JPS5953742B2 - Signal transmission method - Google Patents

Signal transmission method

Info

Publication number
JPS5953742B2
JPS5953742B2 JP54166677A JP16667779A JPS5953742B2 JP S5953742 B2 JPS5953742 B2 JP S5953742B2 JP 54166677 A JP54166677 A JP 54166677A JP 16667779 A JP16667779 A JP 16667779A JP S5953742 B2 JPS5953742 B2 JP S5953742B2
Authority
JP
Japan
Prior art keywords
transmitting
receiving
unit
signal transmission
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54166677A
Other languages
Japanese (ja)
Other versions
JPS5689149A (en
Inventor
佳博 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP54166677A priority Critical patent/JPS5953742B2/en
Publication of JPS5689149A publication Critical patent/JPS5689149A/en
Publication of JPS5953742B2 publication Critical patent/JPS5953742B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/542Systems for transmission via power distribution lines the information being in digital form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5483Systems for power line communications using coupling circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Small-Scale Networks (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

【発明の詳細な説明】 本発明は、複数の通信ユニット間で相互に送受信が切換
わり信号を伝送する信号伝送方式に係り、特に、送受信
両ユニットの情報授受のタイミングを商用電源から作ら
れる同期のためのタイミングパルスを利用し、送信側ユ
ニットの送信スイッチング素子に電源の周波数に同期し
かつ半サイクルを1ビットとするディジタル信号を印加
することにより、受信側ユニットの受信素子に該信号を
受信させ、該信号の有無を識別して情報の伝送を行なわ
せる信号伝送方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a signal transmission method in which transmission and reception are mutually switched between a plurality of communication units to transmit signals, and in particular, the present invention relates to a signal transmission system that transmits signals by mutually switching transmission and reception between a plurality of communication units. By applying a digital signal synchronized with the frequency of the power supply and with one bit per half cycle to the transmitting switching element of the transmitting unit, the signal is received by the receiving element of the receiving unit. The present invention relates to a signal transmission method for transmitting information by identifying the presence or absence of the signal.

従来、比較的近距離例えば、工場の構内やビルディング
内などでのディジタルパルスの伝送には、パルストラン
ス結合方式、ラインドライバー ・レシーバ方式および
光結合方式などが採用さ’れているが、上記三方式には
、各方式特有の問題点がある。
Conventionally, the pulse transformer coupling method, line driver/receiver method, and optical coupling method have been adopted for transmitting digital pulses over relatively short distances, such as within factory premises or buildings. Each method has its own problems.

すなわち、パルストランス結合方式は、トランスが直流
成分を伝送しないので、直流パルスを一旦交流に変換し
て情報を伝送せざるを得ない。
That is, in the pulse transformer coupling method, since the transformer does not transmit a DC component, information must be transmitted by converting DC pulses into AC.

このため、変調器および復調器などの複雑な機器が必要
となつて価格が高くなり、かつまた保守に手間がかかる
欠点がある。ラインドライバー ・レシーバ方式は、原
則的に送受信方向が常に固定されており、相互に送受信
が出来ないので、相互に送受信を行なわんとすると、装
置が複雑となる欠点がある。
For this reason, complicated equipment such as a modulator and a demodulator is required, which increases the price and has the disadvantage that maintenance is time-consuming. In the line driver/receiver method, in principle, the transmission and reception directions are always fixed, and mutual transmission and reception is not possible. Therefore, if mutual transmission and reception is attempted, the device becomes complicated.

また、光結合方式は、コンピュータと周辺装置との信号
伝送にしばしば用いられる方式であるが、ドライバー回
路が不平衡出力であるため、コモン・モードのノイズの
影響を受けやすく、誤作動を行う欠点がある。
In addition, the optical coupling method is often used for signal transmission between computers and peripheral devices, but because the driver circuit has unbalanced output, it is susceptible to common mode noise and has the disadvantage of causing malfunctions. There is.

さらに、上記三方式に共通して、送受信ユニット間信号
のタイミングの同期をとるためデータ送信用信号線の他
に同期上信号線を別途設けるか、または、同期用の精度
の高い発振器や複雑な回路が必要となり、装置が高価と
なる欠点があつた。
Furthermore, in common with the above three methods, in order to synchronize the timing of signals between transmitting and receiving units, a separate synchronization signal line is provided in addition to the data transmission signal line, or a highly accurate synchronization oscillator or complex This has the disadvantage that a circuit is required and the device is expensive.

そこで、本発明は、上記諸方式の有する欠陥をことごと
く排除した信号伝送方式を提供せんとするものであり、
以下に本発明を、第1図のブロック回路図と、第2図の
その詳細回路図と、第8図のタイミングチャートとに示
される如きユニットが二つの場合の実施例について詳細
に説明する。]は商用電源、2は変圧器、3,4は相互
に送信ユニツトおよび受信ユニツトとなり、情報信号を
送信および受信するユニツトであり、5は信号伝送路で
ある。ユニツト3,4は、それぞれその内部に通信を処
理する通信処理フアームウエア31,4]と、該通信処
理フアームウエア31,41にそれぞれ接続され、その
入力をそれぞれ供給する通信タイミング発生回路32,
42および受信回路33,43と、その出力を受け入れ
る送信ゲート制御回路35,45と、前記送信ゲート制
御回路35,45に接続され、その入力を供給する零ク
ロス検出回路34,44と、前記受信回路33,43の
それぞれの入力となる受信素子としての受信抵抗36,
46と、送信ゲート制御回路35,45のそれぞれの出
力を送信する送信スイツチング素子としての送信トライ
アツク37,47を有し、前記通信タイミング発生回路
32,42および零クロス検出回路34,44は、それ
ぞれ前記変圧器2の一次側に線路6で接続され、また前
記ユニツト3の受信抵抗36および送信トライアツク3
7と、ユニツト4の送信トライアツク47および受信抵
抗46とを、これらの順にかつ送信トライアツク37と
47とのゲイト側を対向させて直列に接続して前記信号
伝送路5を形成し、該信号伝送路5を変圧器2の二次側
に接続し、変圧器2の一次側と二次側との巻線を、それ
ぞれの一端において接続して接地している。
Therefore, the present invention aims to provide a signal transmission method that completely eliminates the defects of the above-mentioned methods.
The present invention will be described below in detail with respect to an embodiment in which there are two units as shown in the block circuit diagram of FIG. 1, the detailed circuit diagram of FIG. 2, and the timing chart of FIG. 8. ] is a commercial power supply, 2 is a transformer, 3 and 4 are units that mutually function as a transmitting unit and a receiving unit and transmit and receive information signals, and 5 is a signal transmission path. The units 3 and 4 each include communication processing firmware 31 and 4 for processing communication therein, and a communication timing generation circuit 32 connected to the communication processing firmware 31 and 41 and supplying input thereto, respectively.
42 and receiving circuits 33, 43, transmitting gate control circuits 35, 45 that receive the outputs thereof, zero cross detection circuits 34, 44 connected to the transmitting gate control circuits 35, 45 and supplying their inputs, and the receiving circuits 35, 43, A receiving resistor 36 as a receiving element which becomes an input to each of the circuits 33 and 43,
46, and transmission triaxes 37, 47 as transmission switching elements for transmitting the outputs of the transmission gate control circuits 35, 45, respectively. It is connected to the primary side of the transformer 2 by a line 6, and also connected to the receiving resistor 36 of the unit 3 and the transmitting triac 3.
7, the transmitting triax 47 and the receiving resistor 46 of the unit 4 are connected in series in this order with the gate sides of the transmitting triacs 37 and 47 facing each other to form the signal transmission path 5, and the signal transmission The line 5 is connected to the secondary side of the transformer 2, and the windings on the primary side and the secondary side of the transformer 2 are connected and grounded at one end of each.

第2図は第1図の詳細回路図であり、通信処理フアーム
ウエアを除く各回路の詳細を示しており、各回路はそれ
ぞれ二点鎖線で囲んで示している。
FIG. 2 is a detailed circuit diagram of FIG. 1, showing the details of each circuit except for the communication processing firmware, and each circuit is shown surrounded by a two-dot chain line.

ここで゛39はフオトカプラで゛あり、11は直流電源
回路である。次に、本方式の作動について、第3図を参
照しながら詳細に説明する。
Here, ``39'' is a photocoupler, and 11 is a DC power supply circuit. Next, the operation of this system will be explained in detail with reference to FIG.

まず、送信側のユニツト3において、 商用電源1よりイに示す正弦波形を受け、通信タイミン
ダ発生回路32においては商用電源1の周波数に同調し
たタイミングパルスロが作成され、このタイミングパル
スロが通信処理フアームウエア31におくられる。
First, the transmitting unit 3 receives the sine waveform shown in A from the commercial power supply 1, and the communication timer generation circuit 32 creates a timing pulse lo that is tuned to the frequency of the commercial power supply 1, and this timing pulse lo is used for communication processing. It is sent to firmware 31.

そこで、通信処理フアームウエア31において、このタ
イミングパルス町こ同期して0N−OFFが切換わる伝
送すべき直流パルス信号、例えば空調機ON“゜101
rのデータを伝送する信号二を送信ゲート制御回路35
に送る。一方、零クロス検出回路34からは商用電源1
の周波数に同調するが電源周波より90゜位相を異にす
る直流パルス信号ハ(従つて直流パルス信号口より90
゜位相が遅れた直流パルス信号)が、ゲート制御回路3
5におくられ、信号ハと信号二とのアンド信号であるゲ
イトパルス信号ホを送信トライアツク37のゲートに印
加する。このとき送信側のユニツト3の常開接点38は
開、受信側のユニツト4の常開接点48は閉としておく
。さて、前記の如く送信側のユニツト3の送信トライア
ツク37のゲートにパルスホが印加されると、信号伝送
路5にはこのパルスホと同期しかつパルスホに対応した
への半波の信号電流が流れ、これが受信側のユニツト4
の受信抵抗46に流れ、受信回路43において波形整形
されて卜となり、この信号卜が通信処理フアームウエア
41に送られ、送信側のユニツト3から受信側のユニツ
ト4へ空調機ONという情報が伝達されたことになる。
Therefore, in the communication processing firmware 31, a DC pulse signal to be transmitted that switches between ON and OFF in synchronization with this timing pulse, for example, an air conditioner ON "゜101
A gate control circuit 35 transmits a signal 2 for transmitting data of r.
send to On the other hand, from the zero cross detection circuit 34, the commercial power supply 1
A DC pulse signal that is tuned to the frequency of
゜DC pulse signal whose phase is delayed) is sent to the gate control circuit 3.
5 and applies a gate pulse signal H, which is an AND signal of signal C and signal 2, to the gate of the transmitting triac 37. At this time, the normally open contact 38 of the transmitting side unit 3 is kept open, and the normally open contact 48 of the receiving side unit 4 is kept closed. Now, as mentioned above, when a pulse ho is applied to the gate of the transmitting triax 37 of the transmitting unit 3, a half-wave signal current flows in the signal transmission path 5 in synchronization with this pulse ho and corresponding to the pulse ho. This is unit 4 on the receiving side.
The signal flows through the receiving resistor 46, is waveform-shaped in the receiving circuit 43, and is sent to the communication processing firmware 41, which transmits the information that the air conditioner is ON from the transmitting unit 3 to the receiving unit 4. It means that it was done.

逆に、ユニツト4からユニツト3へ情報を伝達するとき
は、上記作動を入れかえればよいので詳細は省略する。
Conversely, when transmitting information from unit 4 to unit 3, the above operations can be replaced, so details will be omitted.

叙上の如く両ユニツト3,4は必ず一方が送信状態に、
他の一方が受信状態になり、交互に状態を入れ換えるこ
とにより、双方向の通信が可能となるものである。また
、前記実施例においては、受信素子として受信抵抗を用
いたものについて説明したが、前記抵抗の代りにインピ
ーダンスを用いてもほぼ同様な効果を奏するものである
As mentioned above, one of both units 3 and 4 is always in the transmitting state,
The other one enters the receiving state and the states are alternately switched, thereby enabling two-way communication. Further, in the embodiment described above, a receiving resistor is used as the receiving element, but substantially the same effect can be obtained even if an impedance is used instead of the resistor.

叙上の如く本方式は、従来の信号伝送方式に較べて非常
に安価である。
As mentioned above, this method is much cheaper than conventional signal transmission methods.

すなわち、本方式は商用電源の周波数を同期に利用する
ので、情報を授受する信号伝送路の他に同調用の信号線
が不要であり、また信号伝送のためには商用電源の正弦
波の半サイクルを1ビツトの信号伝送に使用するので、
精度の高い同調用発振器やビツト同調、キヤラクタ同調
用などの複雑な回路を必要としないので、余分な回路を
省くことができ、きわめて安価にすることができる。ま
た、本方式は、低速のデータ端末装置の通信例えば空調
機の室内ユニツトと室外ユニツト間の制御、工場内のフ
冶セス制御およびビル管理など広範囲での通信に適用が
できる。
In other words, since this method uses the frequency of the commercial power supply for synchronization, there is no need for a signal line for tuning in addition to the signal transmission line for exchanging information, and for signal transmission, half of the sine wave of the commercial power supply is used. Since a cycle is used for 1-bit signal transmission,
Since a highly accurate tuning oscillator, bit tuning, character tuning, and other complicated circuits are not required, redundant circuits can be omitted and the cost can be extremely reduced. Furthermore, this method can be applied to a wide range of communications such as low-speed data terminal device communications, such as control between indoor and outdoor units of air conditioners, facility control in factories, and building management.

これは工場やビルなどでは配電設備をもつており、同期
した交流電源が広範囲に供給されているからである。さ
らに、本方式は、ユニツト間配線を少くできる。すなわ
ち、通常は第4図図示の如く、2本の信号伝送路5,5
で双方向の伝送が行なえるが、第5図図示の如く、ユニ
ツト間に商用電源供給線6,6が配線され、かつ変圧器
2の一次側と二次側巻線がその一端において接続されて
いるときには、信号伝送路5は一本敷設するだけでよく
、電源供給線6の一線を信号伝送路として共用出来るの
で、さらにユニツト間の配線を少くすることができる。
また、送信トライアツクに常開接点を並列に使用してい
るので、送信側ユニツトで受信側ユニツトの状態を確認
できることである。
This is because factories and buildings have power distribution equipment, and synchronized AC power is supplied over a wide area. Furthermore, this method can reduce the amount of wiring between units. That is, normally two signal transmission lines 5, 5 are used as shown in FIG.
As shown in Figure 5, commercial power supply lines 6, 6 are wired between the units, and the primary and secondary windings of the transformer 2 are connected at one end. In this case, only one signal transmission line 5 needs to be laid, and one line of the power supply line 6 can be shared as a signal transmission line, so that the number of wiring between units can be further reduced.
Furthermore, since normally open contacts are used in parallel in the transmitter triax, the status of the receiver unit can be checked by the transmitter unit.

すなわち、受信状態になると、送信トライアツクは常時
短絡状態となる。
That is, when in the reception state, the transmission triac is always in a short-circuited state.

一方、送信側では、トライアツタゲートに受信側確認の
ためのゲートパルスを印加すると、受信側ユニツトの受
信抵抗に電流が流れるが、同時に、送信側ユニツトの受
信抵抗にも電流が流れる。しかし、受信側が受信状態、
すなわち、送信トライアツクが短絡状態になつていない
場合は、両ユニツトの受信抵抗には電流は流れない。こ
のため、送信側ユニツトで受信側ユニツトが受信状態に
なつているか否かが確認できるものである。また、本方
式は信号を電流信号により伝送する方式であるので、電
圧信号により伝送する方式に較べて耐ノイズ性に優れた
ものとすることができる。
On the other hand, on the transmitting side, when a gate pulse for confirming the receiving side is applied to the triator gate, current flows through the receiving resistor of the receiving side unit, but at the same time, current also flows through the receiving resistor of the transmitting side unit. However, if the receiving side is in receiving state,
That is, if the transmit triac is not short-circuited, no current flows through the receive resistors of both units. Therefore, the transmitting unit can confirm whether the receiving unit is in the receiving state. Furthermore, since this method is a method of transmitting signals using current signals, it can have better noise resistance than a method of transmitting signals using voltage signals.

なお、送信スイツチング素子のゲートパルスのタイミン
グを正弦波の零の電位と同期させることにより、送信ス
イツチング素子ON時のノイズ発生を防止できる。
Incidentally, by synchronizing the timing of the gate pulse of the transmission switching element with the zero potential of the sine wave, it is possible to prevent noise generation when the transmission switching element is turned on.

さらに、情報の切換えのタイミングであるパルスロとゲ
ートのトリカーのタイミングの位相を90゜異にするこ
とにより、情報通信のタイミングの余裕ができるもので
ある。
Furthermore, by making the pulse flow, which is the timing for switching information, different in phase by 90 degrees from the timing of the gate trigger, a margin in timing for information communication can be created.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のプロツク回路図、第2図は
第]図装置の詳細回路図、第3図は第1図装置作動を示
すタイミングチヤート、第4図は第1図実施例の部分回
路図、第5図は他の実施例の部分回路図である。 1・・・・・・商用電源、2・・・・・・変圧器、3,
4・・・・・・ユニツト、5・・・・・・信号伝送路、
31,41・・・・・・通信処理フアームウエア、32
,42・・・・・・通信タイミング発生回路、33,4
3・・・・・・受信回路、34,44・・・・・・零ク
ロス検出回路、35,45・・・・・・送信ゲート制御
回路、36,46・・・・・・受信抵抗、37,47・
・・・・・送信トライアツク、38,48・・・・・・
常開接点。
Fig. 1 is a block circuit diagram of an embodiment of the present invention, Fig. 2 is a detailed circuit diagram of the device shown in Fig. 1, Fig. 3 is a timing chart showing the operation of the device shown in Fig. 1, and Fig. 4 is an implementation of the device shown in Fig. 1. FIG. 5 is a partial circuit diagram of another embodiment. 1...Commercial power supply, 2...Transformer, 3,
4...unit, 5...signal transmission line,
31, 41... Communication processing firmware, 32
, 42... Communication timing generation circuit, 33, 4
3... Receiving circuit, 34, 44... Zero cross detection circuit, 35, 45... Transmission gate control circuit, 36, 46... Receiving resistor, 37,47・
・・・・・・Transmission trial, 38, 48・・・・・・
Normally open contact.

Claims (1)

【特許請求の範囲】[Claims] 1 相互に送信ユニットまたは受信ユニットとなる複数
ユニットのそれぞれのユニット内に、送信トライアツク
37,47・・・と常開接点38,48・・・との並列
回路で構成される送信スイッチング素子および受信素子
を有し、それぞれの送信スイッチング素子および受信素
子間を連絡する信号伝送路5を変圧器2を介して商用電
源1に接続し、複数ユニット間の情報授受の同期に商用
電源1の周波数を利用し、該商用電源1の正弦波の半サ
イクルを1ビットの信号伝送に使用し、送信ユニットと
なる方の前記常開接点を開成するとともに、受信ユニッ
トとなる方の前記常開接点を閉成し、送信ユニットのス
イッチング素子よりのディジタル信号を受信ユニットの
受信素子で受信することにより、複数ユニット間で相互
に情報授受を可能とした信号伝送方式。
1. In each unit of a plurality of units that mutually function as a transmitting unit or a receiving unit, a transmitting switching element and a receiving device are installed, each of which is comprised of a parallel circuit of transmitting triacs 37, 47... and normally open contacts 38, 48... A signal transmission line 5 that connects each transmitting switching element and receiving element is connected to a commercial power source 1 via a transformer 2, and the frequency of the commercial power source 1 is used to synchronize information exchange between multiple units. The half cycle of the sine wave of the commercial power supply 1 is used for 1-bit signal transmission, and the normally open contact of the transmitting unit is opened, and the normally open contact of the receiving unit is closed. A signal transmission method that allows information to be exchanged between multiple units by receiving a digital signal from the switching element of the transmitting unit with the receiving element of the receiving unit.
JP54166677A 1979-12-21 1979-12-21 Signal transmission method Expired JPS5953742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54166677A JPS5953742B2 (en) 1979-12-21 1979-12-21 Signal transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54166677A JPS5953742B2 (en) 1979-12-21 1979-12-21 Signal transmission method

Publications (2)

Publication Number Publication Date
JPS5689149A JPS5689149A (en) 1981-07-20
JPS5953742B2 true JPS5953742B2 (en) 1984-12-26

Family

ID=15835671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54166677A Expired JPS5953742B2 (en) 1979-12-21 1979-12-21 Signal transmission method

Country Status (1)

Country Link
JP (1) JPS5953742B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242848A (en) * 1989-07-21 1990-02-13 Toshiba Corp Serial data transferring device

Also Published As

Publication number Publication date
JPS5689149A (en) 1981-07-20

Similar Documents

Publication Publication Date Title
WO1988006365A1 (en) Remote control system, components and methods
JPH0193943A (en) Method of transmitting data electronically and apparatus therfor
US20030189495A1 (en) Method and system for controlling a selected electrical load in a building
JPS5953742B2 (en) Signal transmission method
JPH0157264B2 (en)
JPS5934031B2 (en) Data transmission method
JPS6051335A (en) Multichannel interphone system
JPS62219724A (en) Power line carrier equipment
KR100691228B1 (en) Non-polar two-wire type indoor and outdoor communication device for multi type air conditioner
JPS6069932A (en) Controlling method of transmission
JP2840038B2 (en) Operation control method
JPH0470839B2 (en)
JPS6360937B2 (en)
JPH06272944A (en) Address setting apparatus for air conditioning apparatus
JP3136700B2 (en) Reduced wiring terminal equipment with transmission speed switching function
JPS6231533B2 (en)
JPH0332123Y2 (en)
TW201911767A (en) Power line carrier controller capable of reducing interference when transmitting carrier signals and providing clean electricity to the receiving end
JPH085379B2 (en) Electronic interlocking device
JPS6361835A (en) Setting of address in air-conditioning apparatus
JPH0565145U (en) Power control device
JPH05304692A (en) External data switching transmission device
KR20020018223A (en) Remote control method and apparatus of an appliances using internet
JPS6262646A (en) Loop system data transmission system for both optical and electric transmission lines
JPS6223651A (en) Data transmission equipment