles of multifilament fibers that are parallel in one direction are adjacent to each other, and the bundle of fibers is The filaments are intertwined with other filaments in the direction perpendicular to the fiber axis within and between the bundles, and are impregnated with resin.

本発明に用いられるマルチフイラメントの束はフイラメ
ントが多数本集合してなる繊維の束であつて、連続した
長繊維の束からなるヤーン又はトウ等が好ましい。
The multifilament bundle used in the present invention is a fiber bundle made up of a large number of filaments, and is preferably a yarn or tow made of a bundle of continuous long fibers.

この繊維には従来の引揃えプリプレグに用いられる繊維
が用いられ、これを示せば下記の通りである。
The fibers used in the conventional aligned prepreg are as follows.

(1)有機繊維:ナイロン(ポリアミド系)、レーヨン
(セルローズ系)、ビニロン(ポリビニルアルコール系
)等(2)有機耐熱繊維:芳香族ポリマー、ポリベンズ
イミダゾール、ポリフルオロカーボン、ポリアミド、フ
エノール、ポリフエニレオキソジアゾール、ビスペンズ
イミダゾベンゾフエナンスロライン、ポリチアジアゾー
ル、ポリフエニレントリアゾール、ポリビチアゾール、
ポリイミド等の樹脂繊維(3)無機繊維:ガラス、窒化
ホウ素、アルミナ、窒化ケイ素、アスベスト、ジルコニ
ア、シリコンカーバイト、炭素(炭素質、黒鉛質、耐炎
質を含む)等の繊維、(4)金属繊維:タングステン合
金、ヘリウム、銅合金、鉄、アルミニウム等の繊維、(
5)複合繊維:ホウ素(芯線−タングステン)、炭化ホ
ウ素(芯線−タングステン)、シリコンカーバイド(芯
線−タングステン、ホウ素)等の繊維(6)(1)〜(
5)で示した繊維のうち二種以上組み合わせたもので、
特に可撓性、柔軟性に富むものが好ましい。
(1) Organic fibers: nylon (polyamide-based), rayon (cellulose-based), vinylon (polyvinyl alcohol-based), etc. (2) Organic heat-resistant fibers: aromatic polymers, polybenzimidazole, polyfluorocarbon, polyamide, phenol, polyphenylene Xodiazole, bispenzimidazobenzophenanthroline, polythiadiazole, polyphenylenetriazole, polyvithiazole,
Resin fibers such as polyimide (3) Inorganic fibers: fibers such as glass, boron nitride, alumina, silicon nitride, asbestos, zirconia, silicon carbide, carbon (including carbonaceous, graphite, and flame-resistant materials), (4) Metals Fibers: Fibers of tungsten alloy, helium, copper alloy, iron, aluminum, etc.
5) Composite fibers: fibers such as boron (core wire - tungsten), boron carbide (core wire - tungsten), silicon carbide (core wire - tungsten, boron), etc. (6) (1) - (
A combination of two or more types of fibers shown in 5),
In particular, those with high flexibility and pliability are preferred.

マルチフイラメントの繊維の束内及びその束とその束に
近接する束との間でフイラメントを他のフイラメントと
交錯させるには複数個の繊維の束を互いに隣接する束が
重なり合つて厚みが不均一にならないように密着させて
一定巾のシート又はテープ状とし、かつそれぞれの束が
処理中に弛んで配列が乱れないよう適度に張りながら(
例えば0.02〜0.65f!/dの張力を繊維長方向
にかける。
In order to intertwine filaments with other filaments within a multifilament fiber bundle and between that bundle and adjacent bundles, multiple fiber bundles are created so that adjacent bundles overlap each other and the thickness is uneven. Make it into a sheet or tape of a certain width by tightly adhering it so that it does not become loose, and keeping it stretched appropriately so that each bundle does not loosen during processing and disturb the arrangement (
For example, 0.02~0.65f! A tension of /d is applied in the fiber length direction.

)、これら配夕1ルた繊維の表面に高圧の流体を吹きつ
ける機械的な衝撃を与えることにより得られる。このさ
いに用いる高圧流体には、水、水と空気との混合物、有
機溶媒(例えばメチルアルコール、エチルアルコール、
アセトン、トルエン、メチルエチルケトン等)及び合成
樹脂等が用いられる。
), can be obtained by applying a mechanical shock by spraying a high-pressure fluid onto the surface of these textured fibers. High-pressure fluids used at this time include water, mixtures of water and air, organic solvents (e.g. methyl alcohol, ethyl alcohol,
acetone, toluene, methyl ethyl ketone, etc.) and synthetic resins.

合成樹脂を用いる場合には繊維に含浸させる合成樹脂と
同一であることが好ましく、また吹きつけるさい加温し
て粘度を下げたり、又は使用する合成樹脂にこれと相溶
性の有機溶媒を添加したり、さらにまた有機溶媒以外の
希釈剤(例えば塩化ビニル樹脂用可塑剤、高沸点溶剤、
ポリプロピレングリコール、スチレンモノマー、ポリエ
チレン)を用いて流体の粘度を下げて吹きつけることが
好ましい。流体に水、又は水と空気との混合物を用いる
場合には流体のコストが安く、流体の調整が全く必要と
せず、また作業環境がよく環境汚染することがなく、操
作や設備が簡単であるが一方有機溶媒や合成樹脂を用い
た場合には流体を吹きつけ後の乾燥工程が簡単であるか
又はこれを全く必要とせず、吹き付け工程に続いて連続
してマトリツクス用としての樹脂を含浸させることがで
きる。
When a synthetic resin is used, it is preferably the same as the synthetic resin used to impregnate the fibers, and the viscosity can be lowered by heating it during spraying, or by adding an organic solvent that is compatible with the synthetic resin to be used. Furthermore, diluents other than organic solvents (e.g. plasticizers for vinyl chloride resins, high boiling point solvents,
It is preferable to lower the viscosity of the fluid and spray it using polypropylene glycol, styrene monomer, polyethylene). When water or a mixture of water and air is used as the fluid, the cost of the fluid is low, no adjustment of the fluid is required, the working environment is good, there is no environmental pollution, and the operation and equipment are simple. On the other hand, when organic solvents or synthetic resins are used, the drying process after spraying the fluid is simple or is not necessary at all, and the resin for the matrix is continuously impregnated following the spraying process. be able to.

特に合成樹脂を十分に吹き付けした場合には、繊維を改
めて樹脂に浸漬することなく、吹き付けて得られたもの
を単にローラー掛けを行う程度で繊維の束の内部に樹脂
を含浸させることができる。繊維束面に高圧流体を吹き
つけるには繊維引揃え方向に対して直角に繊維束面上適
当な間隔に設けたノズル孔から噴射する方法が採られる
。ノズル孔径の太さ及びその繊維までの間隔及びノズル
数はフイラメントの太さ及び繊維層の厚みなどによつて
異なるが、ノズル孔径は1mm以下、)特に0.5〜0
.05m1が好ましいが、これが余り太くなると多量の
フイラメントが同時に転位して絡むため、繊維の束が乱
れ易く、厚さも不均一となり引揃えの効果が失なわれる
In particular, when a sufficient amount of synthetic resin is sprayed, the interior of the fiber bundle can be impregnated with the resin by simply rolling the sprayed material without immersing the fibers in the resin again. In order to spray high-pressure fluid onto the fiber bundle surface, a method is adopted in which the fluid is sprayed from nozzle holes provided at appropriate intervals on the fiber bundle surface at right angles to the direction in which the fibers are aligned. The diameter of the nozzle hole, the distance to the fiber, and the number of nozzles vary depending on the thickness of the filament and the thickness of the fiber layer, but the nozzle hole diameter is 1 mm or less, especially 0.5 to 0.
.. 05ml is preferable, but if it becomes too thick, a large amount of filaments will dislocate and become entangled at the same time, making the fiber bundle likely to become disordered, resulting in uneven thickness, and the effect of aligning the fibers being lost.

ノズル孔と繊維束面との距離は高圧流体の圧力、繊維の
ノズル孔に対する相対移動速度、繊維フイラメントの太
さ及び束の厚さ等によつて定められるが1〜15工程度
が目安となる。
The distance between the nozzle hole and the fiber bundle surface is determined by the pressure of the high-pressure fluid, the relative movement speed of the fiber with respect to the nozzle hole, the thickness of the fiber filament, the thickness of the bundle, etc., but 1 to 15 strokes is a rough guide. .

高圧流体の圧力もまたノズル孔の太さ、ノズル孔と繊維
束面との距離、繊維のノズル孔に対する相対移動速度フ
イラメントの太さ及び繊維の束の厚みなどによつて限定
されるが50〜400kg/Cdであることが好ましい
The pressure of the high-pressure fluid is also limited by the thickness of the nozzle hole, the distance between the nozzle hole and the fiber bundle surface, the relative movement speed of the fiber with respect to the nozzle hole, the thickness of the filament, the thickness of the fiber bundle, etc. Preferably it is 400 kg/Cd.

圧力が50k9/d未満であるとフイラメントの転位が
少なくて繊維の束と束との係合が不十分であり、また4
001<9/dを超えるとフイラメントの破断が多くケ
バ立ちが激しくなる。高圧流体を繊維束面に吹きつける
さい、ノズルを固定して繊維の束を引揃え方向に移動さ
せるとともに、その直角方向にも移動させてもよく、ま
たこの逆にノズルを移動させて繊維束を固定してもよい
If the pressure is less than 50k9/d, there will be little dislocation of the filaments and the engagement between the fiber bundles will be insufficient, and
When 001<9/d is exceeded, the filament is frequently broken and fluff becomes severe. When spraying high-pressure fluid onto the fiber bundle surface, the nozzle may be fixed and moved in the direction in which the fiber bundles are aligned, and may also be moved in a direction perpendicular to that direction, or vice versa. may be fixed.

ノズル又は繊維束の移動速度は1〜10m/Mm程度が
適切である。繊維束を連続的に処理する場合、第2図に
示すように繊維束をエンドレスに緊張させながら巻取り
、そのさいに巻取り方向に対して直角の方向に往復運動
をさせながら繊維束面に圧力流体を噴射させることによ
り行なわれる。含浸に用いられる樹脂にはフエノール樹
脂、不飽和ポリエステル樹脂、エポキシ樹脂等の熱硬化
性樹脂、ポリイミド樹脂、ポリベンズイミダゾール樹脂
、ポリフエニレン樹脂、フリーデルクラフト樹脂等の耐
熱性樹脂が用いられ、使用するに当つて粘度を低下させ
るため加温したり、またこれに有機溶媒及び又は希釈剤
を添加して用いられる。
The moving speed of the nozzle or fiber bundle is suitably about 1 to 10 m/Mm. When processing a fiber bundle continuously, as shown in Figure 2, the fiber bundle is wound up under endless tension, and at the same time, the fiber bundle is reciprocated in a direction perpendicular to the winding direction. This is done by injecting pressurized fluid. The resins used for impregnation include thermosetting resins such as phenolic resins, unsaturated polyester resins, and epoxy resins, and heat-resistant resins such as polyimide resins, polybenzimidazole resins, polyphenylene resins, and Friedel-Crafts resins. In order to reduce the viscosity, it is heated or an organic solvent and/or diluent is added thereto.

さらに繊維の束面に高圧流体を吹きつけるさい、その高
圧流体が吹きつける繊維の束面の裏面に近接して、かつ
この繊維の束面と平行に当て板を設け、この当て板によ
つてさらに一度高圧流体をはね返して再び繊維の束に衝
突させるとフイラメントの転移が能率よく行なわれる。
この当て板には表面がほぼ平滑で流体を反射し得るよう
にされ、金属、プラスチツク、ガラス、木、硬質ゴム等
で製作される。
Furthermore, when spraying high-pressure fluid onto the fiber bundle surface, a patch plate is provided close to the back surface of the fiber bundle surface onto which the high-pressure fluid is sprayed, and parallel to the fiber bundle surface. Furthermore, if the high-pressure fluid is bounced once and collided with the fiber bundle again, the transfer of the filaments will be carried out efficiently.
The caul plate has a substantially smooth surface that can reflect fluid, and is made of metal, plastic, glass, wood, hard rubber, or the like.

構造は全く穴部を有しない平板又は円筒、又は第3〜第
6図に示すように網目、格子状もしくは短冊状の穴部を
有するものが用いられる。当て板を用いると繊維の束を
この上に配列して、この当て板を利用するので繊維の束
の抑え具の取り付けも簡単で繊維に対して張力を掛け易
いのでフイラメントの絡み度合を自由に調整することが
できる。
The structure used is a flat plate or cylinder having no holes at all, or a structure having holes in the shape of a mesh, a lattice, or a strip as shown in FIGS. 3 to 6. When using a backing plate, the fiber bundles are arranged on top of the backing plate, and since this backing plate is used, it is easy to attach the restrainer for the fiber bundle, and it is easy to apply tension to the fibers, so the degree of entanglement of the filaments can be adjusted freely. Can be adjusted.

つぎに本発明の引揃えプリプレグの製造法の一実施態様
を図について説明する。
Next, one embodiment of the method for manufacturing aligned prepregs of the present invention will be described with reference to the drawings.

第1〜第2図においてクリール7より引揃えたマルチフ
イラメント束1を巻取りドラム14で巻取り、このマル
チフイラメント束群1を抑えローラ41,42,43に
よつて受け皿9の中を通過させ、その通過のさいマルチ
フイラメント束の移行する方向に対して直角に、かつそ
のマルチフイラメント束面から適当な距離を保つて設け
られたノズル孔6よりポンプ8によつて高圧流体をフイ
ラメントの束面に吹きつける。
In FIGS. 1 and 2, the multifilament bundle 1 drawn from the creel 7 is wound up by the winding drum 14, and the multifilament bundle group 1 is held down and passed through the tray 9 by rollers 41, 42, and 43. , during the passage of the multifilament bundle, a pump 8 pumps high-pressure fluid through a nozzle hole 6 provided at right angles to the direction of movement of the multifilament bundle and at an appropriate distance from the multifilament bundle surface. Spray on.

受け皿9は抑えローラ42,43間で繊維の束に吹きつ
けられた流体を収容する容器で図には示さなかつたがこ
の受け皿9には流体の排出口が設けられ、必要に応じて
流体を高圧ポンプ8に戻して循環使用する。またこの受
け皿9には繊維束の移行面に並行して当て板3を設け一
度繊維の束に吹きつけた高圧流体をこれに当ててはね返
し再び繊維のフイラメントに当てそれを配位させ、高圧
流体を効率よく使用する。当て板は高圧流体を反射し、
かつこれを反射し得る強度を有するもので、この実施態
様には第3図〜第6図に示すように平板、円筒状を含め
て、平板に多数の穴を設けて高圧流体が繊維の束内を通
過し易くし、繊維のフイラメントを横方向だけでなく、
繊維の束の厚み方向にも繊維のフイラメントを配位させ
これらを絡み合わせることができる。
The tray 9 is a container for storing the fluid sprayed onto the fiber bundle between the holding rollers 42 and 43. Although not shown in the figure, the tray 9 is provided with a fluid outlet, and the fluid can be discharged as needed. It is returned to the high pressure pump 8 and used for circulation. In addition, a patch plate 3 is provided in the receiving tray 9 in parallel with the transition surface of the fiber bundle, and the high-pressure fluid that has been blown onto the fiber bundle is applied to this plate and is bounced back to the filament of the fibers to arrange it. Use efficiently. The caul plate reflects high pressure fluid,
In this embodiment, as shown in FIGS. 3 to 6, a large number of holes are provided in the flat plate, including a flat plate and a cylindrical shape, so that the high-pressure fluid flows through the bundle of fibers. The filament of the fiber can be easily passed through the fiber not only in the lateral direction, but also in the lateral direction.
It is also possible to arrange the filaments of the fibers in the thickness direction of the fiber bundle to entangle them.

すなわち、第3図は平板状の当て板3aを示し、第4図
は平板状の当て板3bに短冊状の穴部5bを設けたもの
、第5図は平板状の当て板3cに網目状の穴部5cを設
けた当て板の平面図を示し、第6図は円筒状の当て板3
dを用いて繊維束1dにノズル6dから高圧流体を吹き
つけている装置の正面図を示す。
That is, FIG. 3 shows a flat patch plate 3a, FIG. 4 shows a flat patch plate 3b with strip-shaped holes 5b, and FIG. 5 shows a flat patch plate 3c with a mesh-shaped patch. FIG. 6 shows a plan view of a cylindrical patch plate 3 provided with a hole 5c.
d is used to spray high-pressure fluid from a nozzle 6d onto a fiber bundle 1d.

この穴を設けた当て板は厚みが大きいプリプレグの製造
に適している。また、第1〜第2図において6はノズル
で繊維束の移行する方向に対して直角に往復運動させる
The caul plate provided with this hole is suitable for manufacturing thick prepreg. Further, in FIGS. 1 and 2, 6 is a nozzle which is caused to reciprocate at right angles to the direction in which the fiber bundle moves.

高圧流体によつてフイラメントが繊維軸と直角な方向に
転位して絡んでシート状となつた繊維の束を必要に応じ
て乾燥炉10に移行し、ここで乾燥させたのち、その繊
維の束を樹脂含浸槽11に入れその中の樹脂浴に浸漬さ
せる。ついでローラ12によつて樹脂の含浸を十分に行
なうとともにその樹脂の含浸量を調整する。さらに必要
に応じて加熱炉13に入れ、樹脂含浸繊維に含まれる有
機溶媒成分を揮発させ、かつ樹脂の重縮合度を高め最後
に巻取り機14により引揃えプリプレグが得られる。加
熱炉13の中で加熱した成形体は離型紙を挾めることが
好ましい。本発明の引揃えプリプレグは第7図に示すよ
うにこれが構成されている繊維の束1eと束1eとの間
、及びその束内でフイラメント2eの一部又は大部が転
位して絡み合つているので、第8図に示す従来品とは異
なり機械的ストレス及び熱ストレスによつて繊維と樹脂
との結合力が低下せず、これにともない繊維の束と束と
の間に間隙が生じないので、取扱い、運搬、加工、又は
保管によつて品質が低下しない。
A bundle of fibers in which the filaments are dislocated in a direction perpendicular to the fiber axis by high-pressure fluid and become entwined to form a sheet is transferred to the drying oven 10 as needed, where it is dried, and then the bundle of fibers is is placed in the resin impregnation tank 11 and immersed in the resin bath therein. Next, the resin is sufficiently impregnated by the roller 12, and the amount of resin impregnated is adjusted. Further, if necessary, the fibers are placed in a heating furnace 13 to volatilize the organic solvent component contained in the resin-impregnated fibers, and to increase the degree of polycondensation of the resin.Finally, a rolled prepreg is obtained by a winder 14. It is preferable that the molded body heated in the heating furnace 13 be sandwiched with release paper. As shown in FIG. 7, the aligned prepreg of the present invention has a part or most of the filaments 2e dislocated and entangled between the fiber bundles 1e and within the bundles. Therefore, unlike the conventional product shown in Figure 8, the binding strength between the fibers and the resin does not decrease due to mechanical stress and thermal stress, and as a result, no gaps are created between the fiber bundles. Therefore, the quality does not deteriorate due to handling, transportation, processing, or storage.

またこれを用いて繊維強化プラスチツク製品とした場合
、繊維長方向の強度低下がほとんどなく、従来法で得ら
れた製品に比して繊維の引揃え方向と直角方向の強度が
1.5〜4倍も増大させることができる。つぎに本発明
の実施態様を実施例で説明するが本発明はこれらによつ
て限定されるものではない。
Furthermore, when this is used to make fiber-reinforced plastic products, there is almost no decrease in strength in the longitudinal direction of the fibers, and the strength in the direction perpendicular to the fiber alignment direction is 1.5 to 4% compared to products obtained by conventional methods. It can even be increased by a factor of two. Next, embodiments of the present invention will be described with reference to Examples, but the present invention is not limited thereto.

実施例 112000フイラメント、4800デニール
の炭素繊維(引張強度340kg/Md、引張弾性率2
0t/Md)のフイラメントヤーンを100本を木製の
平板の上に0.109/dの張力を掛けて弓揃えて並べ
た、この引揃えたヤーンの上を次の条件で水のジニット
流を吹き付けた。
Example 112000 filament, 4800 denier carbon fiber (tensile strength 340 kg/Md, tensile modulus 2
100 filament yarns of 0t/Md) were lined up on a wooden plate under a tension of 0.109/d, and a dinit flow of water was applied over the lined yarns under the following conditions. I sprayed it.

水のジニット流の条件 ノズル直径 0.2mmφ 圧 力 Max2OOl<9/Cd(40回/分の
脈流)ノズルの先端とヤーンとの距離 3m/mノズル
の個数 1ケ ノズル移動速度 4.5m/Ttul(引揃え方向と直
角の方向へ移動し、5m/mの巾で全面に渡り吹き付け
た) 水のジニット流の吹き付け工程後、処理した炭素繊維の
一部を採り、その特性を測定したが吹き付け工程前と比
較して引張強度、引張弾性率には全く低下は見られなか
つた。
Conditions for dinit flow of water Nozzle diameter 0.2mmφ Pressure Max2OOl<9/Cd (pulsating flow 40 times/min) Distance between nozzle tip and yarn 3m/m Number of nozzles 1 Nozzle moving speed 4.5m/Ttul (It moved in the direction perpendicular to the alignment direction and was sprayed over the entire surface at a width of 5 m/m.) After the process of spraying the dinit flow of water, a part of the treated carbon fiber was taken and its properties were measured. No decrease was observed in the tensile strength or tensile modulus compared to before the process.

繊維の長さ方向に対して直角方向の束間破断強度は吹き
付け工程前ではOであつたが吹き付け工程後では200
9/1?巾となつた。
The interbundle breaking strength in the direction perpendicular to the fiber length was 0 before the spraying process, but 200 after the spraying process.
9/1? It became thicker.

このようにして得られたシートを100℃、2時間乾燥
後メチルエチルケトンを溶剤としたエポキシ樹脂(エピ
コート◆828,100部BF3MEA3PHR,.M
EKl5OPHR)に含浸し、ついで120℃で15分
間乾燥した。
After drying the sheet thus obtained at 100°C for 2 hours, an epoxy resin using methyl ethyl ketone as a solvent (Epicoat◆828, 100 parts BF3MEA3PHR,.M
EKl5OPHR) and then dried at 120° C. for 15 minutes.

この0.1mm厚の引揃えプリプレグシートを1方向で
積層し150X80X3mmの寸法で成形した。この時
の強度は繊維方向引張強度(σy)は193kg/Md
l繊維と直角方向引張強度(σx)は8.4kg/Md
であつた。この時の繊維体積含有率は61%であつた。
実施例 2 水のジニット流の圧力を400kg/C!lとした以外
は実施例1と同じ条件で、炭素繊維を処理して引揃えプ
リプレグシートを得た。
These 0.1 mm thick aligned prepreg sheets were laminated in one direction and molded into a size of 150 x 80 x 3 mm. At this time, the tensile strength in the fiber direction (σy) is 193 kg/Md
Tensile strength (σx) perpendicular to l fiber is 8.4 kg/Md
It was hot. The fiber volume content at this time was 61%.
Example 2 The pressure of the dinit flow of water is 400 kg/C! An aligned prepreg sheet was obtained by treating carbon fibers under the same conditions as in Example 1 except that the carbon fiber was changed to 1.

これを実施例1に準じて積層し実施例1の場合と同じサ
イズで成形した。このもののσyは1891<9/M7
l.、σxは14.1kg/M7lであつた。
These were laminated according to Example 1 and molded to the same size as in Example 1. σy of this is 1891<9/M7
l. , σx was 14.1 kg/M7l.

実施例 3 水のかわりにメチルエルケトンに35%のエポキシ樹脂
を含む溶液(硬化剤も含む、粘度20℃で25σp)を
用いてジニット流を吹き付けた他は実施例1と同様の条
件で炭素繊維を処理して弓揃えプリプレグシートを得た
Example 3 Carbon was produced under the same conditions as in Example 1, except that a dinit stream was sprayed using a solution containing 35% epoxy resin in methyl el ketone (also containing a hardening agent, viscosity 25σp at 20°C) instead of water. The fibers were processed to obtain a bow-aligned prepreg sheet.

これを実施例1に準じて積層し、実施例1の成形品と同
じ寸法に成形した。このもののσyは194kg/Md
lσxは7.6kg/Mdであつた。比較例 1 実施例1に用いた炭素繊維を、水のジニット流を用いな
い以外は実施例1と同じ条件で処理し、得られた引揃え
プリプレグシートを、さらに実施例1に準じて積層し実
施例1の成形品と同じ寸法に成形した。
These were laminated according to Example 1 and molded to the same dimensions as the molded product of Example 1. The σy of this item is 194kg/Md
lσx was 7.6 kg/Md. Comparative Example 1 The carbon fibers used in Example 1 were treated under the same conditions as Example 1 except that the dinit flow of water was not used, and the obtained aligned prepreg sheet was further laminated according to Example 1. It was molded to the same dimensions as the molded product of Example 1.

このもののσyは1951<9/MiLlσxは3.8
kg/M7jIであつた。
σy of this is 1951<9/MiLlσx is 3.8
kg/M7jI.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の引揃えプリプレグの製造法の一実施態
様の工程説明図、第2図は高圧流体を繊維束に吹きつけ
るさいの装置の斜視図、第3図〜第5図は各種当て板の
平面図、第6図は円筒状の当て板を用いて繊維束にノズ
ルから高圧流体を吹きつけている装置の正面図、第7図
は本発明の引揃えプリプレグの縦断面図及び第8図は従
来品の引揃えプリプレグの縦断面図を示す。 1,1e,1f:束、2e,2f:フイラメント、3,
3a,3b,3c,3d:当て板、41,42,43:
抑えローラー、5b,5c:穴、6,6d:ノズル、7
リタリール、8:高圧ポンプ、9:受け皿、10:乾燥
炉、11:含浸槽、12:ローラ、13:加熱炉、14
:巻取り器。
Fig. 1 is a process explanatory diagram of one embodiment of the method for producing aligned prepregs of the present invention, Fig. 2 is a perspective view of an apparatus for spraying high-pressure fluid onto fiber bundles, and Figs. 3 to 5 show various types of FIG. 6 is a front view of a device that uses a cylindrical patch plate to spray high-pressure fluid from a nozzle onto a fiber bundle, and FIG. 7 is a longitudinal cross-sectional view of the aligned prepreg of the present invention. FIG. 8 shows a longitudinal sectional view of a conventional aligned prepreg. 1, 1e, 1f: bundle, 2e, 2f: filament, 3,
3a, 3b, 3c, 3d: patch plate, 41, 42, 43:
Holding roller, 5b, 5c: hole, 6, 6d: nozzle, 7
Rita reel, 8: high pressure pump, 9: saucer, 10: drying oven, 11: impregnation tank, 12: roller, 13: heating furnace, 14
: Winder.

Claims (1)

【特許請求の範囲】 1 一方向に並行するマルチフィラメントの繊維の束の
複数個を互いに隣接し、かつその繊維長方向にこれら束
間及び束内でフィラメントの一部又は大部が他のフィラ
メントと絡らみ、かつ繊維が樹脂で含浸してなる引揃え
プリプレグ。 2 マルチフィラメントの繊維の束の複数個を一方向に
並行して互いに隣接させ、得られる繊維の束の集合体に
高圧流体を吹き付け、吹き付け時又は吹き付け後にその
繊維の束の集合体に樹脂を含浸させることを特徴とする
引揃えプリプレグの製造法。 3 流体が水、水と空気との混合物、有機溶媒及び合成
樹脂のいずれかである特許請求の範囲第2項の引揃えプ
リプレグの製造法。 4 流体の圧力が50〜500kg/cm^2である特
許請求の範囲第2項又は第3項記載の引揃えプリプレグ
の製造法。 5 マルチフィラメントの繊維の束の複数個を一方向に
並列して互いに隣接させ、得られる繊維の束の集合体を
連続的に巻取りながら、この繊維の束の移行する方向に
対して直角の方向に往復運動をする高圧流体を噴出する
ノズルから高圧流体を前記繊維の束の集合体に吹きつけ
、この繊維の束と束との間及び束内でフィラメントの一
部又は大部を他のフィラメントと絡らませ、その繊維の
束の集合体を前記高圧流体の吹き付け中又は吹き付け後
に樹脂を含浸させることを特徴とする引揃えプリプレグ
の製造法。 6 流体が水、水と空気との混合物、有機溶媒及び合成
樹脂のいずれかである特許請求の範囲第5項記載の引揃
えプレプレグの製造法。 7 流体の圧力が50〜500kg/cm^2である特
許請求の範囲第5項又は第6項記載の引揃えプリプレグ
の製造法。
[Claims] 1. A plurality of bundles of multifilament fibers arranged in parallel in one direction are adjacent to each other, and in the fiber length direction, between and within these bundles, some or most of the filaments are other filaments. A prepreg made of fibers that are entangled with each other and impregnated with resin. 2 A plurality of multifilament fiber bundles are placed adjacent to each other in parallel in one direction, and a high-pressure fluid is sprayed onto the resulting fiber bundle assembly, and a resin is applied to the fiber bundle assembly during or after the spraying. A method for producing aligned prepreg characterized by impregnation. 3. The method for producing aligned prepreg according to claim 2, wherein the fluid is water, a mixture of water and air, an organic solvent, or a synthetic resin. 4. The method for producing aligned prepreg according to claim 2 or 3, wherein the pressure of the fluid is 50 to 500 kg/cm^2. 5 A plurality of multifilament fiber bundles are placed in parallel in one direction and adjacent to each other, and while the resulting fiber bundle assembly is continuously wound, a direction perpendicular to the moving direction of the fiber bundle is High-pressure fluid is sprayed from a nozzle that ejects high-pressure fluid reciprocating in the direction onto the aggregate of the fiber bundles, and between the fiber bundles and within the bundles, part or most of the filaments are transferred to other fibers. A method for producing aligned prepreg, which comprises entangling the fibers with filaments and impregnating the assembly of fiber bundles with a resin during or after spraying with the high-pressure fluid. 6. The method for producing aligned prepregs according to claim 5, wherein the fluid is water, a mixture of water and air, an organic solvent, or a synthetic resin. 7. The method for producing aligned prepreg according to claim 5 or 6, wherein the pressure of the fluid is 50 to 500 kg/cm^2.
JP6837376A 1976-06-11 1976-06-11 Aligned prepreg and its manufacturing method Expired JPS595406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6837376A JPS595406B2 (en) 1976-06-11 1976-06-11 Aligned prepreg and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6837376A JPS595406B2 (en) 1976-06-11 1976-06-11 Aligned prepreg and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS52151362A JPS52151362A (en) 1977-12-15
JPS595406B2 true JPS595406B2 (en) 1984-02-04

Family

ID=13371874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6837376A Expired JPS595406B2 (en) 1976-06-11 1976-06-11 Aligned prepreg and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS595406B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214199A (en) * 2011-03-31 2012-11-08 Uchihama Kasei Kk Door structure for vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1641967B1 (en) 2003-07-08 2010-05-05 Fukui Prefectural Government Method of producing a spread multi-filament bundle and an apparatus used in the same
JP5140707B2 (en) * 2010-07-14 2013-02-13 株式会社フジクラ Resin coating equipment for fiber reinforced plastic
EP2899396B1 (en) * 2012-09-24 2017-08-16 Mitsubishi Heavy Industries, Ltd. Method for manufacturing windmill blade
JP6167097B2 (en) * 2014-11-26 2017-07-19 株式会社 サン・テクトロ Carbon fiber reinforced plastic material and method for producing prepreg molded product using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214199A (en) * 2011-03-31 2012-11-08 Uchihama Kasei Kk Door structure for vehicle

Also Published As

Publication number Publication date
JPS52151362A (en) 1977-12-15

Similar Documents

Publication Publication Date Title
US4532169A (en) High performance fiber ribbon product, high strength hybrid composites and methods of producing and using same
US20100075144A1 (en) Flexible composite prepreg materials
CA2765074C (en) Method of delivering a thermoplastic and/or crosslinking resin to a composite laminate structure
JP4988229B2 (en) A hybrid composite material excellent in surface smoothness and a molding method thereof.
US10626235B2 (en) Flexible composite prepreg materials
US6274230B1 (en) Articles of composite construction and method of producing patterns thereon
JP6958541B2 (en) Fiber reinforced plastic molding material
US20060121805A1 (en) Non-woven, uni-directional multi-axial reinforcement fabric and composite article
KR940011358B1 (en) Method and apparatus for manufacturing continuous fiber glass reinforced mat
US4220497A (en) High strength composite of resin, helically wound fibers and swirled continuous fibers and method of its formation
US4368232A (en) Glass fiber mat and method of preparation thereof
JPS595406B2 (en) Aligned prepreg and its manufacturing method
US4220496A (en) High strength composite of resin, helically wound fibers and chopped fibers and method of its formation
US8932683B1 (en) Method for coating a tow with an electrospun nanofiber
JPH0325540B2 (en)
US20070003748A1 (en) Composite fabric product and method of manufacturing the same
JP5569142B2 (en) Prepreg manufacturing apparatus and prepreg manufacturing method
JPH04122631A (en) Carbon fiber reinforced plastic tubular material and manufacture thereof
WO2021124977A1 (en) Fiber-reinforced resin hollow molded body and method for producing same
JPS643974B2 (en)
JP6974836B2 (en) One-way prepreg tape manufacturing equipment and manufacturing method
JP3317358B2 (en) Composite reinforcing fiber material impregnated with thermoplastic resin
JPH0258545A (en) Structural composite of fluoropolymer reinforced with continuous filament fiber
JP3561282B2 (en) Manufacturing method of composite material
JPH04163130A (en) Preparation of fiber reinforced resin molded body