JPS5953281B2 - Curing method - Google Patents

Curing method

Info

Publication number
JPS5953281B2
JPS5953281B2 JP3882774A JP3882774A JPS5953281B2 JP S5953281 B2 JPS5953281 B2 JP S5953281B2 JP 3882774 A JP3882774 A JP 3882774A JP 3882774 A JP3882774 A JP 3882774A JP S5953281 B2 JPS5953281 B2 JP S5953281B2
Authority
JP
Japan
Prior art keywords
curing
copper
curable
molecule
curable substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3882774A
Other languages
Japanese (ja)
Other versions
JPS50135139A (en
Inventor
嘉魏 百足
遵司 原
正 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP3882774A priority Critical patent/JPS5953281B2/en
Publication of JPS50135139A publication Critical patent/JPS50135139A/ja
Publication of JPS5953281B2 publication Critical patent/JPS5953281B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

【発明の詳細な説明】 本発明は、銅の存在下に、分子中にエチレン状不飽和基
を有する硬化性物質を、ジアルキルパーオキサイド型の
有機過酸化物を使用して常温の如。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a curable substance having an ethylenically unsaturated group in its molecule is cured at room temperature using a dialkyl peroxide type organic peroxide in the presence of copper.

き低温下で硬化させる方法に関する。従来、分子中にエ
チレン状不飽和基を有する硬化性物質と銅が共存する硬
化性組成物では、多くの場合、前記硬化性物質の重合に
よる硬化性が銅により妨害される事は周知であり、又、
現実に例。
The present invention relates to a method of curing at low temperatures. Conventionally, it is well known that in curable compositions in which a curable substance having an ethylenically unsaturated group in the molecule and copper coexist, the curability of the curable substance through polymerization is often hindered by the copper. ,or,
Example in real life.

えばメチルメタクリレートの如き分子中にエチレン状不
飽和基を有する物質の製造に当り銅粉等が工程中の重合
防止用安定剤として使用されている事も公知である。し
かしながら、銅の上記の如き性質は上記の如く安定剤等
の用途で有効に利用される反面、例えば分子中にエチレ
ン状不飽和基を有する硬化性樹脂を銅と共存または接触
させた状態で硬化させる如き塗料、インキ、接着剤、成
形品などの用途には大きな障害となり、銅の存在下に分
子中にエチレン状不飽和基を有する硬化性樹脂の如き硬
化性物質を銅によるその重合硬化性の妨害なしに硬化さ
せる方法のような技術的開発に対する一般的要望は大き
い。
It is also known that copper powder and the like are used as stabilizers to prevent polymerization during the production of substances having ethylenically unsaturated groups in their molecules, such as methyl methacrylate. However, while the above-mentioned properties of copper can be effectively used for purposes such as stabilizers, for example, when a curable resin having an ethylenically unsaturated group in its molecule coexists with or comes into contact with copper, it cures. This is a major hindrance in applications such as paints, inks, adhesives, molded products, etc. in which curable substances such as curable resins having ethylenically unsaturated groups in the molecule in the presence of copper are polymerized and cured by copper. There is a great general need for technological developments such as methods of curing without hindrance.

特に、銅は導電性に優れた金属である為、導電性が要求
される用途で多方面に亘り使用されているが、分子中に
エチレン状不飽和基を有する硬化性樹脂の如き溝化性物
質を銅と共存又は接触状態で使用する場合は該硬化性樹
脂の硬化が妨害される為、分子中にエチレン状不飽和基
を有する硬化性樹脂は種々の優れた性質を有するにもか
かわらず使用上に大きな硬化妨害という困難が伴う為そ
の用途の制約は大きい。
In particular, copper is a metal with excellent electrical conductivity, so it is used in a wide range of applications that require electrical conductivity. When a substance is used in coexistence with or in contact with copper, the curing of the curable resin is hindered, so even though curable resins with ethylenically unsaturated groups in their molecules have various excellent properties, Since it is difficult to use due to large curing interference, its use is severely restricted.

本発明者らは、上記の如き銅の優れた導電性を利用する
為、銅粉を導電性付与剤として分子中にエチレン状不飽
和基を有する硬化性樹脂に添加した導電性組成物につい
て、種々の硬化方法を検討した際に、特に添加した銅粉
が空気中で高温に曝らされると、添加した銅粉表面が酸
化を受け易く、しかも、この酸化を受けて生じた酸化物
は絶縁体となる為、導電性に対し好ましくないと考え、
分子中にエチレン状不飽和基を有する硬化性樹脂を常温
の如き低温で硬化させる方法に注目したが、例えば、メ
チルエチルケトンパーオキサイドとナフテン酸コバルト
の併用の如き従来行なわれている分子中にエチレン状不
飽和基を有する硬化性樹脂の低温下での硬化方法では、
銅による硬化妨害が著るしく実用上満足出来る様な方法
は見出せなかつた。
In order to utilize the excellent conductivity of copper as described above, the present inventors have developed a conductive composition in which copper powder is added as a conductivity imparting agent to a curable resin having an ethylenically unsaturated group in the molecule. When considering various curing methods, we found that especially when the added copper powder is exposed to high temperatures in the air, the surface of the added copper powder is susceptible to oxidation, and that the oxides produced by this oxidation are Since it becomes an insulator, it is considered unfavorable for conductivity.
We focused on a method of curing a curable resin having an ethylenically unsaturated group in the molecule at a low temperature such as room temperature. In a low temperature curing method for curable resins having unsaturated groups,
Curing interference caused by copper was significant, and no method that was practically satisfactory could be found.

そこで種々の触媒について銅による硬化妨害がなくして
低温下で硬化させる方法について鋭意研究を進めた結果
、通常、分子中にエチレン状不飽和基を有する硬化性樹
脂の如き硬化性物質を例えば130℃〜160℃の如き
高温で加熱しないと硬化触媒として作用しないジアルキ
ルパーオキサイド型の有機過酸化物を該導電性組成物に
添加する事により、銅の硬化妨害がなくして常温の如き
低温で速やかに硬化する事が出来る事を見出し、しかも
この方法によれば、高温による銅の酸化及び銅による硬
化妨害を防止する為の各種添加剤による導電性の変化に
ついての心配もなく、事実優れた導電性を得た。
Therefore, as a result of intensive research into methods of curing various catalysts at low temperatures without curing interference caused by copper, we have found that curable substances such as curable resins having ethylenically unsaturated groups in their molecules are cured at 130°C, for example. By adding a dialkyl peroxide type organic peroxide to the conductive composition, which does not act as a curing catalyst unless heated at a high temperature such as ~160°C, curing of copper is eliminated and the curing can be performed quickly at a low temperature such as room temperature. Furthermore, according to this method, there is no need to worry about changes in conductivity caused by various additives to prevent oxidation of copper due to high temperatures and interference with curing due to copper, and in fact, it has excellent conductivity. I got it.

本発明者らは、かかる銅粉を添加した分子中にエチレン
状不飽和基を有する導電性組成物をジアルキルパーオキ
サイド型の有機過酸化物で低温に於いて硬化する本発明
に係る応用について更に検討を進めた結果、必ずしも導
電性を呈する硬化性樹脂の場合だけでなく、一般的な場
合、例えば銅粉を単に装飾用に分子中にエチレン状不飽
和基を声す参硬イ!性物質史に共存させた場合や、更に
分六;工=8:=千:ず讐門皇飽和基を有する硬化性物
質を低温で硬化させたい場合にも利用出来る事が判り、
本発明を達成したものである。
The present inventors have further described the application of the present invention in which a conductive composition containing such copper powder and having ethylenically unsaturated groups in the molecule is cured with a dialkyl peroxide type organic peroxide at a low temperature. As a result of further investigation, we found that not only the case of curable resin that exhibits conductivity, but also general cases, such as copper powder that contains ethylenically unsaturated groups in the molecule simply for decoration! It has been found that it can be used when coexisting with a chemical substance, or when it is desired to harden a hardening substance having a saturated group at a low temperature.
This invention has been achieved.

即ち、本発明は、分子中にエチレン状不飽和基を有する
硬化性物質を銅と共存または接触状態下で上記硬化性物
質をその硬化反応により硬化させるに際し、上配硬化性
物質の硬化触媒としてジアルキルパーオキサイド型の有
機過酸化物のみでは該硬化性物質の硬化反応に寄与しな
いような低い温度下に於いて上記有機過酸化物を存在さ
せて該硬化性物質の上記硬化を行わせる事を特徴とする
分子中にエチレン状不飽和基を有する硬化性物質の硬化
方法である。
That is, the present invention provides a method for curing a curable substance having an ethylenically unsaturated group in the molecule by a curing reaction of the curable substance in coexistence with copper or in contact with copper, as a curing catalyst for the upper curable substance. The curing of the curable substance is carried out in the presence of the organic peroxide at a temperature so low that dialkyl peroxide type organic peroxide alone does not contribute to the curing reaction of the curable substance. This is a method for curing a curable substance having an ethylenically unsaturated group in its molecule.

本発明で用いる分子中にエチレン状不飽和基を有する硬
化性物質とは、分子中にエチレン状二重結合を有するモ
ノマー、分子中にエチレン状二重結合を有するモノマー
と分子中にエチレン状二重結合を有するポリマーとから
なる硬化性組成物および分子中にエチレン状二重結合を
有する硬化性ポリマーを意味する。
The curable substance having an ethylenically unsaturated group in the molecule used in the present invention refers to a monomer having an ethylenic double bond in the molecule, a monomer having an ethylenic double bond in the molecule, and a monomer having an ethylenic double bond in the molecule. It means a curable composition comprising a polymer having a double bond and a curable polymer having an ethylenic double bond in the molecule.

上記分子中にエチレン状二重結合を有するモノマーとは
、例えば、アクリル酸、ブチルアクリレート、2−ヒド
ロキシエチルアクリレートモノ(2−ヒドロキシエチル
アクリレート)アシドフオスフエート、エトキシエチル
アクリレート、ジメチルアミノエチルアクリレート、メ
タクリル酸、メチルメタクリレート、2−ヒドロキシエ
チルメタクリレート、ヒドロキシプロピルメタクリレー
ト、グリシジルメタクリレート、モノ(2−ヒドロキシ
エチルメタクリレート)アシドフオスフエート、スルフ
オプロピルメタクリレート、メチロールアクリルアミド
の如きアクリル化合物、スチレン、ビニルトルエン、ジ
ビニルベンゼン、2−ビニルピリジンの如きビニル芳香
族化合物、その他、ジエチルイタコネート、モノメチル
イタコネートの如きイタコン酸エステル類やジアリルフ
タレート、トリアリルイソシアレートの如きアリル化合
物などがあり、また上記分子中にエチレン状二重結合を
有するポリマーとしては、例えばポリプロピレンマレー
ト、ポリジエチレンフマレート、ポリブチレンイタコネ
ート、ポリプロピレングリコールジアクリレートなどの
如き不飽和カルボン酸とポリオールとから製せられるエ
チレン状二重結合を有するポリエステル、アクリル酸一
スチレンーブチルアクリレート共重合体とグリシジルメ
タクリレートとを反応して得られるポリマー、塩化ビニ
ル一酢酸ビニル一無水マレイン酸共重合体とヒドロキシ
プロピルアクリレートを反応して得られるポリマーおよ
び1,2−ポリブタジエンの如きエチレン状二重結合を
側鎖に有するビニルポリマ一、ビスフエノール型エポキ
シ樹脂とアクリル酸又は無水マレイン酸とを反応させて
得られる如きエチレン状二重結合を導入させるエポキシ
樹輝、ポリプロピレングリコールとトルエンジイソシア
ネートおよびヒドロキシプロピルアクリレートを反応さ
せて得られる如きエチレン状二重結合をもつポリウレタ
ンなどが代表的である。
The monomers having an ethylenic double bond in the molecule include, for example, acrylic acid, butyl acrylate, 2-hydroxyethyl acrylate mono(2-hydroxyethyl acrylate) acid phosphate, ethoxyethyl acrylate, dimethylaminoethyl acrylate, Acrylic compounds such as methacrylic acid, methyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, glycidyl methacrylate, mono(2-hydroxyethyl methacrylate) acid phosphate, sulfopropyl methacrylate, methylol acrylamide, styrene, vinyltoluene, divinyl These include vinyl aromatic compounds such as benzene and 2-vinylpyridine, as well as itaconic acid esters such as diethyl itaconate and monomethyl itaconate, and allyl compounds such as diallyl phthalate and triallyl isocyanate. Examples of polymers having ethylenic double bonds include those made from unsaturated carboxylic acids and polyols such as polypropylene maleate, polydiethylene fumarate, polybutylene itaconate, polypropylene glycol diacrylate, etc. Polyester, a polymer obtained by reacting a monostyrene acrylate-butyl acrylate copolymer with glycidyl methacrylate, a polymer obtained by reacting a vinyl chloride monovinyl acetate monomaleic anhydride copolymer with hydroxypropyl acrylate, and 1. 2-A vinyl polymer having an ethylenic double bond in its side chain, such as polybutadiene; an epoxy resin into which an ethylenic double bond is introduced, such as that obtained by reacting a bisphenol type epoxy resin with acrylic acid or maleic anhydride; Typical examples include polyurethanes having ethylenic double bonds, such as those obtained by reacting polypropylene glycol with toluene diisocyanate and hydroxypropyl acrylate.

本発明に於いて称する銅とは、例えば市販の金属銅や銅
を1成分とする合金等であり、これらは球状、樹枝状、
箔状、板状、線状の如き形状で使用される。本発明に用
いるジアルキルパーオキサイド型の有機過酸化物とは、
炭化水素基と炭化水素基が−0−0一結合でつながつた
構造で、かつ自発的熱分解半減期が10時間となるため
の温度が100℃以上である有機過酸化物を意味し、例
えばジアルキルパーオキサイド型の重合触媒として、ジ
ークミルパーオキサイド、ジ一t−ブチルパーオキサイ
ド、t−ブチルクミルパーオキサイド、A,a″ビス(
t−ブチルパーオキシ)P−ジーイソプロピルベンゼン
、2,5−ジーメチル一2,5−ジ(t−ブチルパーオ
キシ)へキサン、2,5−ジメチル−2,5−ジ(t−
ブチルパーオキシ)ヘキシンの如きものが市販されてお
り、その他パーオキシケタール型、ジアラアルキルパー
オキサイ,ド型、有橋パーオキサイド型(トランスアニ
ユラーパーオキサイド)、ポリアルキリデンパーオキサ
イド型などの有機過酸化物で上記自発的熱分解半減期条
件を満たすものを含む。
Copper referred to in the present invention is, for example, commercially available metallic copper or an alloy containing copper as one component, and these may be spherical, dendritic,
It is used in shapes such as foil, plate, and line. The dialkyl peroxide type organic peroxide used in the present invention is
It means an organic peroxide with a structure in which hydrocarbon groups are connected by a -0-0 bond, and a temperature of 100°C or higher for a spontaneous thermal decomposition half-life of 10 hours. Examples of dialkyl peroxide type polymerization catalysts include dicumyl peroxide, di-t-butyl peroxide, t-butylcumyl peroxide, A,a″ bis(
t-butylperoxy)P-diisopropylbenzene, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, 2,5-dimethyl-2,5-di(t-
Products such as butylperoxy)hexyne are commercially available, and other organic products such as peroxyketal type, diaralkyl peroxide type, bridged peroxide type (transannual peroxide), and polyalkylidene peroxide type are commercially available. Includes peroxides that satisfy the above-mentioned spontaneous thermal decomposition half-life conditions.

本発明で称する低温は、本発明で用いる硬化性,物質の
種類とジアルキルパーオキサイド型有機触媒の種類及び
その組合せにより異なるが一般的に100℃以下、好ま
しくは10〜50℃程度である。
The low temperature referred to in the present invention varies depending on the curability, type of substance, type of dialkyl peroxide type organic catalyst, and combination thereof used in the present invention, but is generally 100°C or less, preferably about 10 to 50°C.

本発明で分子中にエチレン状不飽和基を有する硬化性物
質と銅との使用割合は、該硬化性物質と,銅とが共存状
態にあるか接触状態にあるかにより大きく左右され、例
えば導電性を呈する組成物の場合には、例えば微細な市
販銅粉を該組成物中に40〜90重量%含むようにする
のがよい。本発明に用いるジアルキルパーオキサイド型
の5有機過酸化物の使用割合は、通常分子中にエチレン
状不飽和基を有する硬化性物質に対し、0.1〜5重量
%であり、目的とする硬化速度に応じ適宜選択すればよ
い。尚、本発明を実施するにあたり、用いる低温で硬化
性物質を硬化させるにあた,り、該温度で硬化するよう
な重合用触媒や光増感剤を、あらかじめ共存させておい
てもよい。本発明の硬化方法を実施する際は窒素、炭酸
ガスの如き不活性ガスあるいは空気中の如く、いずれの
雰囲気下に於いてもよく、実施の際の雰囲気.には特に
制限はない。本発明を実施するにあたり、分子中にエチ
レン状不飽和基を有する硬化性物質に共存または接触状
態にある銅の表面が例えば酸化皮膜でおおわれている場
合には、予め酸化皮膜を除く処理を施すかあるいは分子
中にエチレン状不飽和基を有する硬化性物質中に酸基を
存在させて後、本発明による硬化方法を行うのが該硬化
性物質の硬化を促進する上で好ましい。
In the present invention, the ratio of the curable substance having an ethylenically unsaturated group in the molecule and copper greatly depends on whether the curable substance and copper coexist or are in contact with each other. In the case of a composition exhibiting properties, it is preferable that the composition contains, for example, 40 to 90% by weight of fine commercially available copper powder. The proportion of the dialkyl peroxide type 5 organic peroxide used in the present invention is usually 0.1 to 5% by weight based on the curable substance having an ethylenically unsaturated group in the molecule, and is used to achieve the desired hardening. It may be selected appropriately depending on the speed. In carrying out the present invention, in order to cure the curable substance at the low temperature used, a polymerization catalyst or a photosensitizer that cures at that temperature may be coexisting in advance. The curing method of the present invention may be carried out under any atmosphere, such as an inert gas such as nitrogen or carbon dioxide, or air. There are no particular restrictions. When carrying out the present invention, if the surface of copper coexisting with or in contact with a curable substance having an ethylenically unsaturated group in its molecules is covered with an oxide film, for example, the surface of the copper should be treated to remove the oxide film in advance. In order to accelerate the curing of the curable substance, it is preferable to carry out the curing method of the present invention after an acid group is present in the curable substance having an ethylenically unsaturated group in the molecule.

本発明による硬化方法は、特に分子中にエチレン状不飽
和基を有する硬化性物質に銅粉を添加剤として配合した
導電性の硬化性組成物を例えば導電性の塗料は、印刷イ
ンキ、接着剤、成形品などの用途に供した場合には、こ
れらそれぞれの用途に於いて用いる有用な手段であると
ともに、また上記硬化性組成物を例えば銅板上で重合硬
化させる如き場合にも有用な方法であり、本発明の工業
的有用価値は極めて高いものである。
The curing method according to the present invention is particularly applicable to conductive curable compositions containing copper powder as an additive to a curable substance having an ethylenically unsaturated group in the molecule. When applied to applications such as molded products, it is a useful means for each of these applications, and is also a useful method when polymerizing and curing the above-mentioned curable composition on a copper plate, for example. Therefore, the industrial value of the present invention is extremely high.

以下に実施例を記載するが、以下に記載する部および%
はそれぞれ重量部および重量%を意味し、また実施例中
に記載する濃度は全成分中の該成分の割合を%で表わす
Examples are described below, and the parts and percentages described below are
means parts by weight and weight %, respectively, and the concentrations described in the examples represent the proportion of the component in the total components in %.

実施例 1 無水マレイン酸(4モル)、無水フタル酸(6モル)、
プロピレングリコール(10モル)より合成せる不飽和
ポリエステル76%とスチレン24%よりなる液状樹脂
(以下A樹脂と略称)に触媒としてジクミルパーオキサ
イド(4)本油脂社製、商品名;パークミルD)をA樹
脂に対し1%の割合で添加してなる混合液を、それぞれ
、表面を清浄にした2枚のガラス板上に約100μの厚
さで塗布するとともに、この各塗布物の塗布した部分の
それぞれの表面にこれと接するように離型用ポリエステ
ルフイルムをおおい、このようにして得られた2枚のガ
ラス板のうちの1枚を30℃、他の1枚を130℃の各
乾燥器中に、それぞれ、いずれも15時間貯蔵し次いで
室温まで放冷した後に上記離型用ポリエステルフイルム
を剥離して後の各塗布物の表面硬度をそれぞれ求めよう
とした処、30℃の雰囲気下に貯蔵したものは全く重合
硬化が進行していないために上記離型用ポリエステルフ
イルムに塗布物が未硬化の状態で付着してしまい、平滑
な塗面を得る事が出来なかつた(実験番号1参照)。
Example 1 Maleic anhydride (4 mol), phthalic anhydride (6 mol),
A liquid resin (hereinafter abbreviated as A resin) consisting of 76% unsaturated polyester synthesized from propylene glycol (10 mol) and 24% styrene and dicumyl peroxide (4) as a catalyst (manufactured by Hon Yushi Co., Ltd., trade name: Percumyl D) A mixed solution prepared by adding A resin at a ratio of 1% to resin A was applied to a thickness of approximately 100μ on two glass plates whose surfaces had been cleaned, and the areas to which each of these coatings was applied were A polyester film for mold release was placed on each surface of the glass plate so as to be in contact with the glass plate, and one of the two glass plates thus obtained was placed in a dryer at 30°C and the other at 130°C. After storing each coat for 15 hours and allowing it to cool to room temperature, the polyester film for mold release was peeled off to determine the surface hardness of each coated product. Since the stored product had not undergone any polymerization and curing, the coating material adhered to the release polyester film in an uncured state, making it impossible to obtain a smooth coating surface (see Experiment No. 1). ).

一方、130℃の雰囲気下に貯蔵したものは、重合硬化
が進行しており、上記離型用ポリエステルフイルムは容
易に剥離し、その表面は平滑であり、この場合の硬化物
の表面硬度はJIS−5400で示す方法による鉛筆硬
度表示法でH〜2Hであつた(実験番号2参照)。
On the other hand, in the case of a product stored in an atmosphere of 130°C, polymerization and curing have proceeded, and the polyester film for mold release is easily peeled off, and its surface is smooth, and the surface hardness of the cured product in this case is JIS The pencil hardness was H to 2H according to the method shown by -5400 (see Experiment No. 2).

他方、上記A樹脂60部と銅粉(フレーク状、325メ
ツシユ)40部よりなる組成物に、触媒としてジクミル
パーオキサイドをA樹脂に対し1%の割合で添加した組
成物を、表面を清浄にした2枚のガラス板上にそれぞれ
約500μの厚さで塗布する以外は上記実験番号1およ
び2の場合と同様な要領で塗布した2枚のガラス板をつ
くり、そのうちの1枚を30℃、他の1枚を130℃の
各乾燥器中に、それぞれいずれも、15時間貯蔵し次い
で室温まで放冷した後に上記離型用ポリエステルフイル
ムを剥離して後の各塗布物の表面硬度をそれぞれ求めよ
うとした処、130℃の雰囲気下に貯蔵したものは、重
合硬化が進行していないために上記離型用ポリエステル
フイルムに塗布物が未硬化の状態で付着してしまい平滑
な塗面を得る事が出来なかつた(実験番号3参照)。
On the other hand, a composition in which dicumyl peroxide was added as a catalyst at a ratio of 1% to resin A to a composition consisting of 60 parts of resin A and 40 parts of copper powder (flake-like, 325 mesh) was used to clean the surface. Two glass plates were prepared in the same manner as in Experiment Nos. 1 and 2 above, except that the coating was applied to two glass plates each having a thickness of about 500μ, and one of them was coated at 30°C. , and another one in each dryer at 130°C for 15 hours, and then allowed to cool to room temperature. After peeling off the release polyester film, the surface hardness of each coated product was measured. When I tried to determine this, I found that when the product was stored in an atmosphere at 130°C, the coating material adhered to the release polyester film in an uncured state because the polymerization and curing had not progressed, resulting in a smooth coating surface. (See experiment number 3).

一方、30℃の雰囲気下に貯蔵したものは、重合硬化が
進行しており、上記離型用ポリエステルフイルムは容易
に剥離する事が出来、その表面は平滑であり、この場合
の硬化物の表面硬度はJIS−5400で示す方法によ
る鉛筆硬度表示法でF−Hであつた(実験番号4参照)
On the other hand, for those stored in an atmosphere of 30°C, polymerization and curing have progressed, and the above polyester film for mold release can be easily peeled off, and its surface is smooth. The hardness was F-H according to the pencil hardness display method according to JIS-5400 (see experiment number 4).
.

上記実験結果を次記表1にまとめた。実施例 2 実施例1で用いた銅粉60部をモノ(2−ヒドロキシエ
チルメタクリレート)アシドフオスフエート10部に配
合してなる導電用組成物(以下A組成物と略称)が7幅
と実施例1で用いたA樹脂30部の.割合になるよう混
合した組成物に、触媒として表2実験番号1〜3に記載
のそれぞれのジアルキルパーオキサイド型の有機過酸化
物をそれぞれA樹脂に対し1%になるよう添加したもの
を、これらのそれぞれについて表面を清浄にした2枚の
ガラ.ス板上にそれぞれ約500μの厚さで塗布すると
ともに、この各塗布物の塗布した部分の表面のそれぞれ
にこれと接触するように離型用ポリエステルフイルムを
おおい、このようにして得られた2枚づつのガラス板の
うちの1枚づつを、130℃の乾一燥器中にいずれも1
5時間貯蔵し、次いで室温まで放冷した後、上記離型用
ポリエステルフイルムを剥離して後の各塗布物の表面硬
度をそれぞれ求めようとした処、いずれの塗布物も重合
硬化が進行していないために、上記ポリエステルフイル
ムにこれらそれぞれの塗布物が未硬化の状態で付着して
了い、いづれも平滑な塗面を得る事が出来なかつた(実
験番号1〜3参照)。
The above experimental results are summarized in Table 1 below. Example 2 A conductive composition (hereinafter abbreviated as composition A) prepared by blending 60 parts of the copper powder used in Example 1 with 10 parts of mono(2-hydroxyethyl methacrylate) acid phosphate was tested with 7 widths. 30 parts of A resin used in Example 1. Each of the dialkyl peroxide type organic peroxides listed in Table 2 Experiment Nos. 1 to 3 was added as a catalyst to a composition mixed in such a proportion as to be 1% of resin A. Two pieces of glass with each surface cleaned. Each coating was applied to a thickness of about 500 μm on a substrate, and a release polyester film was placed on the surface of the coated portion of each coating so as to come into contact with the surface of each coating. Place each glass plate one by one in a drying oven at 130°C.
After being stored for 5 hours and then left to cool to room temperature, the polyester film for mold release was peeled off and the surface hardness of each coated product was determined, but it was found that polymerization and curing had progressed in each coated product. As a result, each of these coatings adhered to the polyester film in an uncured state, and it was not possible to obtain a smooth coating surface in any of them (see Experiment Nos. 1 to 3).

一方、上記塗布したガラス板の残りの各1枚づつを(資
)℃の乾燥器中にいずれも15時間貯蔵し、次いで室温
まで放冷した後に上記ポリエステルフイルムを剥離した
処、各塗布物は重合硬化が進行している為に容易に剥離
する事が出来、いずれもその表面は平滑でこれらそれぞ
れの硬化物の表面硬度はJIS−5400で示す方法に
よる鉛筆硬度表示法でF4Hであつた(実験番号4〜6
参照)。
On the other hand, each of the remaining coated glass plates was stored for 15 hours in a dryer at 15°C, and then allowed to cool to room temperature, and then the polyester film was peeled off. Because polymerization and curing had progressed, they could be easily peeled off, and the surfaces of all of them were smooth, and the surface hardness of each of these cured products was F4H on the pencil hardness scale according to the method shown in JIS-5400. Experiment number 4-6
reference).

上記実験結果を次記表2にまとめるとともに、実験番号
4〜6により得られた各硬化物表面にテスタニ゛(三和
電気計器社製商品名;マルチテスターK−30D)の測
定端子からのテストピン間隔を1cmに保つて接触させ
て測定した抵抗値を表2に併記した。実施例 3 実施例2で用いたA組成物が70部、表3の実験番号1
〜4に記載のそれぞれの重合硬化性樹脂が3幅の割合に
なるよう混合した各組成物に、触媒としてジクミルパー
オキサイドをそれぞれの重合硬化性樹脂に対し1.5%
添加したものを、それぞれ表面を清浄にした2枚づつの
ガラス板を用いて実施例2と同様な態様の塗布を行い、
それぞれの重合硬化性樹脂について1枚づつのガラス板
を乾燥器中に120℃で15時間貯蔵し次いで室温まで
放冷した後のそれぞれの塗布物表面をおおつた離型用ポ
リエステルフイルムを剥離しようと試みた処、上記各塗
布物はいずれも重合硬化が進行していないために離型用
ポリエステルフイルムに塗布物が未硬化の状態で付着し
てしまいいづれも平滑な塗面を得る事が出来なかつた(
実験番号1〜4参照)。
The above experimental results are summarized in Table 2 below, and a test was conducted from the measurement terminal of a tester (trade name: Multitester K-30D, manufactured by Sanwa Denki Keiki Co., Ltd.) on the surface of each cured product obtained in Experiment Nos. 4 to 6. Table 2 also shows the resistance values measured by contacting the pins with a spacing of 1 cm. Example 3 70 parts of A composition used in Example 2, experiment number 1 in Table 3
To each composition in which each of the polymerizable curable resins described in 4 to 4 was mixed at a ratio of 3, dicumyl peroxide was added as a catalyst in an amount of 1.5% to each polymerizable curable resin.
The added material was applied in the same manner as in Example 2 using two glass plates each with a cleaned surface.
For each polymerizable curable resin, one glass plate was stored in a dryer at 120°C for 15 hours, and then allowed to cool to room temperature. After that, an attempt was made to peel off the mold release polyester film covering the surface of each coated product. When I tried each of the above coatings, the polymerization and curing had not progressed, so the coatings adhered to the release polyester film in an uncured state, making it impossible to obtain a smooth coating surface. Ta(
(See experiment numbers 1 to 4).

一方、上記塗布したガラス板の残りの各1枚づつを30
℃の乾燥器中に15時間貯蔵し、次いで室温まで放冷し
た後の各塗布物表面をおおつた離型用ポリエステルフイ
ルムを剥離した処いずれの塗布物も重合硬化が進行して
いる為に容易に剥離する事が出来、いずれの場合もその
表面は平滑で、これら各硬化物の表面硬度はJIS−5
400で示す方法による鉛筆硬度表示法で表3の実験番
号5〜8にそれぞれ示す値であつた(実験番号5〜8参
照)。
On the other hand, apply 30% to each of the remaining glass plates coated above.
After being stored in a dryer at ℃ for 15 hours and then allowed to cool to room temperature, the release polyester film that covered the surface of each coated product was peeled off. All coated products were easily cured because polymerization had progressed. In both cases, the surface is smooth, and the surface hardness of each of these cured products is JIS-5.
The pencil hardness was expressed by the method shown in 400 and had the values shown in Experiment Nos. 5 to 8 in Table 3 (see Experiment Nos. 5 to 8).

上記実験結果を下記表3にまとめるとともに、実験番号
5〜8により得られた各硬化物の表面について実施例2
の場合と同様な試験方法で測定した抵抗値も表3に併記
した。
The above experimental results are summarized in Table 3 below, and Example 2 was performed on the surface of each cured product obtained in Experiment Nos. 5 to 8.
The resistance values measured using the same test method as in the case of 2 are also listed in Table 3.

Claims (1)

【特許請求の範囲】[Claims] 1 分子中にエチレン状不飽和基を有する硬化性物質を
銅と共存または接触状態下で上記硬化性物質をその硬化
反応により硬化させるに際し、上記硬化性物質の硬化触
媒としてジアルキルパーオキサイド型の有機過酸化物の
みでは該硬化性物質の硬化反応に寄与しないような低い
温度下に於いて上記有機過酸化物を存在させて該硬化性
物質の上記硬化を行わせる事を特徴とする分子中にエチ
レン状不飽和基を有する硬化性物質の硬化方法。
1 When a curable substance having an ethylenically unsaturated group in its molecule is cured by the curing reaction of the curable substance in coexistence with copper or in contact with copper, a dialkyl peroxide type organic compound is used as a curing catalyst for the curable substance. In the molecule, the above-mentioned curing of the curable substance is carried out in the presence of the organic peroxide at such a low temperature that peroxide alone does not contribute to the curing reaction of the curable substance. A method for curing a curable substance having an ethylenically unsaturated group.
JP3882774A 1974-04-08 1974-04-08 Curing method Expired JPS5953281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3882774A JPS5953281B2 (en) 1974-04-08 1974-04-08 Curing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3882774A JPS5953281B2 (en) 1974-04-08 1974-04-08 Curing method

Publications (2)

Publication Number Publication Date
JPS50135139A JPS50135139A (en) 1975-10-27
JPS5953281B2 true JPS5953281B2 (en) 1984-12-24

Family

ID=12536056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3882774A Expired JPS5953281B2 (en) 1974-04-08 1974-04-08 Curing method

Country Status (1)

Country Link
JP (1) JPS5953281B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241277A (en) * 1985-08-16 1987-02-23 Shin Etsu Polymer Co Ltd Anisotropically conductive adhesive

Also Published As

Publication number Publication date
JPS50135139A (en) 1975-10-27

Similar Documents

Publication Publication Date Title
EP3487689B1 (en) Methods and compositions for forming three-dimensional objects by additive fabrication
KR101714847B1 (en) Graphene coating composition, graphene coated steel sheet and manufacturing method thereof
JPS59102965A (en) Two component coating composition and formation of cured coating
JPS59135263A (en) Single component coating composition and formation of cured coating
JPS59170110A (en) Production of coating film-forming resin composition
JP2009066986A (en) Surface functional material and its manufacturing method
JPS5953281B2 (en) Curing method
JPS62161849A (en) Storage stable acrylate or methacrylate polastisol and its production
JPH05501734A (en) Method and device for fixing coiled material and use of radically polymerizable materials therefor
JP2516183B2 (en) Pattern formation method
JPS5838451B2 (en) Ekijiyou Koukaseibutsutsuo Koukasaseruhouhou
JPS5838450B2 (en) Koukaseibutsutsu no Koukabougaiobouthistle Hohou
JPH1160540A (en) Aromatic ester (meth)acrylate dendrimer and curable resin composition
KR101176111B1 (en) The process for preparing high polymerized urushiol from natural lacquer and industrial lacquer-gold paintscoating materials
TWI834613B (en) Polymerizable resin composition and cured product thereof
JP3683545B2 (en) Emulsion composition
JPS61143446A (en) Coating material
JPH01163274A (en) One-component coating composition
JPS626593B2 (en)
JPS58160308A (en) Thermosetting resin composition
JPS5838446B2 (en) Fuhouwa polyester resin
JPH10237288A (en) Composition curable with active energy ray
JPS6071624A (en) Curing resin
JPS5812912B2 (en) Thai-style varnish material
JP2001513830A (en) Method for coating molded article with polyester resin composition or solution