JPS5952779B2 - electron spin resonance device - Google Patents

electron spin resonance device

Info

Publication number
JPS5952779B2
JPS5952779B2 JP4774477A JP4774477A JPS5952779B2 JP S5952779 B2 JPS5952779 B2 JP S5952779B2 JP 4774477 A JP4774477 A JP 4774477A JP 4774477 A JP4774477 A JP 4774477A JP S5952779 B2 JPS5952779 B2 JP S5952779B2
Authority
JP
Japan
Prior art keywords
sample
cavity
magnetic field
spectrum
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4774477A
Other languages
Japanese (ja)
Other versions
JPS53133081A (en
Inventor
孝光 山本
栄久夫 吉田
雅弘 河野
正孝 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP4774477A priority Critical patent/JPS5952779B2/en
Publication of JPS53133081A publication Critical patent/JPS53133081A/en
Publication of JPS5952779B2 publication Critical patent/JPS5952779B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 本発明は電施スピン測定装置における測定誤差を少なく
するための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for reducing measurement errors in an electrolytic spin measurement device.

電子スピン共鳴装置(ESR)は試料物質中に存在する
不対電子の磁気的な性質を利用して試料物質の物性を知
るための装置であり、その構成の概略を第1図に示す。
An electron spin resonance apparatus (ESR) is an apparatus for determining the physical properties of a sample material by utilizing the magnetic properties of unpaired electrons present in the sample material, and its configuration is schematically shown in FIG.

第1図中、1は試料2の挿入された空胴共振器(キャビ
ティ)であり、試料に強力な静磁場を与えるため磁性体
部材4の間隙内に設置されている。部材4に巻回された
コイル5の励磁電源としては中央制御回路(CPU)6
によつて制御される掃引信号発生器7が用いられており
、試料物質に対して比較的緩やかに変化する静磁場を与
える。この静磁場により試料物質にゼーマン効果による
電子スピンエネルギー準位の分離が生じ、マイクロ波発
生器8からマジックT9を介してキャビティ1に供給さ
れるマイクロ波電力を吸収する現象が生じる。キャビテ
ィ1中の試料におけるマイクロ波電力の吸収はマジック
Tにおける電力バランスを崩し、この変動はマイクロ波
検波器10によつて検出される。この検出信号を直流で
な<交流信号として取り出すために前記試料に印加する
掃引静磁場に交流変調磁場が重畳されており、その変調
周波数は前記マイクロ波検波器10のl/f雑音を抑圧
するため100KH2以上に設定されている。この様な
高周波変調磁場を試料へ効率よく与えるため、キャビテ
ィ1の内部には磁場変調用コイル11が設置されており
、該コイルに高周波発振器12より100KH。以上の
高周波電流が供給される。この様にして高周波磁場によ
つて変調されたマイクロ波はマイクロ波検波器10によ
つて検出された後、更に前記高周波発振器12からの参
照信号が供給される位相検波器13によつて所定の位相
成分が検出され、前記掃引信号発生器7の出力信号と共
に中央制御回路6及び表示装置14に印加されて記録・
表示が行われる。この様な電子スピン共鳴装置による測
定を高精度で行うためには、試料を設置したキヤビテイ
のQ値は一定でなければならないが、測定試料をキヤビ
テイに挿入する事自体がキヤビテイのQ値を変化させる
ことになるので高精度測定のためには試料挿入による検
出誤差を考慮することが必要となる。
In FIG. 1, reference numeral 1 denotes a cavity resonator into which a sample 2 is inserted, and is installed within the gap between the magnetic members 4 in order to apply a strong static magnetic field to the sample. A central control circuit (CPU) 6 serves as an excitation power source for the coil 5 wound around the member 4.
A sweep signal generator 7 controlled by the oscilloscope is used to provide a relatively slowly varying static magnetic field to the sample material. This static magnetic field causes separation of electron spin energy levels in the sample material due to the Zeeman effect, and a phenomenon occurs in which the microwave power supplied from the microwave generator 8 to the cavity 1 via the magic T9 is absorbed. Absorption of microwave power in the sample in the cavity 1 upsets the power balance in the magic T, and this variation is detected by the microwave detector 10. In order to extract this detection signal as an AC signal rather than a DC signal, an AC modulated magnetic field is superimposed on the sweeping static magnetic field applied to the sample, and the modulation frequency suppresses the l/f noise of the microwave detector 10. Therefore, it is set to 100KH2 or more. In order to efficiently apply such a high-frequency modulated magnetic field to the sample, a magnetic field modulation coil 11 is installed inside the cavity 1, and a high-frequency oscillator 12 sends 100 KH to the coil. The above high frequency current is supplied. The microwave modulated by the high frequency magnetic field in this manner is detected by the microwave detector 10, and then further detected by the phase detector 13 to which the reference signal from the high frequency oscillator 12 is supplied. The phase component is detected and applied together with the output signal of the sweep signal generator 7 to the central control circuit 6 and the display device 14 for recording and recording.
Display is performed. In order to perform measurements using such an electron spin resonance device with high precision, the Q value of the cavity in which the sample is placed must be constant, but inserting the measurement sample into the cavity itself changes the Q value of the cavity. Therefore, for high-precision measurements, it is necessary to consider detection errors due to sample insertion.

本発明はこの様な検出誤差を自動的に補正することを目
白勺とするもので゛ある。第2図は本発明に使用される
キヤビテイを示す略図であり、図中15はキヤビテイ1
にマジツクTから供給されるマイクロ波を導く導波管を
示す。
The present invention aims to automatically correct such detection errors. FIG. 2 is a schematic diagram showing the cavity used in the present invention, and 15 in the figure is the cavity 1.
shows a waveguide that guides the microwaves supplied from Magic-T.

キヤビテイ1内にはガラス管16に極く僅かな量の標準
(比較用)試料17が取り付けられており該試料の存否
によるキヤビテイのQ値は殆んど無視することができる
。一方、測定試料2は試料挿入用ガラス管18によりキ
ヤビテイ内に挿入されるがその量は通常標準試料17の
量よりも多いためキヤビテイのQ値に僅かの変化を与え
る。測定スペクトルの強度はキヤビテイのQ値と略比例
関係にあるため、異なつた試料を挿入する毎にキヤビテ
イのQ値が変化してしまい、異なつた試料相互間におけ
るスペクトル強度の比較が不正確となる欠点があつた。
本発明においては、先ずキヤビテイのQ値が変化する前
の標準試料17のみの測定スペクトルを記憶しておき、
次に測定試料2をキヤビテイに挿入して標準試料17と
共にその測定スペクトラムを得て、前記記憶しておいた
測定スペクトルを用いて補正処理を行うことを特徴とす
るものである。
A very small amount of a standard (comparison) sample 17 is attached to a glass tube 16 in the cavity 1, and the Q value of the cavity depending on the presence or absence of the sample can be almost ignored. On the other hand, the measurement sample 2 is inserted into the cavity through the sample insertion glass tube 18, but since the amount of measurement sample 2 is usually larger than the amount of the standard sample 17, it causes a slight change in the Q value of the cavity. Since the intensity of the measured spectrum is approximately proportional to the Q value of the cavity, the Q value of the cavity changes each time a different sample is inserted, making comparisons of spectral intensities between different samples inaccurate. There were flaws.
In the present invention, first, the measured spectrum of only the standard sample 17 before the Q value of the cavity changes is stored,
Next, the measurement sample 2 is inserted into the cavity, its measurement spectrum is obtained together with the standard sample 17, and a correction process is performed using the stored measurement spectrum.

今、標準試料17のみによる第3図aに示す様なESR
スペクトルS1が得られたものとし、このときの磁場掃
引範囲をP−qであつたとする。次に測定試料を標準試
料と共に測定すれば第3図bに示す如く、磁場掃引範囲
P−qには標準試料に基づくスペクトルS2が現われ、
掃引範囲r−sには測定試料に基づくスペクトルXが現
われる。第3図bのスペクトルは測定試料の挿入によつ
てキヤビテイのQ値が変化した状態での測定結果である
ので、第3図aのスペクトルを用いたスペクトル強度の
補正値1sxは、Sl.S2、Xの各スペクトル強度を
151,152,IXとして次の式から求められる。こ
の補正値1sxは測定試料によつて生じた検出誤差即ち
キヤビテイのQ値の低下による信号強度の減衰が補正さ
れた値となる。
Now, ESR as shown in Figure 3a using only standard sample 17
It is assumed that a spectrum S1 has been obtained, and that the magnetic field sweep range at this time is Pq. Next, when the measurement sample is measured together with the standard sample, a spectrum S2 based on the standard sample appears in the magnetic field sweep range P-q, as shown in Figure 3b.
A spectrum X based on the measurement sample appears in the sweep range rs. Since the spectrum in FIG. 3b is the measurement result with the Q value of the cavity changed due to the insertion of the measurement sample, the correction value 1sx of the spectral intensity using the spectrum in FIG. It is determined from the following equation, assuming that the spectral intensities of S2 and X are 151, 152, and IX. This correction value 1sx is a value obtained by correcting the detection error caused by the measurement sample, that is, the attenuation of the signal intensity due to the decrease in the Q value of the cavity.

第1図の実施例装置においては、キヤビテイに標準試料
のみを設けた状態での信号スペクトルS1の強度が中央
制御回路6に記憶される。
In the apparatus of the embodiment shown in FIG. 1, the intensity of the signal spectrum S1 with only the standard sample provided in the cavity is stored in the central control circuit 6.

次に測定試料をキヤビテイに挿入すると中央制御回路6
からは信号スペクトルS1と同一範囲の磁場掃引を行う
ための信号が発生し、該掃引によつて得られた標準試料
の信号スペタトルS2の信号強度と前記記憶されたスペ
クトル信号S1の信号強度の比が同じく中央制御回路6
において計算され、記憶される。そして同一キヤビテイ
条件の下に試料測定により得られたスペクトルxに対し
て前記信号強度比を補正係数とする補正を行い正しい測
定スペクトルとして表示し、記憶する。以上の様に、本
発明によれば同一のキヤビテイを使用する限り、試料交
換を何回行なつても正しく補正された測定スペタトルが
容易に得られるようになるため、異なつた試料相互間に
おける測定スペクトルの強度比較を正確に行うことが可
能となり、電子スピン共鳴装置を用いた物性の研究に大
きな効果が得られる。
Next, when the measurement sample is inserted into the cavity, the central control circuit 6
A signal for performing a magnetic field sweep in the same range as the signal spectrum S1 is generated, and the ratio of the signal intensity of the signal spectrum S2 of the standard sample obtained by the sweep to the signal intensity of the stored spectrum signal S1 is determined. is also the central control circuit 6
is calculated and stored. Then, the spectrum x obtained by measuring the sample under the same cavity condition is corrected using the signal intensity ratio as a correction coefficient, and the correct measured spectrum is displayed and stored. As described above, according to the present invention, as long as the same cavity is used, a correctly corrected measurement spectrum can be easily obtained no matter how many times the sample is exchanged. This makes it possible to accurately compare the intensity of spectra, and has a great effect on research on physical properties using an electron spin resonance device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置を示す略図、第2図は1
図の装置の部分を示す略図、第3図は本発明の原理を説
明するための略図である。 1:空胴共振器(キヤビテイ)、2:測定試料、6:中
央制御回路、7:静磁場掃引回路、8:マイクロ波発振
器、9:マジツクT、10:マイタロ波検波器、11:
磁場変調用コイル、12:高周波発振器、13:位相検
波器、14:表示装置、15:導波管、18:試料挿入
ガラス管。
FIG. 1 is a schematic diagram showing an embodiment of the device of the present invention, and FIG.
FIG. 3 is a schematic diagram for explaining the principle of the present invention. 1: Cavity resonator (cavity), 2: Measurement sample, 6: Central control circuit, 7: Static magnetic field sweep circuit, 8: Microwave oscillator, 9: Magic T, 10: Mital wave detector, 11:
Coil for magnetic field modulation, 12: High frequency oscillator, 13: Phase detector, 14: Display device, 15: Waveguide, 18: Sample insertion glass tube.

Claims (1)

【特許請求の範囲】[Claims] 1 極く微量の標準試料が常に設けられると共に測定試
料が挿入される空胴共振器を静磁場中に配置し、該静磁
場の強度掃引によつて空胴共振器内において生じるマイ
クロ波の吸収量の変化を磁場掃引値と対応させてスペク
トル信号として測定する装置において、前記空胴共振器
内に標準試料のみが設けられた状態におけるスペクトル
信号S_1の測定結果を記憶する手段、前記空胴共振器
内に標準試料と測定試料に基づくスペクトル信号S_2
を測定し、前記スペクトル信号S_1とS_2の強度比
を計算する手段、及び該強度比を補正係数として前記測
定試料の測定スペクトルの強度補正を行う手段を設けた
ことを特徴とする電子スピン共鳴装置。
1. A cavity resonator in which an extremely small amount of a standard sample is always provided and a measurement sample is inserted is placed in a static magnetic field, and the absorption of microwaves generated within the cavity resonator by sweeping the intensity of the static magnetic field. In an apparatus for measuring a change in quantity as a spectrum signal in correspondence with a magnetic field sweep value, means for storing a measurement result of the spectrum signal S_1 in a state in which only a standard sample is provided in the cavity resonator; Spectrum signal S_2 based on the standard sample and measurement sample in the instrument
an electron spin resonance apparatus comprising means for measuring the intensity ratio of the spectral signals S_1 and S_2, and means for correcting the intensity of the measured spectrum of the measurement sample using the intensity ratio as a correction coefficient. .
JP4774477A 1977-04-25 1977-04-25 electron spin resonance device Expired JPS5952779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4774477A JPS5952779B2 (en) 1977-04-25 1977-04-25 electron spin resonance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4774477A JPS5952779B2 (en) 1977-04-25 1977-04-25 electron spin resonance device

Publications (2)

Publication Number Publication Date
JPS53133081A JPS53133081A (en) 1978-11-20
JPS5952779B2 true JPS5952779B2 (en) 1984-12-21

Family

ID=12783847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4774477A Expired JPS5952779B2 (en) 1977-04-25 1977-04-25 electron spin resonance device

Country Status (1)

Country Link
JP (1) JPS5952779B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659008A (en) * 1992-08-06 1994-03-04 Sumitomo Electric Ind Ltd Physical property measuring device and method therefor

Also Published As

Publication number Publication date
JPS53133081A (en) 1978-11-20

Similar Documents

Publication Publication Date Title
Story et al. The measurement of the widths and pressure-induced shifts of microwave spectra lines
Liebe et al. Dispersion studies of the 22 GHz water vapor line shape: I. The Lorentzian behavior
JPS6155058B2 (en)
Bleaney et al. Collision broadening of the inversion spectrum of ammonia at centimetre wave-lengths. I.-Self-broadening at high pressure
Belin et al. Electronic gJ Factors, Natural Lifetimes, and Electric Quadrupole Interaction for Rb87 in the np 2 P 3/2 Series of the Rb I Spectrum
Majumder et al. Measurement of the electric quadrupole amplitude within the 1283-nm 6 P 1/2− 6 P 3/2 transition in atomic thallium
US3371271A (en) Measurement of unpaired electron density
JPS5952779B2 (en) electron spin resonance device
Harber et al. Measurement of the scalar Stark shift of the 6 1 S 0→ 6 3 P 1 transition in Hg
US2636926A (en) Microwave spectrography
Slangen Determination of the spin concentration by electron spin resonance
Svanberg Natural Lifetimes and Hyperfine Structure for K39 in the 5p2P3/2 and 6p2P3/2 Levels of the KI Spectrum by Resonance Scattering of Light
Vetter et al. Phase-changing broadening of the laser line of Xe I at λ= 3.51 μm
Braun et al. The Temperature Dependence of Spectral Broadening in the Hg (61S0–63P1) Multiplet At High Optical Densities
Moore et al. An analyzer for the voice frequency range
Melnick et al. Determination of apparent spin-spin relaxation time T2★ using a super-regenerative spectrometer
Rietveld et al. Highly sensitive picoampere meter
Eaton et al. Quality assurance in EPR
Schäfer et al. Particle number and pressure determination in high‐pressure lamps
Ultee Determination of Absolute Concentrations by Gas‐Phase Electron Spin Resonance Spectroscopy
JP3151752B2 (en) Partial discharge measurement method
SU1105793A1 (en) Method and device for modulation-phase registering of magnetic resonance spectra
Schafer et al. Particle number and pressure determination in high-pressure lamps
Seka et al. Measurement of relative transition probabilities using the Faraday effect
US3568046A (en) Apparatus for examination and measurement by means of nuclear magnetic resonance phenomena