JPS5953672B2 - Heating element and its manufacturing method - Google Patents
Heating element and its manufacturing methodInfo
- Publication number
- JPS5953672B2 JPS5953672B2 JP14923280A JP14923280A JPS5953672B2 JP S5953672 B2 JPS5953672 B2 JP S5953672B2 JP 14923280 A JP14923280 A JP 14923280A JP 14923280 A JP14923280 A JP 14923280A JP S5953672 B2 JPS5953672 B2 JP S5953672B2
- Authority
- JP
- Japan
- Prior art keywords
- heat generating
- generating part
- heating element
- insulating part
- thermal expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Surface Heating Bodies (AREA)
- Resistance Heating (AREA)
Description
【発明の詳細な説明】
本発明は、チタン酸バリウムなどのセラミックス系の正
の抵抗温度特性(以下P−T−C特性と略称する)をも
つ発熱体によらず、空気や液体などを効率よく加熱する
比較的高電力、高信頼性の樹脂・カーボン系のP−T−
C特性を有する発熱体及びその製造方法を提供するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention efficiently heats air, liquid, etc. without using a heating element having positive resistance-temperature characteristics (hereinafter abbreviated as P-TC characteristics) made of ceramics such as barium titanate. Relatively high-power, highly reliable resin/carbon-based P-T- that heats up well.
The present invention provides a heating element having C characteristics and a method for manufacturing the same.
従来、P−T−C特性を有する樹脂・カーボン系発熱体
の製造方法や構成については、その技術が報告されてい
る。一般的に発熱体の電極構成は第1図に示すように発
熱部1の厚み方向に対向する電極2を形成し、その電極
2の一部に直接金属端子を埋め込んだり、金属板を圧接
または半田付けなどの方法により上記電極2に取付けて
端子3を設けている。Conventionally, techniques for manufacturing a resin/carbon heating element having PTC characteristics and a structure thereof have been reported. In general, the electrode configuration of a heating element is as shown in Fig. 1, in which electrodes 2 are formed opposite to each other in the thickness direction of a heating part 1, and a metal terminal is directly embedded in a part of the electrode 2, or a metal plate is press-bonded or A terminal 3 is provided by being attached to the electrode 2 by a method such as soldering.
一方、P−T−C特性を有する樹脂・カーボン系発熱体
は、結晶性樹脂と導電性粒子を主たる成分として構成さ
れており、必然的にP−T−C領域にある発熱体の熱膨
張収縮係数は非P−T−C領域のそれよりはるかに大き
な値を示す。このようは発熱部に金属端子を理め込み圧
接した場合、当然ながら発熱部熱膨張収縮と金属端子の
それとは非常に大きな差が存在し、熱履歴を繰り返すう
ちに発熱部と端子間に間隙が生じ、接触不良を起し焼損
事故につながる恐れがある。On the other hand, a resin/carbon-based heating element with P-TC characteristics is composed of crystalline resin and conductive particles as its main components, and the thermal expansion of the heating element in the P-TC region is inevitable. The shrinkage coefficient shows a much larger value than that of the non-PTC region. In this way, when a metal terminal is pressed into a heat-generating part, there is of course a very large difference between the thermal expansion and contraction of the heat-generating part and that of the metal terminal. This may cause poor contact and lead to a burnout accident.
さらに、発熱部自体に端子が取付けられているため、端
子からの放熱が大きく他の部分との温度ムラを生じさせ
るだけでな<、熱効率も悪くなるなどの問題点を有して
いた。本発明は上記のような従来の欠点を除去すべくな
されたものであり、以下本発明の一実施例について第2
図とともに説明する。Furthermore, since the terminals are attached to the heat generating part itself, there are problems in that the heat dissipated from the terminals is large and causes temperature unevenness with other parts, as well as poor thermal efficiency. The present invention has been made to eliminate the above-mentioned drawbacks of the conventional technology, and the following is a second example of an embodiment of the present invention.
This will be explained with figures.
本発明は第2図に示すように、結晶性樹脂と導電性粒子
を主たる成分とする樹脂・カーボン系の発熱部4の端部
の位置(または中間の任意の位置)に端子取付部となる
絶縁部5を設け、その絶縁部5を発熱部4と適宜の手段
により一体結合せしめたもので、発熱部4から発生する
熱の端子接触部分への伝導を抑える熱的絶縁効果を絶縁
部5にもたせ、端子接合部分の接触不良を解消するとと
もに非発熱絶縁部5に取付けられた端子6からの放熱を
抑制し、部分的な温度ムラをなくして均熱な発熱体を得
ようとするものである。As shown in FIG. 2, the present invention provides a terminal mounting portion at the end position (or any intermediate position) of a resin/carbon-based heat generating portion 4 whose main components are crystalline resin and conductive particles. An insulating part 5 is provided, and the insulating part 5 is integrally connected to the heat generating part 4 by an appropriate means. The purpose is to eliminate poor contact at the terminal joint part, suppress heat radiation from the terminal 6 attached to the non-heat generating insulating part 5, eliminate local temperature unevenness, and obtain a heating element with uniform heat. It is.
また、7は発熱部4と絶縁部5を導通させるべくそれら
の厚み方向の表面に対向して設けられた電極である。こ
の場合、特に大きな問題となつたのは、電極7の発熱部
4と絶縁部5の結合部8における部分が繰り返し発熱さ
せた時に生じる電極クラツクであつた。Further, reference numeral 7 denotes an electrode provided to face the surfaces of the heat generating part 4 and the insulating part 5 in the thickness direction so as to conduct them. In this case, a particularly serious problem was the electrode crack that occurred when the portion of the electrode 7 at the joint 8 between the heat generating portion 4 and the insulating portion 5 repeatedly generated heat.
このことは電極クラツク部に集中電流が流れて発熱部を
構成する樹脂の耐熱温度以上の発熱が起り、発熱体にと
つて致命的な焼損事故を起すことになるから、是非解消
せねばならない重要な課題であつた。上述したように、
発熱部4はP−T−C領域において急激に熱膨張係数が
大きくなり、通常の熱硬化性樹脂あるいは熱可塑性樹脂
からなる絶縁部5との間に大きな熱膨張差が生じ、これ
が原因となつてクラツクが発生するのである。This is an important issue that must be resolved, as a concentrated current flows through the electrode crack and generates heat that exceeds the heat resistance temperature of the resin that makes up the heat generating part, resulting in a fatal burnout accident for the heat generating element. It was a great challenge. As mentioned above,
The coefficient of thermal expansion of the heat generating part 4 increases rapidly in the P-T-C region, and a large difference in thermal expansion occurs between the heat generating part 4 and the insulating part 5 made of ordinary thermosetting resin or thermoplastic resin, which is the cause. Therefore, cracks occur.
そこで、本発明では絶縁部5の熱膨張を発熱部4のそれ
に近づける樹脂を選択し、第2図の結合部8におけるク
ラツクを解消した。Therefore, in the present invention, a resin that makes the thermal expansion of the insulating part 5 approach that of the heat generating part 4 is selected to eliminate the crack in the joint part 8 shown in FIG. 2.
実際には発熱時の絶縁部5の温度は発熱部4よりも低く
なり、両者の熱膨張を合せるには発熱部4の結晶性樹脂
と同一のものまたはそれよりも低い融点をもつ結晶性樹
脂と必要に応じて補強剤となる熱硬化性樹脂を絶縁部5
に配合することにより得られる。また、発熱部4と絶縁
部5の接合方法としては、機械的に強固で七かも任意の
形状をつくる容易さから、両者それぞれ別個に冷間加圧
成形したものを同一の金型中で熱間加圧成形することが
最も量産性に富み、低コストでP−T−C特性を有する
樹脂・カーボン系発熱体を提供することができる。さら
に、発熱部4と絶縁部5を何らかの方法で導通せしめる
ことが必要となるが、本発明の発熱体は上述したように
結晶性樹脂とカニホンの混合物からなるために、発熱時
の熱膨張、収縮を吸収し、しかも導電性が良好で接着力
のある電極構成が条件として求められる。In reality, the temperature of the insulating part 5 during heat generation is lower than that of the heat generating part 4, and in order to match the thermal expansion of the two, a crystalline resin that is the same as the crystalline resin of the heat generating part 4 or has a lower melting point is used. and a thermosetting resin as a reinforcing agent as needed in the insulation part 5.
It can be obtained by blending with. In addition, the method for joining the heat generating part 4 and the insulating part 5 is that they are both mechanically strong and easy to form into any desired shape, so they are cold-formed separately and then heated in the same mold. Intermittent pressure molding is most suitable for mass production and can provide a resin/carbon heating element having PTC characteristics at low cost. Furthermore, it is necessary to establish electrical continuity between the heat generating part 4 and the insulating part 5 by some method, but since the heat generating element of the present invention is made of a mixture of crystalline resin and cannibal as described above, thermal expansion during heat generation, An electrode configuration that absorbs shrinkage, has good conductivity, and has adhesive strength is required.
この条件に適合する方法として提案されたものが、銀ペ
ーストあるいは銅ペーストなどの樹脂系導電ペーストを
発熱部4及び絶縁部5の表面に下地処理皮膜として施し
、その上に導電性の良いしかもある程度熱膨張収縮のあ
るチタン、銅、ニツケルなどの金属メツキを単層あるい
は多層に形成して電極7を得る方法である。つぎに、具
体的な実施例を詳述する。A method proposed as a method that meets this condition is to apply a resin-based conductive paste such as silver paste or copper paste as a base treatment film to the surfaces of the heat generating part 4 and the insulating part 5, and then apply a good conductive layer on top of it as a base treatment film. This is a method of obtaining the electrode 7 by forming a single layer or multiple layers of metal plating such as titanium, copper, or nickel that undergoes thermal expansion and contraction. Next, specific examples will be described in detail.
まず、結晶性樹脂(示差熱分析による融解点185℃)
500gを熱ロール上で溶融させ、この中にカーボンブ
ラツク500gを加えて分散、混練する。この混練物を
微粉砕し、樹脂・カーボン混合粉体を得る。この粉体4
00gにガラス繊維配合熱硬化性ポリエステル樹脂60
0gを配合し、V型混合機で均一混合する。この混合粉
体を金型中に入れ、冷間加圧成形により発熱部の中間成
形物を作る。また、これとは別に上述のガラス繊維配合
熱硬化性ポリエステル樹脂600gと結晶性樹脂(融解
点120℃)400gを配合、混合したものを冷間加圧
成形し、絶縁部の中間成形物を得る。First, crystalline resin (melting point 185°C by differential thermal analysis)
500 g of carbon black was melted on a hot roll, and 500 g of carbon black was added thereto and dispersed and kneaded. This kneaded material is pulverized to obtain a resin/carbon mixed powder. This powder 4
00g glass fiber blended thermosetting polyester resin 60
Blend 0g and mix uniformly with a V-type mixer. This mixed powder is placed in a mold, and an intermediate molded product of the heat generating part is made by cold pressing. Separately, 600 g of the glass fiber-containing thermosetting polyester resin and 400 g of crystalline resin (melting point 120°C) were mixed and cold-press molded to obtain an intermediate molded product for the insulation part. .
そして、それぞれ冷間加圧成形により中間成形された発
熱部、絶縁部の中間成形物とさらには金属端子6を同一
成形金型中で組合せ、150℃、150kg/Cnl・
のラム圧力で90秒間、同時熱間加圧成形を行つた。Then, the intermediate molded parts of the heating part and the insulation part, which were each intermediately molded by cold pressing, and the metal terminal 6 were combined in the same mold, and the temperature was 150°C, 150kg/Cnl.
Simultaneous hot pressing was carried out for 90 seconds at a ram pressure of .
これにより発熱部4と絶縁部5が一体結合され、かつ絶
縁部5に端子6が取付けられる。つぎに、異電極間が短
絡しないようにマスキング化、銀ペーストを発熱部4と
絶縁部の表面に塗布・焼付し、その上に無電解メツキで
0.2〜0.3μの銅皮膜を形成し、ついでその上に電
極抵抗を低くする目的で2μの電解銅皮膜をつけ、さら
にその上層に5μのニツケルメツキを電解または無電解
で施し、発熱部4の電極とするとともに該発熱部4と絶
縁部5の導通を確保した構造の電極7を形成した。以上
の通り製作した発熱体の常温時の初期抵抗は0.5Ωで
あり、抵抗温度特性は第3図に示すように150℃から
急激に抵抗値が増大する、いわゆるP−T−C特性を現
わしている。As a result, the heat generating part 4 and the insulating part 5 are integrally connected, and the terminal 6 is attached to the insulating part 5. Next, masking is performed to prevent short circuits between different electrodes, silver paste is applied and baked on the surfaces of the heat generating part 4 and the insulating part, and a 0.2 to 0.3 μm copper film is formed on it by electroless plating. Then, a 2μ electrolytic copper film is applied on top of it for the purpose of lowering the electrode resistance, and a 5μ nickel plating is electrolytically or electrolessly applied to the top layer to serve as an electrode for the heat generating part 4 and to insulate it from the heat generating part 4. An electrode 7 having a structure that ensured conduction of the portion 5 was formed. The initial resistance of the heating element manufactured as described above at room temperature is 0.5Ω, and the resistance temperature characteristic shows a so-called PTC characteristic in which the resistance value increases rapidly from 150℃ as shown in Figure 3. It's showing.
第4図は上記発熱体の雰囲気温度に対する熱膨張を測定
したもので、Aは第2図の発熱部4、Bは本実施例のガ
ラス繊維配合熱硬化性ポリエステル樹脂と発熱部4の結
晶性樹脂よりも低い融解点の結晶性樹脂との混合からな
る絶縁部5、Cは上記Bの比較としてのガラス繊維配合
熱硬化性ポリエステル樹脂単独で作つた絶縁部の熱膨張
曲線をそれぞれ示している。今、上記のようにして製作
された第2図の発熱体の異電極間にD−Cl2Vを印加
した時、発熱部4と絶縁部5の内部中央温度はそれぞれ
160℃、105℃であつた。FIG. 4 shows the measurement of the thermal expansion of the above-mentioned heating element with respect to the ambient temperature, where A is the heat generating part 4 in FIG. Insulating part 5 and C, which are made of a mixture with a crystalline resin having a melting point lower than that of the resin, respectively show the thermal expansion curves of an insulating part made of glass fiber-containing thermosetting polyester resin alone as a comparison of B above. . Now, when D-Cl2V was applied between the different electrodes of the heating element shown in Fig. 2 manufactured as described above, the internal center temperatures of the heating part 4 and the insulating part 5 were 160°C and 105°C, respectively. .
第4図から発熱部4の160℃の熱膨張1.1%と絶縁
部5の105℃の熱膨張1.0%はほぼ一致し、実際の
通電での電極クラツクも発生しなかつた。さらに、発熱
部4と絶縁部5の接合強度をみるために結合部8の曲げ
強度〔破壊荷重/単位断面積〕を測定してみると5〜8
kg/MIであり、発熱部4の8〜9kg/MiL及び
絶縁部5の10〜12kg/MlLよりも小さいが、実
用上破壊することはなかつた。以上のように、本発明の
発熱体は自己温度制御機能を有し、かつ樹脂・カーボン
系発熱体の欠点とされていた熱変形による信頼性を向上
させたものであり、実用に供し得る産業的価値の大なる
ものである。As can be seen from FIG. 4, the thermal expansion of 1.1% at 160° C. of the heat generating portion 4 and the 1.0% thermal expansion of the insulating portion 5 at 105° C. almost matched, and no electrode cracking occurred during actual energization. Furthermore, in order to check the joint strength between the heat generating part 4 and the insulating part 5, the bending strength [breaking load/unit cross-sectional area] of the joint part 8 was measured to be 5 to 8.
kg/MI, which was smaller than 8 to 9 kg/MiL of the heat generating part 4 and 10 to 12 kg/MIL of the insulating part 5, but it did not break down in practice. As described above, the heating element of the present invention has a self-temperature control function and has improved reliability due to thermal deformation, which has been considered a drawback of resin/carbon heating elements, and is suitable for practical use in industries. It is of great value.
第1図は従来の成型発熱体の斜視図、第2図は本発明に
係る発熱体の一実施例を示す斜視図、第3図は同発熱体
の抵抗温度特性の一例を示す図、第4図は同じく本発明
発熱体の各部における雰囲気温度に対する熱膨張の一例
を表わす図である。
4・・・・・・発熱部、5・・・・・・絶縁部、6・・
・・・・端子、7・・・・・・電極。Fig. 1 is a perspective view of a conventional molded heating element, Fig. 2 is a perspective view showing an embodiment of the heating element according to the present invention, Fig. 3 is a diagram showing an example of the resistance temperature characteristics of the heating element, FIG. 4 is a diagram showing an example of thermal expansion with respect to ambient temperature in each part of the heating element of the present invention. 4...Heating part, 5...Insulating part, 6...
...terminal, 7...electrode.
Claims (1)
を有する発熱部と、この発熱部の正の抵抗温度係数が大
きく増大する温度領域における熱膨張と同程度の熱膨張
を有するとともに適宜の手段により該発熱部と一体結合
された絶縁部と、上記発熱部及び絶縁部の対向する表面
に設けられた電極と、かつこの電極と電気的に接続され
るように上記絶縁部に取付けられた端子とより構成され
たことを特徴とする発熱体。 2 少なくとも発熱部を構成する結晶性樹脂と同一かそ
れよりも低い融解点をもつ結晶性樹脂が絶縁部に配合さ
れてなる特許請求の範囲第1項記載の発熱体。 3 発熱部及び絶縁部の表面に樹脂系導電性ペーストを
下地処理皮膜として設け、その上に金属皮膜を施した構
成の電極を備えた特許請求の範囲第1項または第2項記
載の発熱体。 4 結晶性樹脂と導電性粒子からなる正の抵抗温度係数
を有する発熱部と、この発熱部の正の抵抗温度係数が大
きく増大する温度領域における熱膨張と同程度の熱膨張
を有する絶縁部を、それぞれ別個に冷間加圧成形した後
、同一金型中で熱間加圧成形して一体結合せしめ、上記
発熱部及び絶縁部の対向する表面に電極を設け、かつこ
の電極と電気的に接続されるように上記絶縁部に端子を
取付けることを特徴とする発熱体の製造方法。[Scope of Claims] 1. A heat generating part having a positive temperature coefficient of resistance made of crystalline resin and conductive particles, and a heat generating part having the same degree of thermal expansion in a temperature range where the positive temperature coefficient of resistance of this heat generating part increases greatly. an insulating part that expands and is integrally connected to the heat generating part by appropriate means, an electrode provided on opposing surfaces of the heat generating part and the insulating part, and an electrically connected to the electrode. A heating element characterized by comprising a terminal attached to an insulating part. 2. The heating element according to claim 1, wherein the insulating part contains at least a crystalline resin having a melting point that is the same as or lower than that of the crystalline resin constituting the heating part. 3. The heating element according to claim 1 or 2, comprising an electrode having a resin-based conductive paste as a base treatment film on the surfaces of the heating part and the insulating part, and a metal film applied thereon. . 4. A heat generating part made of crystalline resin and conductive particles having a positive temperature coefficient of resistance, and an insulating part having a thermal expansion comparable to the thermal expansion in the temperature range where the positive temperature coefficient of resistance of this heat generating part increases greatly. , each is cold-pressed separately and then hot-pressed in the same mold to be integrally bonded, and electrodes are provided on the opposing surfaces of the heat generating part and the insulating part, and electrically connected to the electrodes. A method of manufacturing a heating element, comprising: attaching a terminal to the insulating part so as to be connected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14923280A JPS5953672B2 (en) | 1980-10-23 | 1980-10-23 | Heating element and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14923280A JPS5953672B2 (en) | 1980-10-23 | 1980-10-23 | Heating element and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5772289A JPS5772289A (en) | 1982-05-06 |
JPS5953672B2 true JPS5953672B2 (en) | 1984-12-26 |
Family
ID=15470756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14923280A Expired JPS5953672B2 (en) | 1980-10-23 | 1980-10-23 | Heating element and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5953672B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0528932Y2 (en) * | 1985-07-30 | 1993-07-26 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS603881A (en) * | 1983-06-20 | 1985-01-10 | 松下電器産業株式会社 | Plastic molding heater having ptc property and method of producing same |
-
1980
- 1980-10-23 JP JP14923280A patent/JPS5953672B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0528932Y2 (en) * | 1985-07-30 | 1993-07-26 |
Also Published As
Publication number | Publication date |
---|---|
JPS5772289A (en) | 1982-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0398811B1 (en) | Manufacturing method for a PTC thermistor | |
US5192853A (en) | Heating set having positive temperatue coefficient thermistor elements adhesively connected to heat radiator devices | |
JPH01230220A (en) | Fuse assembly for solid electrolytic capacitor | |
US3379577A (en) | Thermoelectric junction assembly with insulating irregular grains bonding insulatinglayer to metallic thermojunction member | |
JPS5953672B2 (en) | Heating element and its manufacturing method | |
JP3198101U (en) | PTC ceramic heater | |
KR100840796B1 (en) | A terminal for ceramic heater | |
JPH08264262A (en) | Planar heat generating body | |
JP2663935B2 (en) | Plate-shaped ceramic heater and method of manufacturing the same | |
JPH10106722A (en) | Sheet exothermal body | |
JP2800207B2 (en) | Positive characteristic thermistor heating element | |
JP2827460B2 (en) | Method for manufacturing positive temperature coefficient thermistor heating element | |
JPH04212281A (en) | Positive characteristic thermistor heating device | |
JP2712726B2 (en) | Positive characteristic thermistor heating element and method of manufacturing the same | |
JP2959629B2 (en) | Positive-characteristic thermistor heating element and method of manufacturing positive-characteristic thermistor heating element | |
JPH10223360A (en) | Flat heater element | |
JP2003324273A (en) | Pressure-sensitive conductive film and multilayer printed wiring board | |
JP2002015838A (en) | Resistance-heating element and its manufacturing method | |
JPH0518872Y2 (en) | ||
JPH0763027B2 (en) | Ceramic heater and method of manufacturing the same | |
JPH10223405A (en) | Polymer ptc thermistor and production thereof | |
JP2641746B2 (en) | Molded chip tantalum solid electrolytic capacitor | |
KR890002815B1 (en) | Manufacturing method for the flexible pcb of current path resistor | |
JP2001176702A (en) | Ptc thermistor | |
JPS6387702A (en) | Method of fixing lead |