JPS5952983A - Recording and reproducing system of color video signal - Google Patents

Recording and reproducing system of color video signal

Info

Publication number
JPS5952983A
JPS5952983A JP57162183A JP16218382A JPS5952983A JP S5952983 A JPS5952983 A JP S5952983A JP 57162183 A JP57162183 A JP 57162183A JP 16218382 A JP16218382 A JP 16218382A JP S5952983 A JPS5952983 A JP S5952983A
Authority
JP
Japan
Prior art keywords
phase
carrier
signal
signals
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57162183A
Other languages
Japanese (ja)
Inventor
Masahiko Nagano
雅彦 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP57162183A priority Critical patent/JPS5952983A/en
Priority to US06/519,730 priority patent/US4626928A/en
Priority to EP83107866A priority patent/EP0102552B1/en
Priority to DE8383107866T priority patent/DE3382449D1/en
Publication of JPS5952983A publication Critical patent/JPS5952983A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/86Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded sequentially and simultaneously, e.g. corresponding to SECAM-system

Abstract

PURPOSE:To enable high density recording by making two subcarriers that synchronize relative movement between a video head and a magnetic medium and intersect at right angles a color tone when magnetically recording a carrier luminance signal at different azimuth between adjacent tracks. CONSTITUTION:Three kinds of carriers (1)-Asineomegact, (2) Acosomegact, (3) Asinomegact are made from output of an oscillator 1 by a phase shifter 2. One chrominance signal ER-V (t) and the signal (1) are inputted to make a balanced modulation wave and the signal (2) is added to this modulation wave to make a carrier chrominance signal CR (t). This signal is inputted to an inversion circuit 4 to make + or -CR (t) controlling phase inversion by rectangular wave of 1/2 fH. Another chrominance signal EB-Y and the signal 2 are inputted to another balanced modulator 5 and the signal 3 is added to this balanced modulation wave to make another carrier chrominance signal CB (t). After multiplexing + or -CR (t) and CB (t), a signal 21 made by composing the carrier luminance signal CY (t) and a reference signal fP is recorded by using inclined azimuth so that horizontal synchronizing signals are made uniform and phases of signals 2, 3 are made uniform between adjacent tracks.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はカラー映像信号の6己録11生方式に関し、特
に色m号の記録再生を改良したものである。 映像信号を磁気な1一体に記録する場合、記録密1隻を
向上させる方式として、f立相夏r;l’l si録方
式CPM方式)と傾斜アジマスによる周波数変調記録方
式CF ]VI方式)とが知ら八でいる。 位相夏i:IJ記録方式では特公昭56−51406号
公)]身中特開昭53−41126号公報に開示さ7’
しているように。 (1)  輝度信号で変調する主キャリアと磁気媒体と
ビデオヘッド間のA1対移動に同期させ。 (2)  この王ギヤリアを変調指数mpが1.3ラジ
アン以下にル1(度イム号で位相変、115Jし。 +31  この変調された輝度信号即ち搬送輝度Gi号
を、垂IU及び水平同期信号の位置が隣接トランク間で
揃い且つ王キャリアの位相も隣接トラック間で揃うよう
に記録する。 このように位相変調記録を行うと。 (イl  mp51.3であるため各トラックに記録さ
れたキャリア成分の振幅は略一定であり、しかもキャリ
ア成分はトランク間で同相であるから、ビデオへノドが
隣接トランクに跨っても+4j生情号のキャリア成分が
一定となる。 (口l  mp≦1.3であるため2次以−ヒの(ti
ll帯波成分が艶視でき、しかも同期信号がトラック間
で揃っているから、ビデオヘッドが隣接トランクに跨っ
ても再生信号の側帯波成分は複数フレームの合成ではあ
るが相関の極めて強い1■i面の合成となるだけである
。 よって。 レタ 記録時にはカードバンドレスあるいに−バ1sX
1jね書きとなるように高密度に記録し、一方。 再生時にトランキングエラーがあってもクロストークの
支障なく輝興信号を摺ルv4できる。 一方、傾征1アジマスによるFM方式では1周知の如く
アジマス効果全利用し1周波数変調された輝度信号即ち
搬送輝度信号を隣接するトランクでは共なるアジマスで
記録する。そのため。 再生時にビデオヘッドが隣接トラツノに跨っても、アジ
マスの異なるトラックからは低周波成分を除いて信号が
入らない。したがって、位相変調記録方式と同様、高密
度記録して再生時にトラッキングエラーがあってもクロ
ストークの支障がない。 なお1位相変調記録方式及び傾斜アジマスによるFM方
式いずれの方式とも角度変調であるから、記録ヂ1生時
のヘッドタッチの変動等によ#)AMノイズが乗っても
、リミッタをかけることによジ輝度信号からこのAMノ
イズを除くことができる。 カラー映像信号中の輝度信号については上述の如く、好
ましい記録方式が従来から用いられていたが1色情号に
あっては、 f!/!lえは色差信号(it−Y、)、
!l:CB−Y)ノ如< 2 Lm g cy)色イn
号カアル等の理由から、占廂イt′i域幅が広がらない
ように振幅変調(AM)で記録した9、2つの色信号を
1水平毎に交互に即ち線順次化して周波数変調(F’M
)で記録をしたりしていた。 そのため色信号の振幅変調記録方式ではAMノイズを匣
接受けることになって画質を損ね。 また上記線順次記録方式では色情報が一部欠けるためや
は9両質を損ねるという問題があった。 本発明は上述した色信号記録の従来技術に錐み、狭い占
有帯域でありながら画質を損うことなく2種の色信号l
−記録し、また再生でき、しかも変復調全容易に行える
カラー映像信号の1己録再生方式全1是供するものであ
る。 1j1」ち本光明では(1も−Y)と(B−Y)の2つ
の色差(ikY号又は2つの原色信号といった2種角の
色信号を直角2相の位相変ii1..Iによって多重化
するものであり、カラー映像イ3号の色信号の記録とし
てV、〔、ビデオベッドど両媒体体間の相対移動に同期
り、 、11− ツTi−イK iTf交12;4係V
Ch り L、カモ+ n−ぞれの位相が隣接トラック
l;]で揃う周波数を持つ第1及び第2の副キャリアを
2つの色信号の片方づつで61相変調し、と7’Lら2
つの位和変u、f″4さ几た色信号即ち2つの搬送色信
号を当該2つの偶″之送色信号と位相変調されるべき第
1及び第2の副キャリ゛アとのうち少なくとも1つを1
水平走丘毎に移相さ亡て1水平走査7σに相対的に18
0度づつ移相する2つの搬送色43号とし、この1氷平
ノ[1〒毎に相対的に180度づつ移相する2つの(般
送色信号金多重化し、この多重化さnた搬送色45号を
少なくとも水平同期信号の記録位置が阿挺トランク間で
揃い且つ隣接トラック間で第1及び第2の副キャリアの
それぞれの位相が揃うようにFi12録する。才たP)
生としては。 多重化されている搬送色信号は1水平走査時間遅延させ
遅延前後の信号の)ta >¥処理と減算処理とで2つ
の搬送色信号に分離し1分離された各搬送色信号、をそ
扛ぞnの記録時における移相と同じにイ°6和する位相
基準信号で復調することによって元の2種の色13号を
得る。 」二連した色114号の記録方式により、占有帯域が広
がらず、しかもAMノ・1ズの影響も受けず。 クロストークの支障もないという効果を奏する。 丑た。上述した色信号の直角2相の位相変調及びその復
調は平衡変調器音用いると簡単な回路構成で実現でき、
!、た再生した色信号も良好なものとなる。 本発明は色信号のみならずカラー映像信号全体について
高密度記録を実現すると同時に良好な再生画像を得るこ
とを目的の1つにしており。 色信号eこ+X:q しては上述の如く位相変調記録方
式を採用すると共に 、j、、It度信号に閣(7ても
AMノイズの影響を受けず且つクロストークの支ト・、
覧がない1)1N斜アジマスによる周波数変調記録方式
全採用することとする。 まず平衡変調器による位相変調の原理を説明する0今一
キヤリアをA Co5LAJct 、変調イJ号f(t
lとL7.定数項を除は一位相変調を受けた信号C,t
tlは。 cttl−ACO8(Wct  +kf(tlJ   
     ・・式(1)となる。ここで午での1時間t
″71’ k f(tJ< 1 (kは定数)とすると
。 C(tl”A  cosLL)ct  −Akf(tJ
  5inlAt            +++  
式(2)となる。式(2)中の第1項はキャリア%第2
頂tユ平衡変調彼を表わし、 kf(tJ < 1  
の範囲でeよ位相変Mjは2次以上の−(I(II ’
:f7波は無視でき且つ平衡変調器で変調できることが
わかる。ここでkf(tl < 1  の成立条件全検
討する。 fitl = a 5in(J’+nt       
    −・式(3)とし、これ金式(2)に代入して
整理すると。 C(tノーA  (coscuat +v  + co
s(LL]C→υ’+n )t −cos(−c−L五
)m)tl)・・・式(41 となる。但しmp=keaで最大変1174指数を表わ
す。 一方、式+31を式il+に代入し、第1釉ベツセル関
数で1仄−まで展開すると、 cos (u)c−一市)t)」       ・・・
式(5)となる。式(4) 、 (51よジ の成g、111入[iflがk f(ti(1を満たす
範囲と考えられる。そこで弔14’!Ifベツセル関θ
の値を検討すると、化1図より 1’llp≦1.3           ・・・式(
7)てあt″Lu式piJが極めて良い近似で成立する
、以上より、変H’11¥指数が成る程度1υ下であれ
ば平衡変jj’l gW IIてよる位相変調が可能で
あることがわかる。平?9I■変−1′4器で位相変調
できることは変復調器が+t:j卓な回路構成となり且
つ極めて安定な位A1」変復調ができ、しかも後述する
様に直角2相変調による位相変調の多重化ができること
になる。 ここで変N、1指数mpの上限について考察すると1m
p の上限は多分に視覚的に定められるが。 輝度信号を位相変調記録方式で記録する場合は。 好ましくはlnp≦1.0実用上はmp≦1.3 とさ
れている。しかし1色情号は輝度信号よりも帯域が狭い
のでクロストークがあってもさほど見苦しくはないと考
えられるから1通常の位相変調の場合でもmp+1.5
程度でも実用可能であろう。 一方1位相変肖を平衡変肖器で行う場合は原理的に二次
の側帯波が無いので通常の位相変調よりも更に大きなm
p まで許容できると考えられる。mpが大きいとS/
N  が良くなるのに対し歪が発生するが、この歪は補
正が可能である。 以上のことから5色情号を位相変調方式で記録する場合
の7に調指数mp は輝度信号の場合よりも大きくとる
ことができる。特に平衡度L1・5器をF[1いた場合
の色信号の位相変調記録では1mp≦1.3であ扛ば歪
の補正も必要ないというメリットがあり、しかもクロス
トークの支障がない、次に2つの色差信号(R−Y)と
(B−Y)  を変調信号とし、それぞれ互いに直交関
係にあるAs1nlctとAcoswct  とライ衡
変調器で位相変乱゛4すると5次式(81、+91とな
る。但しく■七−Y〕。 (B−Y)の711:圧をE、n−y +En−yとす
る。 Cn(t、1=Aco!IWct−AkttEn−y(
tlsinuct   =一式(81Cn(t)= A
 s i+iωct+A1<nFl;n−Y(tlco
s(z7ct   =式(9)トコロカ1式(8)1式
+91 [i−イてそnぞれER−Y+E n−y ’
Fc (41L’MするにはCR(tlX 5intd
Ct 、 CB(tlXcostJ)Ctの如くそれぞ
れ同期検波すれば良いが。 CttS CR(tl TCn(tl        
   一式u01と単純に多月(化してしまうと、  
5inIJ)cjとcos′U)atのいずitの位相
基準信号全用いて同期検波しても、これらと同相のキャ
リアがC(tlに含まれているため同期検波出力にΔな
るキャリア成分が含1れてし捷い都合が悪い。 本発明ではこの直流分シを除くためCn(t)とCn(
tl  とが互いに周波数インターリーブするようにし
映f2 (m号の垂直相関を利用して、再生時に櫛型フ
ィルタで外性fでき、るように、 CR(tl又はCn
ft1のいず汎か一方が1水平走査周期で位相反転する
ようにしたり、一方は1水平走査周期毎に位相S:90
度進ませ他方は逆VC位相を90 g近らしたジするこ
とにょ9 Cu(tlとCn(IJが1水平走査周期1
1フ゛に相対的に180度づつ移相するようTCI、て
多重化する。例えば、 Cft1” ±CnttJ −4−Cn (tl−土(
Acostoct−AlcHER−y(tlsinωc
tJ十CAs1nωct+AknEn−y(tフco+
1)ctJ −・式(111とする。街調のjJ、1合
VI、隣接する水−ゞト走査線には強い垂itI相関が
あるので、C(tlを1水平走査時曲遅延させ、遅延前
後のイ吉号を加算処理及び減算処理することにょvCm
(tJとCB(tlに分KftL 。 分離後にそわ、ぞ扛を同期検波すれば良い。但し。 式ODの場合はカ11算により Cn(tJがイ?)ら
71−るが、誠32、では士C+a(tJ  となるの
でこれの同期検波に用いる位相基準信号も1水平走査毎
に位相反転し±sinωct  とする必要がある。こ
のよりな1水平走査毎の位相基準イ[:号の移相は例え
ばCnttJを1水平走査毎に90要位相を進めると共
にCn(tJはl水平7[査7+jに90廐位相(イ)
−遅らせる場合も。 同様に必!81となる。これらGZ相!1′・準仙号看
・l水平走査イσに移’40させる角すrは記φ、六時
にCn(tlやCB(tlを・移相し、た角度に従って
決せる。 な丸・、各水平71−査で各副キャリアの位相が揃わな
いと上記の分FMが不完全になるので、副キャリアの周
波数1−L)c/ 2πを水平走査周波数flIと関連
づけてよ、・く必要がある。 [4!lえU′回回転デ
ィジの場合で1トランク/1フレームではLLI C,
/ 2π=nefI(とレートラック/lフィールドで
はcL)c/ 2 π” (sz +’ ) f Hと
する。 以上を甘とめると1本発明の記録方式は、ル■題(ij
号で主キャリアを周波数刻1、周してなる搬送)庫度伯
弓を1b′4接トジソク曲でアジマスな異ならせて磁気
媒体に記録するカラー映像・は号の6C録刀式Vこ、l
、−い゛C,ビデオヘッドと(711気媒体間の相対移
動に回期し且つ互いに直交関係にありしかもそ)tぞ扛
の位イ1]が藺接トランク曲で揃う周波数を持つ第1及
び第2の副キャリア金2つの色信号の片方づつでイJ相
変調し、こ牡ら2つの位相変調さ7’した色信号即ち2
つの搬送色イd号を当該2つの搬送色信号と位相変調ざ
扛るべき第1及び第2の副キャリアとのうち少なくとも
1つを1水平走査毎に移相させて1水平走査毎に相対的
にxso耽つつ移相する2つの搬送色信号とし、この1
水平走査毎に相対的に180度づつ移相する2つの搬送
色情号全多M(化し、この多重化さ扛た搬込色(q号と
前記搬送卸度イ11号とを、少なくとも水平同期信号の
記録位置が瞬接トラック間で怖jい且つ隣接トランク曲
で第1及び第2の副キャリアのそれぞnの位相が揃うよ
うに記録することを1ゲ徴とする。 また1本発明の1+)生方式は、ビデオヘッドと磁気媒
木間の相対移動に同期し且つ互いに直交関係に−ありし
かもそnぞtLの位相が瞬接トランク間で揃う周波数を
持つ第1及び第2の副キャリア全2つの色信号の片方づ
つで位相変υMし、これら2つの位相変調された色信号
即ち2つの搬送色信号全当該2つの搬送色(i号と位相
変調されるべき@1及び第2の副キャリアとのうち少な
くとも1つ′f3:1水平走査毎に移相させて工水平走
査毎(C相対的に180度づつ移相する2つの搬送色信
号とし、この1水平走査毎に相対的に180度づつ移相
する2つの搬送色信号會多Mfヒし、この多重化された
搬送色イぎ号と主キャリアを輝度信号で周波数変調して
なる搬送輝度イB号とを、隣接トラック間でアジマスが
異なりしかも少なくとも水平同期信号の記録位置が隣接
トランク間で揃い且つ隣接トラック間で嘉1及び第2の
副キャリアのそれぞ扛の位相が揃うように記録した磁気
媒体からカラー映像信号を再生する方式において、ビデ
オヘッドの再生出力から上記搬送輝度信号及び多重化さ
れている搬送色信号全抽出し、搬送輝度信号は周波数復
調する一方、多重化さnている搬送色信号はl水平走査
時間遅延させ遅延前後の信号の加゛算処理と減算処理と
で2つの搬送色信号に分離し、分離された各搬送色信号
をそnぞ扛の記録時に卦ける移相と同じに移相する位相
基準信号で復調することを特徴とする。 ところで、 CRltl又はCn(tlの位相全反転さ
せたり、901現4聾せたり、あるいは90朋遅らせた
りする移相の方法は1位相珍二訃゛4器の出力そのもの
全180度、±901現移相させる方法と、副キャリア
自f木’r 1B (l ray、±90すV千各相さ
せる方法とがあるがいずれでも良い。 同期検波に必安な位相基1’j、に信号としては、磁気
媒体とビデオヘッド間の相対移1111の変動による時
間軸変動を吸収する必要がある。その1つの方法として
は1色(バ号の水平帰線消去期間は信号成分が乃・いの
で副キャリアの位相が一定になる。従って1■生時、こ
の水平帰線消去期間の合成キャリア(第1と第2の副キ
ャリアの合成)をバースト状の基準信号としてAPC(
自動位相制御)回路を設けて時出口811変動に対応し
た連続し7た位相基準信号をイ:(ることにより安定な
復調を行うことができる。この際、一方の副キャリアの
位相ケ1水平走査期間毎に反転させる方法によれげ上8
The present invention relates to a 6-color recording and 11-raw system for color video signals, and particularly improves the recording and reproduction of color m numbers. When recording video signals in one magnetic unit, two methods are available to improve the recording density: a frequency modulation recording method using tilted azimuth (CPM method) and a frequency modulation recording method using tilted azimuth (CF VI method). Toga Shihachi is here. Phase summer i: In the IJ recording system, the method is disclosed in Japanese Patent Publication No. 56-51406);
Like I'm doing. (1) Synchronize with the movement of the A1 pair between the main carrier, the magnetic medium, and the video head modulated by the luminance signal. (2) This king gear is modulated so that the modulation index mp is 1.3 radians or less. +31 This modulated luminance signal, that is, the carrier luminance Gi, is applied to the vertical IU and horizontal synchronizing signals. Recording is performed so that the positions of the carriers are aligned between adjacent trunks and the phase of the main carrier is also aligned between adjacent tracks.When performing phase modulation recording in this way, the carrier recorded on each track is Since the amplitude of the component is approximately constant and the carrier component is in phase between trunks, the carrier component of the +4j biosignal remains constant even if the video node straddles adjacent trunks. (lmp≦1. 3, so the quadratic (ti
Since the ll band wave components are clearly visible and the synchronization signals are aligned between tracks, even if the video head straddles adjacent trunks, the side band wave components of the playback signal are a composite of multiple frames, but have an extremely strong correlation. It is only a combination of i-planes. Therefore. When recording, the card band is removed or the bar 1sX is used.
1j Record with high density so that it is written on the other hand. Even if there is a trunking error during playback, the Kisho signal can be printed v4 without any problem of crosstalk. On the other hand, in the FM system using one tilting azimuth, as is well known, the azimuth effect is fully utilized to record a single frequency modulated luminance signal, that is, a carrier luminance signal, at the same azimuth on adjacent trunks. Therefore. Even if the video head straddles adjacent tracks during playback, no signals will be received from tracks with different azimuths, except for low frequency components. Therefore, like the phase modulation recording method, even if tracking errors occur during high-density recording and reproduction, there is no problem of crosstalk. Note that both the 1-phase modulation recording method and the FM method using tilted azimuth use angle modulation. This AM noise can be removed from the brightness signal. As mentioned above, the preferred recording method has been used for the luminance signal in the color video signal, but for one color information signal, f! /! l is the color difference signal (it-Y,),
! l: CB-Y)ノ 2 Lm g cy) color n
In order to prevent the spread of the spectrum, the two color signals recorded by amplitude modulation (AM) are alternately per horizontal line, that is, line-sequential, and frequency modulated (F 'M
). Therefore, in the amplitude modulation recording method of color signals, the image quality is deteriorated due to AM noise. In addition, the line sequential recording method has the problem that some color information is missing, resulting in a loss of quality. The present invention is based on the prior art of color signal recording described above, and allows two types of color signals to be recorded without deteriorating image quality despite having a narrow occupied band.
- It provides an all-in-one recording and playback system for color video signals that can be recorded and played back, and can be easily modulated and demodulated. 1j1'' In this Komei, two color signals of (1 also -Y) and (B-Y) (ikY or two primary color signals) are multiplexed by quadrature two-phase phase change ii1..I. As a recording of the color signal of the color image A3, V, synchronized with the relative movement between the two media such as a video bed,
The first and second subcarriers having frequencies whose phases are aligned with the adjacent track l;] are modulated in 61 phases with one side of each of the two color signals, and 7'L, etc. 2
At least one of the two even color signals and the first and second sub-carriers to be phase modulated is used. one to one
18 relative to 1 horizontal scan 7σ without phase shift for each horizontal scan
Two carrier colors No. 43 whose phase is shifted by 0 degrees are used, and two (general carrier color signals gold) whose phase is shifted by 180 degrees relative to each other are multiplexed and this multiplexed color signal gold is multiplexed. Carrier color No. 45 is recorded in Fi12 so that at least the recording position of the horizontal synchronization signal is aligned between the carrier trunks and the phases of the first and second subcarriers are aligned between adjacent tracks.
As a raw person. The multiplexed carrier color signal is delayed by one horizontal scanning time, and separated into two carrier color signals by processing and subtraction processing of the signals before and after the delay, and each separated carrier color signal is processed. The original two colors No. 13 are obtained by demodulating with a phase reference signal that is equal to the phase shift at the time of recording. '' Due to the recording method of double color No. 114, the occupied band does not widen, and it is not affected by AM No. 1s. This has the effect that there is no crosstalk problem. Ushita. The above-mentioned quadrature two-phase phase modulation of the color signal and its demodulation can be realized with a simple circuit configuration by using a balanced modulator sound.
! , the reproduced color signal will also be good. One of the objects of the present invention is to achieve high-density recording not only of color signals but also of the entire color video signal and at the same time to obtain good reproduced images. In addition to adopting the phase modulation recording method as described above for the color signal e +
1) Frequency modulation recording method using 1N diagonal azimuth will be adopted in all cases. First, we will explain the principle of phase modulation using a balanced modulator.
l and L7. The constant term is removed from the single phase modulated signal C,t
tl is. cttl-ACO8(Wct +kf(tlJ
...Equation (1) is obtained. 1 hour in the afternoon here
″71′ k f(tJ< 1 (k is a constant).C(tl″A cosLL)ct −Akf(tJ
5inlAt +++
Formula (2) is obtained. The first term in equation (2) is the carrier % second
The top t represents the equilibrium modulation, kf(tJ < 1
In the range of e, the phase shift Mj is quadratic or higher -(I(II'
: It can be seen that the f7 wave can be ignored and can be modulated by a balanced modulator. Here, consider all the conditions for establishing kf(tl < 1. fitl = a 5in(J'+nt
-・If we take equation (3) and substitute it into equation (2), we get the following. C(t no A (coscuat +v + co
s(LL]C→υ'+n)t-cos(-c-L5)m)tl)...Equation (41).However, mp=kea represents the maximum variable 1174 index.On the other hand, expression +31 Substituting into the formula il+ and expanding it to 1- by the first glaze Betussel function, we get cos (u)c-ichi)t)''...
Formula (5) is obtained. Equation (4), (51 years of formation g, 111 input [ifl is considered to be a range that satisfies k f(ti(1).
Considering the value of 1'llp≦1.3...Equation (
7) The t''Lu equation piJ holds with a very good approximation. From the above, phase modulation based on the equilibrium change jj'l gW II is possible as long as it is below 1υ to the extent that the variable H'11\ index is obtained. The fact that phase modulation can be performed with a 9I modulator -1'4 modulator means that the modulator/demodulator has a simple circuit configuration and can perform extremely stable phase A1 modulation and demodulation, and as will be described later, it uses quadrature two-phase modulation. This makes it possible to multiplex phase modulation. Now, considering the upper limit of variable N, 1 index mp, 1 m
The upper limit of p is mostly determined visually. When recording luminance signals using phase modulation recording method. Preferably lnp≦1.0, practically mp≦1.3. However, since the chromatic signal has a narrower band than the luminance signal, it is thought that even if there is crosstalk, it will not be too unsightly.1 Even in the case of normal phase modulation, mp+1.5
It would be practical to some extent. On the other hand, when one-phase modification is performed using a balanced transformer, there is no secondary sideband wave in principle, so the m
It is considered that up to p is acceptable. If mp is large, S/
While N is improved, distortion occurs, but this distortion can be corrected. From the above, when recording five chrominance information signals using the phase modulation method, the tonal index mp can be set to be larger than that for luminance signals. In particular, in phase modulation recording of color signals when the balance level L1. When the two color difference signals (R-Y) and (B-Y) are used as modulation signals, and the phase is changed by As1nlct and Acoswct, which are orthogonal to each other, and a balance modulator, the quintic equation becomes (81, +91). However, ■7-Y]. 711 of (B-Y): Let the pressure be E, ny + En-y. Cn(t, 1=Aco!IWct-AkttEn-y(
tlsinuct = set (81Cn(t) = A
s i+iωct+A1<nFl;n-Y(tlco
s (z7ct = Equation (9) Tokoroka 1 Equation (8) 1 Equation + 91 [i-ItesonEr-Y+E n-y'
Fc (41L'M to CR (tlX 5intd
Ct, CB(tlXcostJ)Ct, respectively, should be synchronously detected. CttS CR(tl TCn(tl
If it turns out to be a complete set u01,
Even if synchronous detection is performed using all the phase reference signals of 5inIJ)cj and cos'U)at, the carrier component that becomes Δ is included in the synchronous detection output because carriers in phase with these are included in C(tl). In the present invention, in order to remove this DC component, Cn(t) and Cn(
CR (tl or Cn
One side of ft1 is configured to invert the phase in one horizontal scanning period, and one side is configured to have a phase of S: 90 every horizontal scanning period.
9 Cu (tl and Cn (IJ is 1 horizontal scanning period 1
Multiplexing is performed using TCI so that the phase is shifted by 180 degrees relative to one phase. For example, Cft1” ±CnttJ −4−Cn (tl−Sat(
Acostoct-AlcHER-y(tlsinωc
tJtenCAs1nωct+AknEn-y(tfuco+
1) ctJ - Expression (111) Since there is a strong vertical itI correlation between the city tone jJ, 1st grade VI, and the adjacent water vert scan line, C(tl is delayed by one horizontal scan time, VCm performs addition and subtraction processing on the Ikigo before and after the delay.
(KftL for tJ and CB (tl). After separation, it is sufficient to perform synchronous detection of the noise. However, in the case of formula OD, Cn (tJ is I?) et al. 71-ru, but Makoto 32, Therefore, the phase reference signal used for synchronous detection must also be phase-inverted every horizontal scan to be ±sinωct. For example, CnttJ is advanced by 90 phases per horizontal scan, and Cn (tJ is l horizontal 7 [scan 7 + j by 90 phases (a)).
- Sometimes it's delayed. A must as well! It becomes 81. These GZ phases! The angle r to be shifted to σ is determined according to the angle at φ, 6 o'clock, Cn(tl or CB(tl), and the phase is shifted. If the phase of each subcarrier is not aligned in each horizontal scan, the FM will be incomplete by the amount described above, so it is necessary to relate the subcarrier frequency 1-L)c/2π to the horizontal scanning frequency flI. [In the case of 4!lE U′ rotation digital, 1 trunk/1 frame is LLI C,
/2π=nefI (and cL in the rate rack/l field) c/2π" (sz +') fH. Taking the above as an example, the recording method of the present invention is
The color video recorded on the magnetic medium by changing the azimuth of the main carrier by rotating the main carrier at a frequency of 1 in 1b'4 is the 6C recording type V of the issue. l
, - ゛C, the video head (which corresponds to the relative movement between the air media and is orthogonal to each other) has a frequency that is aligned in the trunk music when the video head and the video head (711) The second subcarrier gold is phase-modulated with one of the two color signals, and the two color signals are phase-modulated with 7', that is, 2.
The two carrier color signals and at least one of the first and second subcarriers to be phase-modulated are phase-shifted every horizontal scan, so that the two carrier color signals and the first and second subcarriers to be subjected to phase modulation are relative to each other every horizontal scan. Assume that two carrier color signals are phase-shifted while indulging xso, and this one
The two transport color information signals (M) whose phase is shifted by 180 degrees relative to each other in each horizontal scan are combined, and this multiplexed color information signal (Q) and the transport angle A (11) are at least horizontally synchronized. The signal is recorded so that the recording position of the signal is between tracks that are momentarily connected and the phases of each of the first and second subcarriers are aligned in adjacent trunk songs. In the 1+) raw method, the first and second signals are synchronized with the relative movement between the video head and the magnetic medium and are orthogonal to each other, and have a frequency such that the phases of tL are aligned between the trunks of instantaneous contact. The phase of each of the two subcarriers is shifted υM, and these two phase-modulated color signals, i.e., the two carrier color signals, are combined with the two carrier colors (i and @1 to be phase-modulated and the At least one of the two subcarriers 'F3: Two carrier color signals whose phase is shifted by 180 degrees relative to each other, and each horizontal scan is shifted by 180 degrees. Two carrier color signal groups Mf are phase-shifted by 180 degrees relative to each other, and the multiplexed carrier color signal and carrier luminance signal IB are obtained by frequency modulating the main carrier with a luminance signal. Color data is obtained from a magnetic medium recorded in such a way that the azimuth is different between adjacent tracks, and at least the recording position of the horizontal synchronizing signal is aligned between adjacent trunks, and the phase of each of the first and second subcarriers is aligned between adjacent tracks. In a method for reproducing video signals, all of the carrier luminance signals and multiplexed carrier color signals are extracted from the playback output of the video head, and the carrier luminance signals are frequency demodulated, while the multiplexed carrier color signals are l The horizontal scanning time is delayed, and the signals before and after the delay are separated into two carrier color signals by addition and subtraction processing, and each separated carrier color signal is subjected to the same phase shift as that applied when recording a photo. It is characterized by demodulating with a phase reference signal whose phase is shifted to There are two methods: one is to shift the output of the quartet itself by a total of 180 degrees, ±901 phase, and the other is to shift the subcarrier's own f ray, ±90 V for each phase, but either one is fine. As a signal to the phase base 1'j, which is essential for synchronous detection, it is necessary to absorb time axis fluctuations due to fluctuations in the relative shift 1111 between the magnetic medium and the video head.One method for this is to use one color ( During the horizontal blanking period of the B signal, the signal component is negative, so the phase of the subcarrier is constant. Therefore, when 1 Synthesis) is used as a burst reference signal and APC (
A (automatic phase control) circuit is provided to generate seven consecutive phase reference signals corresponding to the fluctuations of the output 811, thereby making it possible to perform stable demodulation. 8

【、、+バースト状の基iP (ij号の位相はPAL
  方式におけるバーストイぎ号と同様に1水平走査期
間1σに90度異なったものとなる。 こnにより7.時間軸変動に対して強いというJh長が
あるだけでなく、1水平走査毎に位相基14p信号の位
([1を反転さセ°る切替信号をAPC回v6の検波出
力から得ることができる(第4図参照)。他の方法とし
ては、磁気媒体に基Iいイイ号を記録し、これの再生信
号を利用してfrc相基準信号ヲイ÷することもできる
。(1歿気デイスクの場合Vよ、上記の基準信号をビデ
オトランクに多重記録するり)合と、補助トラックに記
録する場合とが考えられる。なお、第1及び第2の副キ
ャリアTr?in気媒体とビデオヘッド間の相対移動に
同期せる方法としては、FC(周波数発生器)で駆動モ
ータ等の回転変動を検出してキャリアの発振器を制御す
る他、位相基準信号の作成と同じく磁気媒体に基準信号
を記録してこの再生信号そのもの、あるいは再生イば号
で制御した発振器の出力をキャリアとして用いる方法が
おるが。 副キャリアの周波数が高い場合は位相基小信号金柑いる
方が精度が高い。 なお、磁気媒体に記録する上記基準信号の周波数は搬送
輝度信号の帯域と搬送色信号の帯域との間の帯域あるい
は搬送色信号の帯域よp下の帯域に設定することができ
る。 以上のようなカラー映像信号の記録再生方式(al  
色信号が輝度信号と同じく角度変調によって記録される
ため、記録再生の過程で生じるレベル変動の影響即ちA
Mノイズを受けない。 (bl  副キャリアの位相が隣接トラック間で揃って
いるため、カードバンドレスあるいは一部重ね書きの高
密度記録でもクロストーク訪客を受けない。 (cl  変調指数mpがあまり太きくないため位相変
調によるサイド−バンドが元来狭く、シかも直角2相変
調で多重化しているので、2種の色KM @ f全て記
録するにもかかわらず占有帯域が広くならない。 (dl  同じ(mpがあまり大きくないから1位相液
内及び山両全平散液沿、■器による変調と同期検波rよ
る1す;181で実現で氏1回路4:’j成が1″7i
l却で旧つil、tl+作が極めて安1..z (ヒす
る。 tel  更に、現送色信号の一方ケ1水平走査毎に位
相反転させたり双方全互いに逆方間に90度づつj’l
 ;(11さぜたジして多重化し1画生時には加算及び
減算の処理をして分離しているのテ、カラーテレビジョ
ンのP A L方式と同様、時間性17Kiiilノが
あっても27L査<51 fj4]で打ち消さ7し影4
,1lilを受け5ifiい。 仄に、第2図及び第3図によって本発明の一実施例を示
す、第2図は1トラック/】フレームの記録系のブロッ
ク図であ!11.発4辰器1の出力(例えば48 fa
t相当の756kI(z)から移相器2に」:つて3千
1!のキャリアーAs1nLL’ct 、 A cos
LL’c t 。 A s l n wc tが作られる、平衡度6岡滞3
には一方の色イ:4 +fEn−y(tlと−A si
nωct  を入力して平衡変調波を作ジ、とnにAc
oslaJctを加えて、搬送色信号C+t(tl  
6一旦作り、これ全反転回路4に入カレ↓fllの矩形
波で位相反転を制御して士CRfLIを作る。他方の平
衡変調器5には他方の色信号En−yttlとAcos
’CJ)ctを入力し、この平衡変調波にAs1nωc
t  を加えて他方の搬送色信号CB(t)を作る。±
Cn(tJとCn(tl k合成回路6で多重化し。 ついで周波数変調された搬送輝度信号CY(t)及び基
準信号fpと合成しこの信号21全傾斜アジマス方式を
用い、更に隣接トラック間で少なくとも水平同期信号の
記録位置が揃い且つA cosωctとAs1nωct
の位相が隣接トラック間でそれぞれ揃うように記録する
。基準信号fp  はキャリアAs1nωctヲカウン
タ7で8分周したもので6 、fH即ち94.5KHz
としである。なお、キャリアの発振器1は補助トラック
または既に記録されたトラックから補助ベッドで再生し
て得られる基準信号fp′ と位相同期させることによ
って隣接トラック間のキャリ°ア位相を揃えるよう、電
圧制御発振器(VCO)laと、カウンタ1bと1位相
比較器ICとで構成しである。搬送輝度信号については
図示しないが従来の傾斜アジマスによる周波数変調方式
と同じである。 第3図は第2図に対もする再生系を示し、再生43号2
2のうち曲送輝度信号C徂jは・・イパスフィルタ8で
分離して従来通りのFM復調回路9へ人力されるが、多
重化されている搬送色信号C(tJはバンドパスフィル
ター0で抽出されて1水平走査時間の遅延線11に入力
する。遅延線11の入出力信号を減算器12及び加算器
13に与えて士CR(t)とCB(t)を作り、それぞ
れを平衡変調器14.15に入力する。各平衡変調器1
4゜15へ与える位相”” ”A 信号は±s i n
’−A)c tとcosLL’ctであり、こnらは4
8 fuの発振器16.移相回路17及び反転回路18
で作っている。詳細には、48fHの電圧制御発振器1
6a  の出力をカウンター6b  で8分周し、こむ
、とバンドパスフィルター6c  で抽出した基準信号
t p/ とを位相比較器16d  で位相比較して発
振出力の位相全制御し、この発振出力から5in(A’
ctとeO8φctの位相基準信号を作!’ b C0
8ψctはそのまま平散液調器15へ与えるが、 si
nψCtの方はΣfHの矩形波で制御される反転回路1
8に通し十sinωCtとしてから平衡変調器14に与
えている。各平衡変調器14.15の出力をローパスフ
ィルタ19.20に通すと、キャリア及び高次成分が除
かれてER−y(tlとEn−y ftlの色信号をイ
(トる。 第4図は水平帰線消去期間中の無変調の合成副キャリア
全バースト状の基準信号として利用する場合の再生系の
実施例を示す。記録系は第2図と同じであり省略した。 第4図中で第3図と同一部分には同一符号を付して説明
の重複を省く。ゲートパルス回路23は水平同期信号2
4全入力して水平帰線消去期間の幅のパルス23a全出
し、基準信号ゲート回路25はこのパルス23affi
受けている間だけ開いてバースト状の基準信号25aを
APC回路26に送り込む。 APC回路26で1ivco(電圧制御発振器)27の
発振出力27aと入力さ肛た基準信号25aとの位相比
較を位相検波回路28が行い、その出力28aでVCO
27?制御することによりバースト状の基準信号25a
と同位相で同一周波数の発振出力27aが得られる。こ
の発]辰出力27aは90度移相器29を通って平衡度
514器15に対する一足位相の位相基準411号(c
os LL’ct )となる。一方フリンプフロソプ3
0は水平同期(it号24をクロックとし、APC回路
2()の位相検波回#’628がバースト状基Y□′A
イ17号25aの入カイσにその位相を検出した信号2
8bでリセットされる。このフリップフロップ30の出
力でスイッチ31が1水平走査毎に切イ゛rわり、VC
O27から直接の出力27aと180度移相器(反転「
」」路)32を通った出力32aとが1水平走査(iX
に交互に平衡7&調器14に力えられ、±5inLL’
ctなる位相、ν冒゛(ヘイ3号となる。
[,,+burst-like base iP (the phase of ij is PAL
Similar to the burst signal in the method, the signal differs by 90 degrees in 1σ during one horizontal scanning period. Due to this, 7. Not only does it have a Jh length that is resistant to time axis fluctuations, but a switching signal that inverts the phase base 14p signal ([1] for each horizontal scan can be obtained from the detection output of the APC circuit v6. (See Figure 4).As another method, it is also possible to record the base number on a magnetic medium and use the reproduced signal to divide the FRC phase reference signal. In case V, the above reference signal may be multiplex recorded on the video trunk or recorded on an auxiliary track. In addition to detecting rotational fluctuations of the drive motor etc. using an FC (frequency generator) and controlling the carrier oscillator, methods for synchronizing the relative movement of the carrier include recording a reference signal on a magnetic medium in the same way as creating a phase reference signal. There is a method of using the reproduction signal of the lever itself or the output of an oscillator controlled by the reproduction lever as a carrier.If the frequency of the subcarrier is high, it is more accurate to use a phase base small signal Kumquat.Please note that the magnetic medium The frequency of the reference signal recorded in the color video signal can be set to a band between the carrier luminance signal band and the carrier chrominance signal band, or a band p below the carrier chrominance signal band. recording and reproducing method (al
Since color signals are recorded by angular modulation in the same way as luminance signals, the influence of level fluctuations that occur during the recording and reproduction process, that is, A.
Does not receive M noise. (bl Since the phase of the subcarriers is aligned between adjacent tracks, there is no crosstalk visitor even in card bandless or high-density recording with partial overwriting. (cl) Since the modulation index mp is not very thick, the phase modulation Since the side band is originally narrow and the side band is multiplexed using quadrature two-phase modulation, the occupied band does not become wide even though all two types of colors KM @ f are recorded. (dl is the same (mp is not very large) From 1 phase inside the liquid and along both sides of the flat dispersion liquid, modulation by the device and synchronous detection r;
The old version, tl + work is extremely cheap 1. .. z (Hi. tel) In addition, one side of the current color signal is inverted in phase every horizontal scan, and both are inverted by 90 degrees in opposite directions.
; (11 is multiplexed by multiplexing, and when it is a single picture, addition and subtraction processing are performed to separate it. Similar to the PAL system of color television, even if there is temporality of 17Kiiiil, it is 27L. 7 and shadow 4
, 1 lil and 5ifi. An embodiment of the present invention is shown in FIGS. 2 and 3. FIG. 2 is a block diagram of a recording system for one track/] frame. 11. The output of the generator 1 (e.g. 48 fa
From 756 kI(z) equivalent to t to phase shifter 2: 3,011! carrier As1nLL'ct, A cos
LL'ct. A s l n wc t is created, equilibrium degree 6 Oka stay 3
has one color A: 4 +fEn-y(tl and -A si
Input nωct to create a balanced modulated wave, and input Ac to n.
oslaJct is added to obtain the carrier color signal C+t(tl
6 is created once, and the phase inversion is controlled by a rectangular wave of input ↓fll input into the total inversion circuit 4 to create CRfLI. The other balanced modulator 5 receives the other color signals En-yttl and Acos.
'CJ)ct is input, and As1nωc is input to this balanced modulation wave.
t to create the other carrier color signal CB(t). ±
Cn (tJ and Cn (tl k) are multiplexed by a combining circuit 6. Then, this signal 21 is combined with the frequency-modulated carrier luminance signal CY (t) and the reference signal fp, using the full tilt azimuth method, and furthermore, at least The horizontal synchronization signal recording positions are aligned and A cosωct and As1nωct
Recording is performed so that the phases of adjacent tracks are aligned. The reference signal fp is obtained by dividing the frequency of the carrier As1nωct by 8 by the counter 7, and has a frequency of fH, that is, 94.5 KHz.
It's Toshide. Note that the carrier oscillator 1 is a voltage-controlled oscillator (1) that is designed to align the carrier phase between adjacent tracks by synchronizing the phase with a reference signal fp' obtained by reproducing an auxiliary track or an already recorded track on an auxiliary bed. It consists of a VCO) la, a counter 1b, and one phase comparator IC. The carrier luminance signal is not shown, but it is the same as the conventional frequency modulation method using tilted azimuth. Figure 3 shows a reproduction system corresponding to Figure 2, and reproduces No. 43 2.
Of the two, the music transmitting luminance signal C (tJ) is separated by the band pass filter 8 and manually inputted to the conventional FM demodulation circuit 9, but the multiplexed carrier color signal C (tJ is separated by the band pass filter 0). It is extracted and input to the delay line 11 for one horizontal scanning time.The input/output signal of the delay line 11 is given to the subtracter 12 and the adder 13 to create CR(t) and CB(t), and each is subjected to balanced modulation. 14 and 15.Each balanced modulator 1
The phase """A signal given to 4゜15 is ±s in
'-A) ct and cosLL'ct, and these are 4
8 fu oscillator 16. Phase shift circuit 17 and inversion circuit 18
It's made with In detail, 48 fH voltage controlled oscillator 1
The output of 6a is divided by 8 by a counter 6b, and the phase is compared with the reference signal tp/ extracted by a bandpass filter 6c by a phase comparator 16d to fully control the phase of the oscillation output. 5in(A'
Create phase reference signals for ct and eO8φct! ' b C0
8ψct is fed as it is to the flat dispersion liquid preparer 15, but si
nψCt is an inversion circuit 1 controlled by the square wave of ΣfH.
8 to obtain 10 sinωCt, which is then applied to the balanced modulator 14. When the output of each balanced modulator 14.15 is passed through a low-pass filter 19.20, the carrier and high-order components are removed and the color signals of ER-y(tl and En-y ftl) are output. Figure 4 shows an example of a reproducing system for use as a reference signal for all bursts of unmodulated synthetic subcarriers during the horizontal blanking period.The recording system is the same as that in Figure 2 and is omitted. The same parts as in Fig. 3 are given the same reference numerals to avoid redundant explanation.
4, all the pulses 23a with the width of the horizontal blanking period are input, and the reference signal gate circuit 25 receives this pulse 23affi.
It opens only while receiving the burst reference signal 25a and sends the burst reference signal 25a to the APC circuit 26. In the APC circuit 26, the phase detection circuit 28 compares the phase between the oscillation output 27a of the 1ivco (voltage controlled oscillator) 27 and the input reference signal 25a, and the output 28a detects the VCO.
27? By controlling the burst reference signal 25a
An oscillation output 27a having the same phase and frequency is obtained. This output] output 27a passes through a 90-degree phase shifter 29 and is sent to a phase reference 411 (c
os LL'ct ). On the other hand, Flimp Flossop 3
0 is horizontal synchronization (it number 24 is used as a clock, phase detection circuit #'628 of APC circuit 2 () is a burst-like base Y□'A
Signal 2 whose phase is detected at input chi σ of No. 17 25a
It is reset at 8b. The output of this flip-flop 30 turns off the switch 31 every horizontal scan, and the VC
Direct output 27a from O27 and 180 degree phase shifter (inverted “
The output 32a passing through the "" path) 32 is one horizontal scan (iX
is alternately applied to the balance 7 & adjuster 14, ±5inLL'
The phase ct is ν (becomes Hay No. 3).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はベッセル関数の値の変化を示すグラフ、第2図
及び第3図は本発明の一ヲ4施劉を示す記el系及び書
生系の各ブロック図、第4図は再生系の他の例(:示す
ブロック図である。 図面中 E’、n−y it]とETI−Yは色信号。 −にC41tl (!:  Cn(tl tri 1.
’/a i;D 色イア1号。 Cy(tlij 搬送j;”l If (iT ’+−
f mC(t、Iは多1jjゴヒされた(戒送色情号。 AsjnuctとA cosUCt H:キャリア。 士5inictとcos a)atは位相基壁イハ号。 fpとf+)’i’J基xx−+、r号、1と16は発
振とぶ。 2と17は移相回路。 3.5.14及び15は平衡変調器。 4と18は反転回路。 9はF’ M復i11回路。 11は1水平走程時間の遅延線。 12は加算器。 13は減算器。 21は記録信号。 22に再生信号。 23はゲートパルス回路。 24は水平同期18号。 25は基準信号ゲート回路。 26にAPC回路。 30す:フリップフロップ。 31はスイッチである、 ′111訂出X:Q人  富士写真フィルム株式会は代
 理 人 ノI’ IJi士 X 石 士 部(他1名
)手続補正伏 昭和58年6月7日 特許庁長官殿 1、  ’It(’lの表示 昭和57年特   ff  願第162183号昭和 
年審    同第    号 2発明の名称 カラー映像(m号の記録再生方式 %式% 1iイ′Iとの関係  %許出願人 神奈用県南足柄市中沼210番地 (520)富士写真フィルム株式会社 4  代理人 郵便訴シシ107 自       発 6、補正の対象 明却1−督の「発明の詳細な説明」の欄7、補正の内容 明細曹の第18ページ12行目に記載した「が考えられ
る・」と「なお、・・・」との間に、「後者のものでは
信号どうしの相互干渉がないから、色(a号再生時の位
相基準信号として中心周波数の・16号そのものを記録
しておくことができ、装置の簡年化が図れる・」なる文
章を挿入すO −以 上−
Fig. 1 is a graph showing changes in the value of the Bessel function, Figs. 2 and 3 are block diagrams of the recorder system and the write system showing the first four implementations of the present invention, and Fig. 4 is the reproduction system. Another example (: is a block diagram shown. In the drawing, E', n-y it] and ETI-Y are color signals. - C41tl (!: Cn(tl tri 1.
'/a i;D color ia No. 1. Cy(tlij transport j;"l If (iT '+-
f mC (t, I is a multi-1jj gohi (complaint sensuality code. Asjnuct and A cosUCt H: carrier. xx-+, r number, 1 and 16 oscillate. 2 and 17 are phase shift circuits. 3.5.14 and 15 are balanced modulators. 4 and 18 are inverting circuits. 9 is the F'M repeating i11 circuit. 11 is a delay line for one horizontal travel time. 12 is an adder. 13 is a subtractor. 21 is a recording signal. 22 is the playback signal. 23 is a gate pulse circuit. 24 is horizontal synchronization No. 18. 25 is a reference signal gate circuit. 26 is the APC circuit. 30s: Flip-flop. 31 is a switch, '111 revised edition Hall 1, 'It('l) 1981 Special ff Application No. 162183 Showa
2013 Trial No. 2 Title of the invention Color video (Recording/reproducing method of No. m Relationship with % 1i'I'I % Applicant Fuji Photo Film Co., Ltd. 4, 210 Nakanuma, Minamiashigara City, Kanayo Prefecture (520) Agent) Personal Postal Lawsuit 107 Self-initiated 6, Clarification of the subject of amendment 1 - Column 7 of the "Detailed explanation of the invention" of the Director, Contents of the amendment written on page 18, line 12, "It is considered that..." and ``In addition,...'', ``In the latter case, there is no mutual interference between signals, so record the center frequency No. 16 itself as the phase reference signal when reproducing color (A).'' Insert the sentence ``This can simplify the equipment and simplify the equipment.''O -End-

Claims (1)

【特許請求の範囲】 11+  輝度信号で主キャリアを周波数変調してなる
搬送輝度信号を隣接トランク間でアジマスを異ならせて
磁気媒体に記録するカラー映像イi1号の記録方式Vこ
おいて,ビデオヘッドと磁気媒体間の相対移!I!JI
vc同期し且つ互いに直交関係にありしかもそれぞれの
位相が隣接トランク間で揃う周波数を持つ第1及び第2
の副キャリアを2つの色信号の片方づつで位相変調し,
これら2つの位相変調された色信号即ち2つの搬送色信
号を当該2つの搬送色{M号と位相に?Aされるべ@m
l及び第2の副キャリアとのうち少なくとも1つを1水
平走査毎に移相させてl水平走査毎に相対的に18 0
 Iffづつ移相する2つの搬送色信号とし,このl水
平走査毎に相対的に180度づつ移相する2つの搬送色
イハ号を多+1【化し,この多■(化された搬送色信号
と前記{般送輝度信号とを,少なくとも水平同期信号の
記録位置が隣接トラック曲で揃い且つliI!F接トラ
ック間で第1及び第2の副キャリアのそ7’Lぞれの位
相が揃うように記録すること全特徴とするカラー映像イ
き号の記録方式。 (2)  ビデオヘッドと磁気媒体間の相対移動に同期
し且つ互いに直交関係にありしかもそれぞれの位相が隣
接トランク間で揃う周波数を持つil及ひ第2の副キャ
リア′f2つの色イコ号の片方づつでhl相変調し,こ
れら2つの位相変調された色信号即ち2つの搬送色信号
を当該2つの搬送色信号とfJ相変調さ几るべき第1及
ひ第2の副キャリアとのうち少なくとも1つを1水平走
査毎に移相させて1水平走査毎に相対的に180度づつ
移相する2つの搬送色信号とし,この1水平走査毎に相
対的に180匪づつ移相する2つの搬送色信号を多重化
し。 この多重化さ扛た搬送色信号と主キャリア全輝度信号で
周波数液W1′4してなる搬送輝度信号と金、[り々接
トラック間でアジマスが異なυしかも少なくとも水平同
期bJ号の記録位置が隣接トラック間でjMい且つ1ト
1ト接トランク間で第1及び第2の副キャリアのそれぞ
扛の位相が揃うように記録したR1気媒体からカラー映
像信号全11牛する方式において、ビデオヘッドの再生
出力から上記搬送’l:’f、U信号及び多重化されて
いる搬送色信号を抽出し、1!2送輝度信号は周波数1
す調する一方、多沖、化されている搬送色43号は1水
平7r:、青時間遅延させ遅延前後の信号のカロ算処理
と減算処理とで2つの搬送色信号に分離し1分離された
各搬送色信号な′ぞ7Lぞれの記録時における存相と同
じに移相するrη相基準イ3号で復調することを特徴と
するカラー映像Q号の再生方式。
[Scope of Claims] 11+ A color video recording method V in which a carrier luminance signal obtained by frequency modulating a main carrier with a luminance signal is recorded on a magnetic medium with different azimuths between adjacent trunks. Relative displacement between head and magnetic medium! I! J.I.
The first and second trunks are synchronized with each other and have frequencies that are orthogonal to each other and whose respective phases are aligned between adjacent trunks.
The subcarrier of is phase modulated by one of the two color signals,
These two phase-modulated color signals, that is, the two carrier color signals, are in phase with the two carrier colors {M? A should be @m
l and the second sub-carrier for each horizontal scan so that the phase of at least one of l and the second subcarrier is shifted relative to each other by 18 0 per horizontal scan.
Assuming that there are two carrier color signals whose phase is shifted by Iff, the two carrier color I/H signals whose phase is shifted by 180 degrees relative to each other every horizontal scan are converted to multi+1[, The recording position of the horizontal synchronizing signal is aligned at least in adjacent tracks, and the phases of the first and second subcarriers are aligned between the tracks adjacent to liI!F. (2) A color video recording method that is characterized by the fact that it records frequencies that are synchronized with the relative movement between the video head and the magnetic medium, are orthogonal to each other, and whose phases are aligned between adjacent trunks. The il and second sub-carriers 'f' are subjected to hl phase modulation with one side of each of the two color equal signals, and these two phase modulated color signals, that is, the two carrier color signals are subjected to fJ phase modulation with the two carrier color signals. At least one of the first and second subcarriers to be processed is phase-shifted every horizontal scan to form two carrier color signals whose phase is relatively shifted by 180 degrees every horizontal scan, The two carrier color signals whose phase is shifted by 180 degrees relative to each other in each horizontal scan are multiplexed. The carrier luminance is obtained by frequency liquid W1'4 using the multiplexed carrier color signal and the main carrier total luminance signal. signal and gold, [the azimuth is different between the adjacent tracks υ, and at least the recording position of the horizontal synchronization bJ is jM between the adjacent tracks, and that of the first and second subcarriers between the two adjacent tracks. In a method in which all 11 color video signals are generated from an R1 medium recorded so that the phases are aligned, the above-mentioned carrier 'l:'f, U signals and multiplexed carrier color signals are output from the playback output of the video head. Extracted, 1!2 transmission luminance signal has frequency 1
On the other hand, the carrier color No. 43, which is converted into Taoki, is 1 horizontal 7r:, the blue time is delayed, and the signals before and after the delay are separated into two carrier color signals by caloric processing and subtraction processing, and are separated by 1 minute. A reproduction method for a color video image Q, characterized in that each carrier color signal is demodulated using an rη phase reference signal A3 whose phase is shifted to the same phase as the phase at the time of recording of each of the carrier color signals.
JP57162183A 1982-08-09 1982-09-20 Recording and reproducing system of color video signal Pending JPS5952983A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57162183A JPS5952983A (en) 1982-09-20 1982-09-20 Recording and reproducing system of color video signal
US06/519,730 US4626928A (en) 1982-08-09 1983-08-02 Orthogonal phase modulation and demodulation methods
EP83107866A EP0102552B1 (en) 1982-08-09 1983-08-09 Rectangular 2-phase modulation and demodulation methods for a colour picture signal
DE8383107866T DE3382449D1 (en) 1982-08-09 1983-08-09 METHOD FOR 2-PHASE SQUARE MODULATION AND DEMODULATION FOR A COLOR VIDEO SIGNAL.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57162183A JPS5952983A (en) 1982-09-20 1982-09-20 Recording and reproducing system of color video signal

Publications (1)

Publication Number Publication Date
JPS5952983A true JPS5952983A (en) 1984-03-27

Family

ID=15749585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57162183A Pending JPS5952983A (en) 1982-08-09 1982-09-20 Recording and reproducing system of color video signal

Country Status (1)

Country Link
JP (1) JPS5952983A (en)

Similar Documents

Publication Publication Date Title
US4178606A (en) Color video signal recording and/or reproducing system
CA1084154A (en) Compensating time-base errors in a reproduced video signal
US4123774A (en) Color signal encoding methods and apparatus for video recording and playback
JPH0348773Y2 (en)
US5500739A (en) Frequency-multiplexing FM luma signal with color and 2nd under signals having overlapping frequency spectra
US4283738A (en) NTSC to PAL transcoder
US5083197A (en) Apparatus for restoring the correct phase relation of the chroma and luminance signals passed through separate paths
US4668997A (en) Recording and reproducing system for color video signal
US4266241A (en) Color signal encoding methods and apparatus for video recording and playback
US4314273A (en) Chrominance transcoder
US4447834A (en) Reproducing apparatus for reproducing a rotary recording medium recorded with a color video signal
JPS5952983A (en) Recording and reproducing system of color video signal
EP0144080A2 (en) Recording and reproducing system for color video signal
US3777060A (en) Color television signal recording and reproducing system
NO142421B (en) DEVICE FOR MAGNETIC RECORDING OF A COMPOUND COLOR REMOTE SIGNAL SIGNAL.
JPS60208191A (en) Broad band picture signal transmission system
US5510898A (en) Information signal recording apparatus
JPH0195692A (en) Magnetic recording/reproducing device
GB2040135A (en) Pal system colour video signal recording
JPS5928787A (en) Recording and reproducing system of color video signal
JP2516004B2 (en) Color-video signal conversion method and apparatus thereof
JPS605675Y2 (en) PAL color video signal reproducing device
JPS609289A (en) Modulating and demodulating system of color video signal
JPS6038916B2 (en) Color video signal recording and playback method
JPS59229985A (en) Demodulation system for pm color signal multiplexed in orthogonal two-phase basis