JPS5952796A - Combustible gas concentration control system - Google Patents

Combustible gas concentration control system

Info

Publication number
JPS5952796A
JPS5952796A JP57164265A JP16426582A JPS5952796A JP S5952796 A JPS5952796 A JP S5952796A JP 57164265 A JP57164265 A JP 57164265A JP 16426582 A JP16426582 A JP 16426582A JP S5952796 A JPS5952796 A JP S5952796A
Authority
JP
Japan
Prior art keywords
reactor containment
facility
containment vessel
gas concentration
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57164265A
Other languages
Japanese (ja)
Inventor
児玉 資
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Genshiryoku Jigyo KK
Tokyo Shibaura Electric Co Ltd
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Genshiryoku Jigyo KK, Tokyo Shibaura Electric Co Ltd, Nippon Atomic Industry Group Co Ltd filed Critical Nippon Genshiryoku Jigyo KK
Priority to JP57164265A priority Critical patent/JPS5952796A/en
Publication of JPS5952796A publication Critical patent/JPS5952796A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Non-Electrical Variables (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発BAは原子カプラントにおける可燃性ガス濃度制御
装着に係り、とりわけ原子炉格納施設の安全性を確保す
るために水素および酸素の濃度を抑制するために設けら
れる可燃性ガス礎度制御装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present BA relates to combustible gas concentration control equipment in nuclear couplants, and in particular to suppress the concentration of hydrogen and oxygen in order to ensure the safety of nuclear reactor containment facilities. The present invention relates to a combustible gas basic level control device provided for.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、沸騰水型原子力発電所においては、−次冷却系統
に係る施設の故障または損壊の際に生ずる水素および酸
素ば、原子炉格納容器内に閉じ込められ、可燃性ガス濃
度制御系により、これらの濃度を可燃性限界未満に抑制
するよう側脚されている。
Conventionally, in boiling water nuclear power plants, hydrogen and oxygen generated when a facility related to the secondary cooling system fails or is damaged is trapped in the reactor containment vessel, and the combustible gas concentration control system Side legs are provided to keep concentrations below flammability limits.

原子炉格納容器は工学的施設であるため、原子炉格納容
器内に閉じ込められている水素および酸素は、ある漏洩
率で原子炉二次格納施設内に漏洩することが肝各されて
おり、この二次格納施設内に漏洩した水素および酸素は
、外部から流入してくる空気により希釈され、非常用ガ
ス処ア41糸全通じて排気筒より大気中へ放出処理され
ている。
Because the reactor containment vessel is an engineering facility, it is essential that the hydrogen and oxygen trapped inside the reactor containment vessel leak into the secondary reactor containment facility at a certain leakage rate. Hydrogen and oxygen leaked into the secondary containment facility are diluted by air flowing in from the outside, and are discharged into the atmosphere from the exhaust stack through the entire emergency gas treatment chamber 41.

したがって従来の可燃性ガス濃度制御装首においては、
原子炉格納容器内の水素および酸素のみを処理する機能
があれば、原子炉格納容器から二次格納tIfA設内に
漏洩してくる水素が蓄積し、水素濃度が可燃性限界まで
上昇するおそれはなかった。
Therefore, in the conventional combustible gas concentration control neck device,
If there was a function to process only the hydrogen and oxygen in the reactor containment vessel, there would be no risk that hydrogen leaking from the reactor containment vessel would accumulate in the secondary containment tIfA facility and the hydrogen concentration would rise to the flammability limit. There wasn't.

これに対し、近年、エネルギーの多様化、脱石油を計る
ため、原子炉の多目的利用が計画されており、多目的利
用の原子炉の場合、経済性等の理由から消費地に近接し
て立地することが望まれている。このためには、二次格
納施設の気密度を高め、公衆被曝線駿の低減化を図るこ
とが要求されるが、二次格納施設の気密度を高めると、
外部から二次格納施設内に流入して(る空気の量が大幅
に削減され、原子炉格納容器から二次格納施設内に漏洩
してくる水素の希釈効果が大幅に低下し、二次格納施設
内での水素の蓄積による水素濃度の上昇(OT燃性限界
への到達)のおそれが懸念される。
On the other hand, in recent years, in order to diversify energy sources and move away from oil, plans have been made to use nuclear reactors for multiple purposes, and in the case of nuclear reactors for multiple purposes, they are often located close to consumption areas for reasons such as economic efficiency. It is hoped that To this end, it is necessary to increase the airtightness of the secondary containment facility and reduce public radiation exposure.
The amount of air flowing into the secondary containment facility from the outside is significantly reduced, and the dilution effect of hydrogen leaking from the reactor containment vessel into the secondary containment facility is significantly reduced. There is a concern that hydrogen concentration may increase (reaching the OT flammability limit) due to hydrogen accumulation within the facility.

仮に下記のような建屋構成を考える。Let us consider the following building configuration.

この場合の単位時間当りの漏洩用は各々以下のようにな
る。
In this case, the leakage per unit time is as follows.

これによ炉二次格納施設内・\の流入叫は、原子炉格納
8器内大気の2.08 rrv’h rと二次格納施設
外大気の1.04nVhrとなり、1ト常用カス処理系
の容量は2.08+1.04=3,12rIV′hrと
なる。 「発電用も 原子力設備に関する技術基準を定める省糠」の第32条
には、水素及び酸素濃度の押割限界に各々下記のように
定められている。
As a result, the inflow noise inside the secondary reactor containment facility is 2.08 rrv'hr in the atmosphere inside the reactor containment 8 and 1.04 nVhr in the atmosphere outside the secondary containment facility, and 1. The capacity is 2.08+1.04=3.12rIV'hr. Article 32 of the ``Ministry of Nuclear Energy, which establishes technical standards for nuclear power generation equipment,'' stipulates the limits for hydrogen and oxygen concentrations as follows.

水素濃度  4% 酸素濃度  5% そこで、今、原子炉格納容器内は窒素ガスが封入されて
おり、酸素濃度に着目して原子炉格納容器内の可燃性ガ
ス濃度制御系を制御していたと仮定すると、原子炉格納
容器内の水素濃度が4%を超え、例えば7%となり得る
ことが考えられる。
Hydrogen concentration: 4% Oxygen concentration: 5% Therefore, it is assumed that the reactor containment vessel is currently filled with nitrogen gas and that the combustible gas concentration control system within the reactor containment vessel is controlled by focusing on the oxygen concentration. Then, it is conceivable that the hydrogen concentration in the reactor containment vessel could exceed 4%, for example, 7%.

この場合の二次格納施設内の水素濃度の定常値を求める
と、 となり、二次格納施設内は空気が存在することから、可
燃性限界を超える場合をあり得ることになる。
In this case, the steady-state value of the hydrogen concentration inside the secondary containment facility is calculated as follows, and since there is air inside the secondary containment facility, it is possible that the flammability limit may be exceeded.

〔発明の目的〕[Purpose of the invention]

本発明はこのような点を考慮してなされたものであり、
原子炉格納容器内の水素および酸素濃度を抑制すること
ができるとともに、原子炉二次格納施設内の水素濃度も
抑制することのできる可燃性ガス濃度制御系を提供する
ことを目的とする。
The present invention has been made in consideration of these points,
It is an object of the present invention to provide a combustible gas concentration control system that can suppress the hydrogen and oxygen concentrations in a nuclear reactor containment vessel and also suppress the hydrogen concentration in a secondary reactor containment facility.

〔発明の概要〕[Summary of the invention]

本発明による可燃性ガス濃度制御系に、可燃性ガス濃度
制御装置を原子炉格納容器に接続する吸込ラインと排出
ラインに、それぞれ原子炉二次格納施設内に開放する開
口を有する・ξイブを接続したことを特徴としており、
この・ぐイブにより二次格納施設内へ漏洩してくる水素
および酸素を吸込み、可燃性ガス濃度制御装置により水
素および酸素を再結合処理し、再び二次格納施設内へ放
出するようにしTとものである。これにより同一の可燃
性ガス濃度制御系を用いて原子炉格納容器内の水素およ
び酸素濃度を抑制するとともに、原子炉二次格納施設内
の水素濃度も抑制することができる。
In the combustible gas concentration control system according to the present invention, a It is characterized by being connected,
This pipe sucks in hydrogen and oxygen leaking into the secondary containment facility, and the combustible gas concentration control device recombines the hydrogen and oxygen before releasing it back into the secondary containment facility. It is. As a result, it is possible to suppress the hydrogen and oxygen concentrations in the reactor containment vessel and also suppress the hydrogen concentration in the secondary reactor containment facility using the same combustible gas concentration control system.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して本発明の実施例について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

原子炉圧力容器11を内蔵する原子炉格納容器12に、
原子炉二次格納施設内3内に格納されており。
In the reactor containment vessel 12 containing the reactor pressure vessel 11,
It is stored in the secondary reactor containment facility 3.

二次格納施設内3から原子炉格納8器12内へ連通する
主要配管(図示せず)は、原子炉格納容器12に隣接す
る原子炉格納容器12外の・臂イゾス4−ス14を経由
して、原子炉格納容器12の壁を貫通するように構成さ
れている。
The main piping (not shown) communicating from the inside of the secondary containment facility 3 to the inside of the reactor containment vessel 8 and 12 passes through the arm Izos 4-S 14 outside the reactor containment vessel 12 adjacent to the reactor containment vessel 12. It is configured to penetrate the wall of the reactor containment vessel 12.

さらに二次格納施設置3内には、万一の一次冷却系統に
係る施設の故障まkは損壊の際に生ずる水素および酸素
の濃度を抑制することにより、非常時に原子炉格納施設
の健全性を維持するための可燃性ガス濃度制御系が配置
されている。
Furthermore, in the event of failure or damage to facilities related to the primary cooling system, the secondary containment facility 3 is designed to prevent the integrity of the reactor containment facility from occurring in the event of an emergency by suppressing the concentration of hydrogen and oxygen that would be generated in the event of failure or damage. A combustible gas concentration control system is in place to maintain the combustible gas concentration.

可燃性ガス濃度制御系は、通常2つの系統が独立して設
けられ、それぞれプロワ21と、刃口熱器、再結合器な
らびに冷却器等からなる可燃性ガス濃度制御装置22と
、一端が原子炉格納容器12内に開放し、隔離弁40a
とプロワ21を経由して可燃性ガス濃度制御装置ηに接
読している原子炉格納容器12からの吸込ライン器と、
可燃性ガス濃度制御装置22から隔離弁40bを経由し
て原子炉格納容器12内へ開放している原子炉格納容器
12への排出ライン瀾と、可燃性ガス濃度制御装置22
の出口側から仕切弁を介してプロワ21の入口側に戻る
ノ々イ・ぞスライン5と、一端がノにイプスペースエ4
内に開放し、隔離弁40cを経由して、原子炉格納容器
からの吸込ライン乙の隔離弁40aの下流側に接続さf
′した吸込・ぞイゾ26と、可燃性ガス濃度制御装置2
2の出口側から、途中の隔離弁40dを経由して、非常
用再循環ガス処理系の原子炉二次格納施設置3からの吸
込ライン33に接続する排出・ξイブnとからり成され
ている。
The combustible gas concentration control system is usually provided with two independent systems, each consisting of a blower 21, a combustible gas concentration control device 22 consisting of a blade heater, a recombiner, a cooler, etc., and one end connected to an atomic The isolation valve 40a opens into the reactor containment vessel 12.
and a suction line device from the reactor containment vessel 12 which is connected to the combustible gas concentration control device η via the blower 21,
A discharge line from the combustible gas concentration control device 22 to the reactor containment vessel 12 that is open to the reactor containment vessel 12 via the isolation valve 40b, and the combustible gas concentration control device 22
There is a space line 5 which returns from the outlet side to the inlet side of the blower 21 via the gate valve, and one end of which returns to the inlet side of the blower 21.
The suction line B from the reactor containment vessel is connected to the downstream side of the isolation valve 40a via the isolation valve 40c.
26 and the combustible gas concentration control device 2
A discharge line ξ n connected from the outlet side of 2 to the suction line 33 from the reactor secondary containment facility 3 of the emergency recirculation gas treatment system via an intermediate isolation valve 40d. ing.

非常用再循環ガス処理系は、二次格納施設置3内の放射
性粒子や放射性よう素などを処理するためのものであり
、粒子用フィルタ、よう累用フィルタなどからなる非常
用再循環カス処理装置32と、一端が二次格納施設置3
内へ開放し、途中仕切弁を経由して非常用再循環ガス処
理装置32の入口側へ接続された二次格納施設からの吸
込ライン33と、非常用再循環ガス処理装置32の出口
側からプロワ31、仕切弁を経由して二次格納施設置3
内に開放1−る壬次格納容器への排出ライン34と、仕
切弁、隔離弁を経由して非常用再循環ガス処理装置32
の出口側と非常用ガス処理装置37の入口側とを接続す
る非常用ガス処理系への排出ライン35とから構成され
ている。
The emergency recirculation gas treatment system is for treating radioactive particles and radioactive iodine in the secondary containment facility 3, and is an emergency recirculation gas treatment system consisting of particle filters, waste filters, etc. a device 32 and one end of which is a secondary containment facility 3;
A suction line 33 from a secondary containment facility that is open to the inside and connected to the inlet side of the emergency recirculation gas treatment device 32 via a gate valve in the middle, and from the outlet side of the emergency recirculation gas treatment device 32 Secondary containment facility 3 via blower 31 and gate valve
A discharge line 34 to the Jinji Containment Vessel that is open to the inside, and an emergency recirculation gas treatment device 32 via a gate valve and an isolation valve.
The discharge line 35 to the emergency gas treatment system connects the outlet side of the emergency gas treatment system and the inlet side of the emergency gas treatment device 37.

また、非常用ガス処理系は、排出ライン35と、非常用
カス処理装置37と、プロワ36と、排気筒39への排
出ライン38から構成され、非常用再循環ガス処理系に
おいて処理され定二次格納施設置3内の空気を再処皿し
、排気筒39から大気中に放出する機能を果す。
The emergency gas treatment system is composed of a discharge line 35, an emergency waste treatment device 37, a blower 36, and a discharge line 38 to the exhaust stack 39. It functions to reprocess the air in the storage facility 3 and release it into the atmosphere from the exhaust stack 39.

次にこのような構成からなる可燃性ガス濃度Fljl制
御系の作用について説明する。
Next, the operation of the flammable gas concentration Fljl control system having such a configuration will be explained.

万一、−次冷却系統に係る施設の故障または世壊により
水素および酸素が生ずると、まず2つの系統のうちの1
つの系統の可燃性ガス濃度制御系の、吸込ラインお上の
隔離弁40aと排出ライン瀾上の隔離弁40 bを開け
、同時にプロワ21、可燃性ガス濃度制御装置nを作動
させる。これにより原子炉格納容器12内に放出される
水素および酸素が再結合処理され、水素および酸素の濃
度が抑制されて原子炉格納容器12の健全性が保たれる
In the unlikely event that hydrogen and oxygen are generated due to a failure or destruction of facilities related to the secondary cooling system, first one of the two systems will be
The isolation valve 40a above the suction line and the isolation valve 40b above the discharge line of the two combustible gas concentration control systems are opened, and the blower 21 and the combustible gas concentration control device n are operated at the same time. As a result, the hydrogen and oxygen released into the reactor containment vessel 12 are recombined, the concentrations of hydrogen and oxygen are suppressed, and the integrity of the reactor containment vessel 12 is maintained.

一方、他系統の可燃性ガス濃度制御系においては、隔離
140a 、40bを閉じ、吸込ツクイブ26上の隔離
弁40cと排出パイプ27上の隔PiIF、弁41Jd
とを開き、同時にプロワ21、可燃性ガス濃度制御装置
22を作動さぜる。これにより原子炉格納容器12から
二次格納施設置3内へ漏洩して(る水素が再結合処理さ
れ、水素濃度が抑制されて二次格flJ1 it設置3
内の健全性が保たれる。、なお、二次格納施設置3内の
大気は空気であるため、酸素濃度の抑制は行わず、水素
濃度の抑制のみによって可燃性限界未満とし、二次格納
施設置3の健全性を確保することができる。
On the other hand, in the combustible gas concentration control system of another system, the isolation valves 140a and 40b are closed, and the isolation valve 40c on the suction tube 26 and the isolation valve PiIF and valve 41Jd on the discharge pipe 27 are closed.
At the same time, the blower 21 and the combustible gas concentration control device 22 are operated. As a result, hydrogen leaking from the reactor containment vessel 12 into the secondary containment facility 3 is recombined, the hydrogen concentration is suppressed, and the secondary containment facility 3
Internal health is maintained. However, since the atmosphere inside the secondary containment facility 3 is air, the oxygen concentration is not suppressed, and only the hydrogen concentration is suppressed to keep it below the flammability limit, thereby ensuring the integrity of the secondary containment facility 3. be able to.

もし、2系統の可燃性ガス濃度i11.l 両系のうち
、l系統に故障が生じ電場合には、残りのl系統の可燃
性ガス濃度側6r11系により、原子炉格納容器]2と
二次格納施設置3との水素および酸素を処理する必要が
生ずる。この場合には、隔離弁40a、40bを開、隔
離弁40c、40dを閉として運転することによる原子
炉格納容器】2内の水素および酸素の処理と、隔離弁4
0 a 、 40bを閉、隔離9P 40 c 、 4
C1dを開として運転することによる二次格納施設置:
3内の水素の処理とを交互に行うことにより可能である
If the combustible gas concentration of the two systems i11. l If a failure occurs in the l system of both systems, the remaining l system's flammable gas concentration side 6r11 system will remove hydrogen and oxygen from the reactor containment vessel] 2 and the secondary containment facility 3. The need for processing arises. In this case, the hydrogen and oxygen in the reactor containment vessel 2 is treated by operating the isolation valves 40a and 40b with the isolation valves 40a and 40b closed and the isolation valves 40c and 40d closed.
0 a, 40b closed, isolated 9P 40 c, 4
Secondary containment location by operating C1d open:
This is possible by alternately performing the hydrogen treatment in step 3.

捷T二、隔離弁40a 、40b 、40cを開、隔離
弁40dを閉として運転し、原子炉格納容器]2からの
漏洩量に相当する爪の二次格納施設置3内の空気を、吸
込・ξイノ2Gを経由して可燃性ガス濃度制御装置22
内へ尋人し、処理した後、排出ライン24から原子炉格
納容器12内へ排出する運転モードも考えられる。
Switch T2 is operated with the isolation valves 40a, 40b, and 40c open and the isolation valve 40d closed, and the air in the secondary containment facility 3 corresponding to the amount of leakage from the reactor containment vessel]2 is sucked in.・Combustible gas concentration control device 22 via ξINO 2G
An operation mode is also conceivable in which the reactor is discharged into the reactor containment vessel 12 from the discharge line 24 after being treated.

この運転モーrによれば、原子炉格納容器12から漏洩
した相当量が、再び原子炉格納容器12内へ戻されるた
め、事故後に原子炉格納容器12が冷却された場合に、
原子炉格納容器12内が負圧になることが防止される。
According to this operating mode, a considerable amount of leakage from the reactor containment vessel 12 is returned to the reactor containment vessel 12, so that when the reactor containment vessel 12 is cooled down after an accident,
Negative pressure inside the reactor containment vessel 12 is prevented.

なお1本実施例においては、吸込・ぞイブ26を・ぐイ
ブスペース14に接読しであるが、これハノξイゾスペ
ース14内において原子炉格納容器12からの漏洩が最
も生じやすく、水素の局所的蓄積が行われやすいからで
ある。したがって本実施例のように。
In this embodiment, the suction pipe 26 is connected directly to the pipe space 14, but leakage from the reactor containment vessel 12 is most likely to occur in this space 14, and hydrogen leakage occurs locally. This is because it is easy to accumulate problems. Therefore, as in this embodiment.

非常用再循環ガス処理装置が設置され、非常時に二次格
納施設置3内の空気が再循環処理されることにより、二
次格納施設置3内の空気が混合し、水素が拡散均一化さ
れることが期待できる場合には、吸込、?イブ26をI
eイプスーS−ス14に接侵する必要Uなく、殉部開口
を二次格納施設】3内に開放しておくことでよい。また
、二次格納施設置3内の空気の混合のために、必ずしも
非常用再循環ガス処理系を採用する必要はなく、専用の
贋1合川用ロワを採用するだけでもよい。さらに、排出
・ξイブ27の他端を非常用再循4タガス処理系の吸込
ライン33に接状せず、他端開口を二次格納施設置3内
に開放させるだけでもよい、 〔発明の効果〕 以上説明し尾ように、本発明によれば、万一の一次冷却
系統に係る施設の故障まTこは偵壊の際に生ずる水素お
よび酸素の濃度を、同一の制菌系を用いて、原子炉格納
施設内だけでなく原子炉二次格納だa役向においても抑
HIJすることができる。したがって気密度の1%い二
次格卸J (iiti設内に役向炉格納容器を格納した
場合であっても、二次格納施設内に水素が蓄秘すること
汀なく、原子炉格納施設の健全性を確保することができ
る。tた、可燃性ガス濃度制御装置を、原子炉格納容器
用と二人格納/i′I!i股用と各々単独に設備しなく
てもよいので、設備の合理化が図られ、経術性の向上を
図ることができる。
An emergency recirculation gas treatment device is installed, and the air in the secondary containment facility 3 is recirculated in the event of an emergency, so that the air in the secondary containment facility 3 is mixed and hydrogen is diffused and homogenized. Inhalation, if that can be expected? Eve 26 I
There is no need to infiltrate the e-Ipsus S-S 14, and it is sufficient to leave the opening in the secondary containment facility 3 open. Furthermore, in order to mix the air in the secondary containment facility 3, it is not necessarily necessary to employ an emergency recirculation gas processing system, and it is sufficient to simply employ a dedicated lower. Furthermore, the other end of the discharge/ξ eve 27 may not be in contact with the suction line 33 of the emergency recirculation 4-gas treatment system, and the other end opening may be opened into the secondary containment facility 3. [Effects] As explained above, according to the present invention, in the unlikely event that a facility related to the primary cooling system malfunctions or is destroyed, the concentrations of hydrogen and oxygen generated during a demolition can be reduced using the same bacteriostatic system. Therefore, HIJ can be suppressed not only in the reactor containment facility but also in the secondary reactor containment role. Therefore, even if the secondary reactor containment vessel is stored in a secondary containment facility with a leakage density of 1%, hydrogen will not accumulate in the secondary containment facility. In addition, it is not necessary to separately install combustible gas concentration control devices for the reactor containment vessel and for the two-person containment/i'I!i crotch. Equipment can be rationalized and surgical efficiency can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

図μ本発明にょろり燃性カス鎚度制間系の一実施例を示
′1″概略フローダイアグラムである。 12・・・原子炉格納容器、13・・・原子炉二次格納
施設、22・・・可燃性カス政度制御i1′ll装詔、
2.3・・・原子炉格納容器からの吸込ライン、冴・・
・原子炉格納容器への排出ライン、江・・・二次格納施
設からの吸込・ξイブ、27・・・二次格納施設への排
出・ξイブ、40a 、40b 、40e 。 40d・・・隔離弁。 出願人代理人   猪 股    清
Figure 1 is a schematic flow diagram illustrating an embodiment of the present invention's combustible waste removal system. 12... Reactor containment vessel, 13... Reactor secondary containment facility, 22 ...Flammable gas policy control i1'll equipment,
2.3... Suction line from the reactor containment vessel, Sae...
- Discharge line to the reactor containment vessel, E... Suction from the secondary containment facility, ξ Eve, 27... Discharge to the secondary containment facility, ξ Eve, 40a, 40b, 40e. 40d...Isolation valve. Applicant's agent Kiyoshi Inomata

Claims (1)

【特許請求の範囲】[Claims] 原子炉格納容器を格納する原子炉二次格納施設内に配置
され、原子炉格納容器からの吸込ラインと原子炉格納容
器への排出ラインにより原子炉格納容器に接続された可
燃性ガス濃度制仰装置を備えた可燃性ガス濃度制御系に
おいて、前記原子炉格納容器からの吸込ラインには原子
炉二次格納施設内に開放する開口を有する原子炉二次格
納施設からの吸込・ξイブが接続され、前記原子炉格納
容器への排出ラインには原子炉二次格納施設内に開放す
る開口を有する原子炉二次格納施設への排出ノRイゾが
接続されていることを特徴とする可燃性ガス濃度制御系
A flammable gas concentration control system located in the secondary reactor containment facility that houses the reactor containment vessel, and connected to the reactor containment vessel by an inlet line from the reactor containment vessel and a discharge line to the reactor containment vessel. In the combustible gas concentration control system equipped with the device, the suction line from the reactor containment vessel is connected to a suction line from a secondary reactor containment facility having an opening that opens into the secondary reactor containment facility. flammable, characterized in that the discharge line to the reactor containment vessel is connected to a discharge outlet to a secondary reactor containment facility having an opening that opens into the secondary reactor containment facility. Gas concentration control system.
JP57164265A 1982-09-21 1982-09-21 Combustible gas concentration control system Pending JPS5952796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57164265A JPS5952796A (en) 1982-09-21 1982-09-21 Combustible gas concentration control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57164265A JPS5952796A (en) 1982-09-21 1982-09-21 Combustible gas concentration control system

Publications (1)

Publication Number Publication Date
JPS5952796A true JPS5952796A (en) 1984-03-27

Family

ID=15789799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57164265A Pending JPS5952796A (en) 1982-09-21 1982-09-21 Combustible gas concentration control system

Country Status (1)

Country Link
JP (1) JPS5952796A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069121A (en) * 2007-09-18 2009-04-02 Hitachi-Ge Nuclear Energy Ltd Nuclear power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069121A (en) * 2007-09-18 2009-04-02 Hitachi-Ge Nuclear Energy Ltd Nuclear power plant

Similar Documents

Publication Publication Date Title
US11646123B2 (en) Three-way valve operational to both transfer steam to a decontamination water tank under one accident situation and discharge the steam to atmosphere under a different accident situation
CN109243634B (en) Reactor safety system
US5215708A (en) Reactor building assembly and method of operation
JPS58173499A (en) Method and device for discharging systematically radioactivity from protective housing of gas cooled reactor
JPS5952796A (en) Combustible gas concentration control system
TW201611036A (en) Nuclear power plant and reactor building gas treatment system
JP2963728B2 (en) Emission radioactivity reduction device
JP2005043131A (en) Exhaust gas treatment facility for nuclear reactor building
JPH08201561A (en) Safety system reactor container
JPH0377096A (en) Vent device of reactor container
Burclova Decommissioning of NPP A1-HWGCR type
JP2017219525A (en) Device for preventing nuclear reactor from leaking radioactivity
Luckas et al. Assessment of candidate accident management strategies
Kawaguchi et al. Long-Term Cooling Strategy for the Primary Containment Vessel of the Kashiwazaki-Kariwa Nuclear Power Station in a Severe Accident
Haange et al. Design of the atmosphere detritiation systems for ITER
DOE Preliminary safety information document for the standard MHTGR
JPS6385494A (en) Annulus exhaust facility
JPS61191995A (en) Containment facility for nuclear reactor
JPH1194979A (en) Containment vent equipment
Cheng et al. The Comparative Advantages of CAP1400 Nuclear Power Plant Passive Safety System
JPS6031091A (en) Decompression device for container
JP2685902B2 (en) Primary containment vessel
JP3091519B2 (en) Nuclear power plant turbine building ventilation and air conditioning equipment
JPH04166798A (en) Discharging radioactivity reduction device
JPS6038679B2 (en) Radioactive contaminated air treatment equipment