JPS5952580A - Treatment of phosphate-contg. water - Google Patents

Treatment of phosphate-contg. water

Info

Publication number
JPS5952580A
JPS5952580A JP16334382A JP16334382A JPS5952580A JP S5952580 A JPS5952580 A JP S5952580A JP 16334382 A JP16334382 A JP 16334382A JP 16334382 A JP16334382 A JP 16334382A JP S5952580 A JPS5952580 A JP S5952580A
Authority
JP
Japan
Prior art keywords
lime
phosphate
gas
slaked lime
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16334382A
Other languages
Japanese (ja)
Inventor
Shigeki Sawada
沢田 繁樹
Isao Joko
勲 上甲
Chuichi Goto
後藤 忠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP16334382A priority Critical patent/JPS5952580A/en
Publication of JPS5952580A publication Critical patent/JPS5952580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To curtail the amount of lime to be used, while enhancing the dissolution efficiency of slaked lime under a condition suited to precipitation, by sealing a lime-dissolving device with gas which does not contain carbonic acid one. CONSTITUTION:In supplying calcium or hydroxyl ion to a reaction system, precipitation is performed by adding liquid slaked lime dissolved in a lime-dissolving device sealed with gas decarbonated by bringing air into contact with soda lime, liquid alkali or zeolite, or gas, e.g. nitrogen one, which does not practically contain carbonic acid one. Since the slaked lime dissolved under the sealed condition does not cause the formation of calcium carbonate, the dissolution efficiency of slaked lime is enhanced. Therefore, by bringing said slaked lime into contact with crystal seeds containing calcium phosphate in the presence of calcium ion under the condition of a pH above 6, calcium phosphate formed by Formula I is precipitated on the surfaces of the crystal seeds. Hence, phosphoric ion in water is efficiently removed.

Description

【発明の詳細な説明】 この発明はリン酸塩を含む水を処理してリン酸塩を除去
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating water containing phosphate to remove phosphate.

水中のリン酸塩を除去する方法として、リン酸塩を含む
水をカルシウムイオンの存在下に、リン鉱石などのリン
酸カルシウムを含む結晶種と接触させる方法が提案され
ている。この方法は水中に含まれるリン酸イオンをヒド
ロキシアパタイト等のリン酸カルシウムの形にして結晶
種に晶析させることによシ、除去するものであって、運
転方法が従来の凝集方法と比べて簡略化できるだけでな
く、処理効率も格段によくなる。
As a method for removing phosphates from water, a method has been proposed in which water containing phosphates is brought into contact with a crystal species containing calcium phosphate, such as phosphate rock, in the presence of calcium ions. This method removes phosphate ions contained in water by converting them into calcium phosphate such as hydroxyapatite and crystallizing them into crystal seeds, and the operating method is simpler than the conventional flocculation method. Not only this, but the processing efficiency will also be significantly improved.

このような方法て仁、一般にカルシラノ・イオンの存在
下であって、かつpH6以上の条件下に晶析・が行われ
るので、カルシウムイオンまたは水酸イオン供給の目的
で消石灰液を添加して晶析することが行われている。消
石灰液は粉末の石灰を石灰溶解装置において溶解して調
製しているが、通常の使用形態では、空気と接した状態
で溶解するため、石灰塊の表面に炭酸カルシウム結晶が
析出して表面を覆ってしまい、その結果、晶析に適した
条件における消石灰の溶解効率は悪く、理論量以上の石
灰の添加量を必要とするとともに、未溶解部分はそのま
ま液中に移行し、微細SSとして結晶種充填層の洗浄(
逆洗)頻度を増加させ、さらには処理水リン濃度を高く
するという問題があった。
In this method, crystallization is generally performed in the presence of calcyrano ions and under conditions of pH 6 or higher, so crystallization is performed by adding slaked lime solution for the purpose of supplying calcium ions or hydroxide ions. Analysis is being carried out. Slaked lime liquid is prepared by dissolving powdered lime in a lime dissolving device, but in normal usage, it is dissolved in contact with air, so calcium carbonate crystals precipitate on the surface of the lime block, causing the surface to deteriorate. As a result, the dissolution efficiency of slaked lime under conditions suitable for crystallization is poor, and it is necessary to add more lime than the theoretical amount, and the undissolved portion moves directly into the liquid and crystallizes as fine SS. Cleaning the seed packed bed (
There was a problem that the frequency of backwashing was increased and the phosphorus concentration of the treated water was also increased.

この発明は上記のような従来のものの問題点を改善する
ためのもので、炭酸ガスを含まないガスで石灰溶解装置
をシールすることによシ、石灰の溶解効率を高く維持し
、これによシ石灰の使用量を少なくするとともに、洗浄
頻度を小さくし、かつ処理水質の悪化を防止することが
できるリン酸塩を含む水の処理方法を提供することを目
的としている。
This invention is intended to improve the problems of the conventional devices as described above. By sealing the lime dissolving device with a gas that does not contain carbon dioxide gas, the efficiency of dissolving lime is maintained at a high level. It is an object of the present invention to provide a method for treating water containing phosphate, which can reduce the amount of lime used, reduce the frequency of washing, and prevent deterioration of the quality of treated water.

この発明はリン酸塩を含む水を、カルシウムイオンの存
在下であって、かつpH6以上の条件下に、リン酸カル
シウムを含む結晶種と接触させて、リン酸塩を除去する
方法において、炭酸ガスを含まないガスでシールした石
灰溶解装置において溶解した消石灰液を添加して晶析を
行うことを特徴とするリン酸塩を含む水の処理方法であ
る。
This invention provides a method for removing phosphates by bringing water containing phosphates into contact with crystal seeds containing calcium phosphate in the presence of calcium ions and under conditions of pH 6 or higher. This is a method for treating water containing phosphate, which is characterized by performing crystallization by adding dissolved slaked lime in a lime dissolving device sealed with a lime-free gas.

前述のように、石灰の溶解効率が低い原因を調べたとこ
ろ、炭酸ガスの吸収によって石灰表面に生成する炭酸カ
ルシウムが、リン酸カルシウムの晶析に適した水質条件
のもとではほとんど溶解せず、これが石灰の溶解効率を
低下させていることがわかった。一般に炭酸ガスの吸収
により生成する炭酸カルシウムは対象とする系に添加さ
れることによシ、溶解することが多いが、カルシウムイ
オン濃度およびpH条件が晶析に適した後述の準安定域
の条件下では溶解はほとんど起こらず、そのまま液中に
移行する。このだめ、本発明では炭酸ガスを含まないガ
スで石灰溶解装置をシールすることによシ、炭酸ガスの
□吸収を防止し、これに上り炭酸カルシウムの生成を防
止する。
As mentioned above, an investigation into the cause of the low lime dissolution efficiency revealed that calcium carbonate, which forms on the surface of lime due to the absorption of carbon dioxide gas, hardly dissolves under water conditions suitable for crystallizing calcium phosphate. It was found that the dissolution efficiency of lime was reduced. Calcium carbonate, which is generally produced by absorption of carbon dioxide gas, often dissolves when added to the target system, but the conditions in the metastable region described below where the calcium ion concentration and pH conditions are suitable for crystallization. At the bottom, almost no dissolution occurs, and the liquid migrates directly into the liquid. To avoid this, in the present invention, by sealing the lime dissolving device with a gas that does not contain carbon dioxide gas, absorption of carbon dioxide gas is prevented, which in turn prevents the formation of calcium carbonate.

リン酸塩を含む水をカルシウムイオンの存在下にリン酸
カルシウムを含む結晶種と接触させたときに起こる反応
は、反応条件によって異なるが、通常は次式によって衣
わされる・ 5(4”r+ 3HPO4” + 40H−→Ca 、
(OH) (PO,) 3 + 3H20”’ (1)
(11式かられかるように、リシ酸塩の除去率を上げる
だめには、反応を右に進行させる必要があシ、同時に結
晶種の活性度を高くする必要がある。
The reaction that occurs when water containing phosphate is brought into contact with crystal seeds containing calcium phosphate in the presence of calcium ions varies depending on the reaction conditions, but is usually expressed by the following formula: 5(4"r+ 3HPO4 ” + 40H-→Ca,
(OH) (PO,) 3 + 3H20”' (1)
(As seen from Equation 11, in order to increase the removal rate of ricylate, it is necessary to allow the reaction to proceed to the right, and at the same time, it is necessary to increase the activity of the crystal seeds.

リン酸カルシウムを含む結晶種としては、ヒドロキシア
パタイト[Cas (o)() (PO4)3 )、フ
ルオロアノξタイトCCa5(F) (PO4)3:]
またはリン酸三石灰(Ca3(PO4)2:)などのリ
ン酸カルシウムを含む結晶種が使用でき、天然のリン鉱
石または骨炭はこれらのリン酸カルシウムを主成分とし
ておシ、結晶種として適している。また、砂などの炉材
面にリン酸カルシウムを析出させた結晶種も用いること
ができる。結晶種としては、反応によって生成するリン
酸カルシウムと同種のリン酸カルシウムを主成分とする
ものが望ましい。例えばヒドロキシアパタイトを生成す
る系では、ヒドロキシアパタイトを使用すると新しい結
晶の析出が円滑に行われ、リン酸塩の除去が効率的に行
われ、除去率が上がる。□ 晶析の条件は従来法と同様であり、カルシウムイオンの
存在下であって、かつ2146以上の条件下にリン酸カ
ルシウムを含む結晶種と接触させると、前記(1)式に
より生成するリン酸カルシウムが結晶種表面に析出して
結晶が成長し、水中のりン醒イオンが除去される。
Crystal seeds containing calcium phosphate include hydroxyapatite [Cas(o)()(PO4)3), fluoroanotite CCa5(F)(PO4)3:]
Alternatively, crystal seeds containing calcium phosphate such as tricalcium phosphate (Ca3(PO4)2:) can be used, and natural phosphate rock or bone char, which contain calcium phosphate as a main component, are suitable as crystal seeds. Furthermore, crystal seeds in which calcium phosphate is precipitated on the surface of a furnace material such as sand can also be used. The crystal seed is preferably one whose main component is calcium phosphate of the same type as the calcium phosphate produced by the reaction. For example, in a system that produces hydroxyapatite, the use of hydroxyapatite facilitates the precipitation of new crystals, efficiently removes phosphate, and increases the removal rate. □ The crystallization conditions are the same as those of the conventional method, and when brought into contact with a crystal seed containing calcium phosphate in the presence of calcium ions and under conditions of 2146 or higher, the calcium phosphate produced by the above formula (1) crystallizes. Crystals precipitate on the seed surface and grow, removing phosphorous ions in the water.

水中に存在させるカルシウムイオンや水酸イオンは、原
水中に初めから存在する場合には外部から姉、加する必
要はないが、原水中に存在しない場合または不足する場
合には外部から添加する。爾加量は反応当量よシも過剰
量とするが、あまり多蓄に徐加すると結晶種以外の場所
で微細な沈殿か析出したシ、また炭酸カルシウム等の不
純物己り−S成する場合があるから、これらが生成しな
い範囲とすべきである。すなわち、カルシウムイオンお
よび水酸イオンの量は、(1)式において生成するヒド
ロキシアパタイトの溶解度より高く、過溶解度よりは低
い濃度、すなわち準安定域の濃度のヒドロキシアパタイ
トが生成する条件とする。ここで過溶解度とは、反応系
に結晶種が存在しない場合に結晶が析出し始める濃度で
ある。すなわち過溶解度よシ高い濃度では、結晶種の存
在しないところに新たな結晶が析出して微細な沈殿を生
成し、P床の目詰りが生ずるが、過溶解度よシ低い準安
定域では結晶種の上に新たな結晶が析出して、結晶が成
長するだけで沈殿は生成しない、、また溶解匿よシ低い
系では結晶は析出しない。
Calcium ions and hydroxide ions to be present in water do not need to be added from the outside if they are present in the raw water from the beginning, but if they are not present in the raw water or are insufficient, they are added from the outside. The amount of addition should be in excess of the reaction equivalent, but if it is added slowly and in too large a quantity, fine precipitates or deposits may occur in places other than the crystal seeds, and impurities such as calcium carbonate may form -S. Therefore, it should be set within a range where these do not occur. That is, the amounts of calcium ions and hydroxyl ions are set to be higher than the solubility of the hydroxyapatite produced in equation (1), but lower than the supersolubility, that is, the conditions are such that hydroxyapatite is produced at a concentration in the metastable range. Here, supersolubility is the concentration at which crystals begin to precipitate when no crystal seeds are present in the reaction system. In other words, at a concentration higher than the supersolubility, new crystals precipitate where no crystal seeds exist, forming fine precipitates and clogging the P bed, but in the metastable region where the supersolubility is lower, crystal seeds do not exist. New crystals are precipitated on top, and no precipitate is formed, only the crystals grow.Also, in systems with low dissolution and retention, crystals do not precipitate.

ヒドロキシアパタイトの生成する量は反応系のリン晒イ
オン濃度、カルシウムイオン濃度およびpHによって支
配される。生成したヒドロキシアパタイトの量を準安定
域内にするカルシウムイオンの量およびpH値は、反応
系ごとにこれらの値を変えて実験的に求めることができ
る。おおよその□範囲は、リン酸イオン5[ff〜/を
以下の場合において、カルシウムイオン゛が1 D 〜
100m?/l、pHが6〜12程度であるが、それぞ
れの条件によって変動する。
The amount of hydroxyapatite produced is controlled by the phosphorus exposure ion concentration, calcium ion concentration, and pH of the reaction system. The amount of calcium ions and pH value that bring the amount of produced hydroxyapatite within the metastable range can be determined experimentally by changing these values for each reaction system. The approximate □ range is phosphate ion 5[ff~/ in the following cases, calcium ion ゛1 D ~
100m? /l, pH is about 6 to 12, but varies depending on each condition.

本発明では、反応系を上記範囲に維持するために、カル
シウムイオンまたは水酸イオンを供給する際、炭酸ガス
を含まないガスでシールした石灰溶解装置において溶解
した消石灰液を添加して晶析を行う。石灰溶解装置とし
ては特に制限はなく、炭酸ガスを含まないガスでシール
した状態で、石灰を水に溶解して消石灰液を調製できる
装置であればよいが、一般的には石灰粉末貯槽および石
灰溶解槽からなるものが使用され、さらに希釈槽を有す
るものも使用できる。シールの方法はこれらの各僧を密
閉構造とし、炭酸ガスを含まないガスケパージし、大気
との接触を絶つようにシールする。
In the present invention, in order to maintain the reaction system within the above range, when supplying calcium ions or hydroxide ions, a slaked lime solution dissolved in a lime dissolving device sealed with a gas not containing carbon dioxide gas is added to perform crystallization. conduct. There are no particular restrictions on the lime dissolving device, and any device that can dissolve lime in water and prepare slaked lime under a sealed state with carbon dioxide-free gas is sufficient, but in general, lime powder storage tanks and lime A dissolving tank is used, and a diluting tank can also be used. The sealing method is to make each of these structures airtight, purge them with gas that does not contain carbon dioxide, and seal them to prevent contact with the atmosphere.

炭酸ガスを含まないガスとしては、ソーダ石灰°゛ □
    、アルカリ液(水酸ナトリウム溶液、水酸化カ
リウム溶液、消石灰液など)もしくはゼオライトなどに
空気を接触させて脱炭酸したガスまたは窒素ガスなどの
、実質的に炭酸ガスを含まないガスが使用できる。また
溶解−する石灰は消石灰でも生石灰でもよい。石灰を溶
解する水は原水、処理水、工業用水、その他の水のいず
れでもよい。この場合、溶解水に炭酸ガスが接触しない
ようにシールするのが望ましく、場合によっては脱炭酸
することもできる。
As a gas that does not contain carbon dioxide, soda lime °゛□
A gas substantially free of carbon dioxide gas, such as a gas decarboxylated by contacting air with an alkali solution (sodium hydroxide solution, potassium hydroxide solution, slaked lime solution, etc.) or zeolite, or nitrogen gas, can be used. The lime to be dissolved may be either slaked lime or quicklime. The water for dissolving lime may be raw water, treated water, industrial water, or other water. In this case, it is desirable to seal the dissolved water so that carbon dioxide gas does not come into contact with it, and decarboxylation can be performed depending on the case.

石灰の溶解はシール状態で、石灰溶解槽内の溶解水に石
灰粉末貯槽から石灰粉末を供給し、攪拌して溶解させる
。こうして生成する消石灰液は希釈槽において希釈し、
所定濃度としてもよい。反応系に添加する消石灰液の濃
度は制限されないが、実用的には01〜0.3重量%程
度が好ましい。シール状態で溶解した消石灰液は炭酸カ
ルシウムの生成が起こらないため、消石灰の溶解効率が
高く、不溶解部分は少ない。
Lime is dissolved in a sealed state by supplying lime powder from a lime powder storage tank to dissolved water in a lime dissolving tank and dissolving it by stirring. The slaked lime solution thus produced is diluted in a dilution tank,
It may be a predetermined concentration. Although the concentration of the slaked lime solution added to the reaction system is not limited, it is practically preferably about 0.01 to 0.3% by weight. The slaked lime solution dissolved in a sealed state does not generate calcium carbonate, so the slaked lime dissolution efficiency is high and the undissolved portion is small.

原水に消石灰液を供給して反応系を前記準安定域に維持
すると、(1)式によジヒドロキシアパタイトが生成す
るので、リン酸カルシウムを含む結晶種と接触させて晶
析を行う。
When the reaction system is maintained in the metastable region by supplying slaked lime solution to the raw water, dihydroxyapatite is produced according to the formula (1), so it is brought into contact with a crystal seed containing calcium phosphate and crystallized.

リン酸塩を含む水とリン酸カルシウムを含む結晶種との
接触方法は固定床式でも流動床式でもよい。結晶種の大
きさは小さいものほど表面積が大きいだめ新しい結晶が
析出しやすいが、あ捷り小さいと結晶種と水の接触また
は分離に困難を伴う。
The method of contacting the water containing phosphate with the crystal seeds containing calcium phosphate may be a fixed bed method or a fluidized bed method. The smaller the size of the crystal seeds, the larger the surface area, and the easier it is for new crystals to precipitate. However, if the dispersion is too small, it is difficult to contact or separate the crystal seeds from water.

まだ粒径があまシ大きいと単位充填量当シの比表面積が
小さいから、通常は9〜500メツシュ程度のものを使
用する。このうち太きいものは固定床に適し、小さいも
のは流動床に適する。固定床の場合9〜65メツシユの
粒径の結晶種を充填し、流速SV1〜5 hr ’で上
向流または下向流で通水してリン酸カルシウムの結晶を
析出させる。
If the particle size is too large, the specific surface area per unit filling amount will be small, so a particle size of about 9 to 500 mesh is usually used. Among these, the larger ones are suitable for fixed beds, and the smaller ones are suitable for fluidized beds. In the case of a fixed bed, crystal seeds having a particle size of 9 to 65 mesh are packed, and water is passed upwardly or downwardly at a flow rate of SV1 to 5 hr' to precipitate calcium phosphate crystals.

通水中に結晶種表面が汚染されたシ、目詰シを起こすこ
とがあれば、定期的に上向流による洗浄を行って結晶種
床を展開して洗浄し、表向に付着した不純物を剥離する
ことが望ましい。洗浄時の通水条件としては、流速は2
0〜80 m/hr程度、洗浄時間は5〜60分程度で
ある。このような結晶種の洗浄によシSS成分が除去さ
れ、通水の町開が可能になる。
If the crystal seed surface becomes contaminated or clogged during water flow, periodically clean the crystal seed bed with upward flow to spread out and clean the crystal seed bed to remove impurities attached to the surface. It is desirable to peel it off. The water flow conditions during cleaning are as follows: the flow rate is 2
The washing speed is about 0 to 80 m/hr, and the cleaning time is about 5 to 60 minutes. By cleaning such crystal seeds, the SS components are removed, making it possible to open the town with water.

通水の再開にJ:す、一時的に処理水質が悪化するが、
これは結晶種充填層の乱れにより、完全に固着していな
いリンが漏出するためであり、通水を継続することによ
シ、処理水質が回復し、低リン濃度の処理水が得られる
ようになる。
When water flow resumes, the quality of treated water will temporarily deteriorate, but
This is because phosphorus that is not completely fixed leaks out due to disturbance in the crystal seed packed bed, and by continuing water flow, the quality of the treated water will be restored and treated water with a low phosphorus concentration will be obtained. become.

晶析および洗浄を繰シ返えすうちに、洗浄を行っても脱
リン効率が回復しない場合には、結晶種の再活性化処理
を行うことができる。この処理法としては、例えば結晶
種の洗浄時またはその後に塩素剤やカルシウム化合物を
含む溶液と接触させたり、あるいは洗浄後水切シして乾
燥させる方法などがあシ、これによシ結晶種表向か活性
化されて、脱リン効率が高くなる。
After repeating crystallization and washing, if the dephosphorization efficiency does not recover even after washing, a treatment for reactivating the crystal seeds can be performed. This treatment method includes, for example, contacting with a solution containing a chlorine agent or calcium compound during or after cleaning the crystal seeds, or draining and drying after cleaning. dephosphorization efficiency increases.

なお、上記晶析に先立って、原−水のSS除去等の前処
理を行ったり、あるいは滅菌等の後処理を行うことは差
支えない。また炭酸ガスを含まないガスによるシールは
、石灰溶解装置だけでなく、晶析反応装置全体をシール
するようにしてもよい。
Incidentally, prior to the above-mentioned crystallization, there is no problem in performing pre-treatment such as SS removal from the raw water, or performing post-treatment such as sterilization. Furthermore, the sealing with a gas that does not contain carbon dioxide gas may be applied not only to the lime dissolving device but also to the entire crystallization reaction device.

以上のとおシ、本発明によれば、炭酸ガスを含まないガ
スにより石灰溶解装置をシールするように構成したので
、炭酸カルシウムの生成を防止して石灰の溶解効率を高
く維持し、これにより石灰の使用量を少なくするととも
に、洗浄頻度を小さくし、かつ処理水質の悪化を防止し
て、低リン濃度の処理水を安定して得ることができるな
どの効果がある。
In summary, according to the present invention, the lime dissolving device is configured to be sealed with a gas that does not contain carbon dioxide gas, thereby preventing the formation of calcium carbonate and maintaining a high lime dissolving efficiency. This has the effect of reducing the amount of phosphorus used, reducing the frequency of washing, preventing deterioration of treated water quality, and stably obtaining treated water with a low phosphorus concentration.

次に本発明の実施例および比較例について説明する。Next, examples and comparative examples of the present invention will be described.

実施例 粒径0,5〜1.0朋のリン鉱石を1−を充填した固定
層脱リン塔(断面積0.63 m )に、消石灰液を添
加してpH調整した下水二次処理水(リン濃度1−3m
y/1SS81〜20+++g/l)を5V2hr−の
流速で上向流通水し、晶析を行った。消石灰液は、窒素
ガスを連続的にパージする方法でシールした消石灰粉末
貯槽、石灰溶解槽および希釈槽からなる石灰溶解装置に
おいて、処理水を溶解水として、シール状態で消石灰を
溶解、希釈し、0.15N量チ濃度としたものであり、
この消石灰液を脱リン塔入口において、シール状態で原
水に注入し、ptls、 8〜90になるように添加量
をコントロールした。
Example: Secondary treated sewage water whose pH was adjusted by adding slaked lime to a fixed bed dephosphorization tower (cross-sectional area: 0.63 m) filled with phosphate rock with a particle size of 0.5 to 1.0 mm. (phosphorus concentration 1-3m
y/1SS81-20+++g/l) was allowed to flow upward at a flow rate of 5V2hr- to perform crystallization. The slaked lime solution is produced by dissolving and diluting the slaked lime in a sealed state using treated water as dissolution water in a lime dissolving device consisting of a slaked lime powder storage tank, a lime dissolving tank, and a dilution tank that are sealed using a method of continuously purging with nitrogen gas. The concentration is 0.15N,
This slaked lime liquid was injected into the raw water in a sealed state at the inlet of the dephosphorization tower, and the amount added was controlled so that the ptls was 8 to 90.

この結果、処理水リン濃度は0.5 my / を以下
となり、安定した処理効果が持続した。またpH8,8
〜90とするために用いた消石灰の添加量は20〜40
y+y//L、脱リン塔の洗浄頻度は1回/6日であっ
た。
As a result, the phosphorus concentration in the treated water was below 0.5 my / , and stable treatment effects were maintained. Also pH8,8
The amount of slaked lime added to make it ~90 is 20~40
y+y//L, the cleaning frequency of the dephosphorization tower was once/6 days.

比較例 消石灰粉末貯槽、石灰溶解槽および希釈槽からなる石灰
溶解装置を大気開放状態で運転したほかは、実施例と同
条件で晶析を行ったところ、 pHa、s〜90とする
ために用いた消石灰の平均添加量は65 rrq / 
lとなった。また脱リン塔の圧損上昇速度は実施例の場
合に比べて大きくなる傾向が見られ、洗浄頻度は1回/
1日となった。さらに処理水のリン濃度は実施例の場合
に比べて高い値を示し、0.5−1. Onrg/l−
であった。
Comparative Example Crystallization was carried out under the same conditions as in the example except that the lime dissolving apparatus consisting of a slaked lime powder storage tank, a lime dissolving tank and a dilution tank was operated in an open atmosphere condition. The average amount of slaked lime added was 65 rrq/
It became l. In addition, the rate of increase in pressure drop in the dephosphorization tower tends to be higher than that in the example, and the cleaning frequency is 1/1.
It's been 1 day. Furthermore, the phosphorus concentration of the treated water showed a higher value than in the example, 0.5-1. Onrg/l-
Met.

以上の結果よシ、炭酸ガスを含マナいガスでシールする
ことにより、消石灰の恋加量および洗浄頻度が減少し、
処理水の平均リン濃度が低くなり、安定した処理が行え
ることがわかる。
As a result of the above, by sealing carbon dioxide gas with a gas containing carbon dioxide, the amount of slaked lime added and the frequency of cleaning are reduced.
It can be seen that the average phosphorus concentration of the treated water is lower, indicating that stable treatment can be achieved.

代理人 弁理士  柳 原    成Agent Patent Attorney Sei Yanagi Hara

Claims (5)

【特許請求の範囲】[Claims] (1)リン酸塩を含む水を、カルシウムイオンの存在下
であって、かつp1]6以上の条件下に、リン酸カルシ
ウムを含む結晶種と接触させて、リン酸塩を除去する方
法式おいて、炭酸ガスを含まないガスでシールした石灰
溶解装置において溶解した消石灰液を添加して晶析を行
うことを特徴とするリン酸塩を含む水の処理方法。
(1) A method for removing phosphate by bringing water containing phosphate into contact with crystal seeds containing calcium phosphate in the presence of calcium ions and under conditions of p1]6 or more. , a method for treating water containing phosphates, characterized in that crystallization is carried out by adding dissolved slaked lime in a lime dissolving device sealed with a gas that does not contain carbon dioxide.
(2)石灰溶解装置は石灰粉末貯槽および石灰溶解槽か
らなる特許請求の範囲第1項記載のリン酸塩を含む水の
処理方法。
(2) The method for treating water containing phosphates according to claim 1, wherein the lime dissolving device comprises a lime powder storage tank and a lime dissolving tank.
(3)炭酸ガスを含まないガスは空気をソーダ石灰、ア
ルカリ液もしくはゼオライトと接触させて得られるガス
または望素ガスである特許請求の範囲第1項または第2
項記載のリン酸塩を含む水の処理方法。
(3) The gas that does not contain carbon dioxide is a desired gas or a gas obtained by contacting air with soda lime, alkaline liquid, or zeolite.Claim 1 or 2
A method for treating water containing phosphates as described in Section 1.
(4)リン酸カルシウムを含む結晶種はヒドロキシアパ
タイト、フルオロアパタイトおよびリン酸三石灰から選
ばれや1種以上のものである特許請求の範囲第1項ない
し第3項のいずれかに記載のリン酸塩を含む水の処理方
法。
(4) The phosphate according to any one of claims 1 to 3, wherein the crystal species containing calcium phosphate are one or more selected from hydroxyapatite, fluoroapatite, and tricalcium phosphate. water treatment methods including;
(5)リン・酸カルシウムを含む結晶種はリン鉱石また
は骨炭である特許請求の範囲第1項ないし第4項のいず
れかに記載のリン酸塩を含む水の処理方法。
(5) The method for treating water containing phosphate according to any one of claims 1 to 4, wherein the crystal seed containing calcium phosphate is phosphate rock or bone char.
JP16334382A 1982-09-20 1982-09-20 Treatment of phosphate-contg. water Pending JPS5952580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16334382A JPS5952580A (en) 1982-09-20 1982-09-20 Treatment of phosphate-contg. water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16334382A JPS5952580A (en) 1982-09-20 1982-09-20 Treatment of phosphate-contg. water

Publications (1)

Publication Number Publication Date
JPS5952580A true JPS5952580A (en) 1984-03-27

Family

ID=15772066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16334382A Pending JPS5952580A (en) 1982-09-20 1982-09-20 Treatment of phosphate-contg. water

Country Status (1)

Country Link
JP (1) JPS5952580A (en)

Similar Documents

Publication Publication Date Title
JPS5952580A (en) Treatment of phosphate-contg. water
EP3549739A1 (en) Method of recovering urine-derived nutrient salts from used diapers and the like
JP2001129562A (en) Phosphorus removing method
JP2003305477A (en) Method for removing sulfate ion
JPS6097090A (en) Treatment of water containing fluoride ion and sulfate ion
JPS6014991A (en) Dephosphorization process
JPS5916587A (en) Treatment of water containing phosphate
JPS59156489A (en) Phosphate-contg. water disposal
JP6407052B2 (en) Phosphorus recovery apparatus and phosphorus recovery method
JPS59156488A (en) Artificial dephosphorizing agent and dephosphorization
JP2003225678A (en) Method for treating drainage containing fluorine and hydrogen peroxide
JP2003135927A (en) Method and apparatus for treating exhaust gas
JPS59203690A (en) Dephosphorization
JP2002273456A (en) Dephosphorizing method and device therefor
JPS5926190A (en) Phosphate-contg. water disposal
JPS5913913B2 (en) How to treat water containing phosphates
JPS6014990A (en) Dephosphorization process
JP2003225677A (en) Method for treating drainage containing fluorine and hydrogen peroxide
JPS5943238B2 (en) How to treat water containing phosphates
JPH022628B2 (en)
JPS5931394B2 (en) How to treat water containing phosphates
JP2005305273A (en) Method and apparatus for treating fluorine-containing wastewater
JPS6078692A (en) Dephosphorization
JP4139599B2 (en) Method for crystallizing waste water containing fluorine and phosphorus
JPS637838B2 (en)