JPS5952234B2 - Method for producing mercaptopropionylglycine and its derivatives - Google Patents

Method for producing mercaptopropionylglycine and its derivatives

Info

Publication number
JPS5952234B2
JPS5952234B2 JP51056055A JP5605576A JPS5952234B2 JP S5952234 B2 JPS5952234 B2 JP S5952234B2 JP 51056055 A JP51056055 A JP 51056055A JP 5605576 A JP5605576 A JP 5605576A JP S5952234 B2 JPS5952234 B2 JP S5952234B2
Authority
JP
Japan
Prior art keywords
mpg
derivatives
bis
mercaptopropionylglycine
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51056055A
Other languages
Japanese (ja)
Other versions
JPS52139017A (en
Inventor
孝介 山内
義之 山田
健二 中尾
恭一 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Hakko Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co Ltd filed Critical Kyowa Hakko Kogyo Co Ltd
Priority to JP51056055A priority Critical patent/JPS5952234B2/en
Publication of JPS52139017A publication Critical patent/JPS52139017A/en
Publication of JPS5952234B2 publication Critical patent/JPS5952234B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 本発明は、α−またはβ−メルカプトプロピオニルグリ
シンまたはその誘導体の新規な製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing α- or β-mercaptopropionylglycine or its derivatives.

さらに詳しくは、α、β′−またはα、β′−ジチオビ
スプロピオニルグリシンまたはその誘導体。
More specifically, α,β′- or α,β′-dithiobispropionylglycine or a derivative thereof.

を原料として使用し、これを電解環元することによつて
、α−またはβ−メノレカvャgvャ鴻sオニルグリシンま
たはその誘導体を工業的安価に製造する方法に関するも
のである。α−またはβ−メルカプトプロピオニルグリ
シンおよびその誘導体は、重金属による中毒性疾患また
は制癌性薬物または放射線照射によつて起る最前症状の
治療および予防ならびに毒蛇の解毒剤として知られてい
る有用な物質である。
The present invention relates to a method for industrially and inexpensively producing α- or β-monoylglycine or its derivatives by using as a raw material and subjecting it to electrolytic reduction. α- or β-mercaptopropionylglycine and its derivatives are useful substances known for the treatment and prevention of toxic diseases caused by heavy metals or the earliest symptoms caused by anticancer drugs or radiation, and as an antidote for poisonous snakes. It is.

従来、メルカプトプロピオニルグリシン(以下、MPG
と略称)または、その誘導体の合成法としては、α−ま
たはβ−メルカプ゜トプロピオン酸のメルカプト基を後
で脱離しやすい基(たとえば、ベンジル基、ベンゾイル
基)保護したのち、グリシンと反応させ、しかるのち保
護基を脱離してα−またはβ−MPGを得る方法(以下
、A法)(特公昭39−5464)、α−またはβ−ハ
ロゲンプロピオニルグリシンまたはそのアミド、または
エステル誘導体に、チオ安息香酸、キサントゲン酸アル
カリなどと反応させ、α−またはβ一含硫置換基を有す
るプロピオニルグリシン誘導体として、これを加水分解
して目的物を得る方法(以下、B法)(特公昭39−1
1616)、ジチオビスプロピオニルグリシン〔以下、
ビス(MPG)と略称〕またはその誘導体をアルミニウ
ムアマルガムあるいは、亜鉛および酢酸などで化学的に
還元する方法(以下、C法)(特公昭39−11616
)が知られている。
Conventionally, mercaptopropionylglycine (hereinafter referred to as MPG)
or its derivatives, the mercapto group of α- or β-mercaptopropionic acid is protected with a group that is easily eliminated later (e.g., benzyl group, benzoyl group), and then reacted with glycine. , and then remove the protecting group to obtain α- or β-MPG (hereinafter referred to as method A) (Japanese Patent Publication No. 39-5464). A method of reacting with benzoic acid, alkali xanthate, etc., and hydrolyzing this as a propionylglycine derivative having an α- or β-sulfur-containing substituent to obtain the desired product (hereinafter referred to as method B) (Japanese Patent Publication No. 39-1
1616), dithiobispropionylglycine [hereinafter referred to as
(abbreviated as MPG)] or its derivatives with aluminum amalgam or zinc and acetic acid (hereinafter referred to as method C) (Japanese Patent Publication No. 39-11616
)It has been known.

しかし、これらの製法は、反応操作が煩雑であること、
あるいは原料が高価であることまた反応の収率が低いこ
となどから工業的に有利な方法とはいい難い。すなわち
、これらの方法中、A法はB法、C法に比べて工業的に
実施可能な製法であるが、メルカプト基を保護したのち
、酸ハロゲン化物としてグリシンと反応し、ついで保護
基を脱離するなど工程の煩雑性、原料が高価であること
、あるいは反応収率面において問題がある。また、B法
では、α−またはβ一含硫置換基を有するプロピオニル
グリシン誘導体をつくる場合、あとの加水分解反応でメ
ルカプト基となる化合物を製造するには、チオ酢酸ある
いはチオ安息香酸など高価なまた、取扱いのむつかしい
試薬を用いなければならない欠点があり、しかも精製操
作が煩雑である。
However, these production methods require complicated reaction operations;
Moreover, it is difficult to say that it is an industrially advantageous method because the raw materials are expensive and the reaction yield is low. Namely, among these methods, method A is a production method that is more industrially practicable than methods B and C, but after protecting the mercapto group, it is reacted with glycine as an acid halide, and then the protecting group is removed. There are problems in terms of complicated steps such as separation, expensive raw materials, and reaction yield. In Method B, when producing propionylglycine derivatives having α- or β-mono-sulfur-containing substituents, it is necessary to use expensive thioacetic acid or thiobenzoic acid to produce a compound that will become a mercapto group in the subsequent hydrolysis reaction. Furthermore, it has the disadvantage that reagents that are difficult to handle must be used, and furthermore, the purification operation is complicated.

さらに、C法の含硫置換基を有するプロピオニルグリシ
ン誘導体を化学的に還元してMPGまたはその誘導体と
する方法では、液体アンモニアあるいは、ナトリウムア
マルガム、亜鉛などの金属を使用しなければならない。
したがつて、液安を使用する場合は約−50℃の低温度
が必要となり、工業的には取り扱いがむつかしい、また
、金属による化学的な還元では金属の除去に硫化水素ガ
スなどの悪臭ガスを使用しなければならないことや、使
用後の金属の廃棄処理の問題のほか、製品中への微量金
属の混入を避けるため精製工程が煩雑であり、工業的に
実施することは困難で゛ある。本発明者らは、MPGを
工業的安価に製造することを目的として種々研究した。
Furthermore, in the method C of chemically reducing a propionylglycine derivative having a sulfur-containing substituent to MPG or a derivative thereof, liquid ammonia, sodium amalgam, or a metal such as zinc must be used.
Therefore, when using liquid ammonium, a low temperature of about -50°C is required, which is difficult to handle industrially, and chemical reduction with metals requires the use of foul-smelling gases such as hydrogen sulfide gas to remove metals. In addition to the need to use metals and the problem of disposal of metals after use, the purification process is complicated to avoid contamination of trace metals into products, making it difficult to implement industrially. . The present inventors conducted various studies with the aim of industrially producing MPG at low cost.

その結果、α、β″−またはα、β″−ビス(MPG)
またはその誘導体(たとえば、アンモニウム塩、有機ア
ミン塩などの塩、アミドまたはエステルなどの誘導体)
を電気化学的に還元することによつて、高純度のMPG
製品を収率良く、低廉に、極めて容易に製造できる事実
を見い出し、本発明を完成した。本発明を更に詳しく説
明すると、本発明の反応は、α、β″−またはα、β″
−ビス(MPG)あるいはそのアンモニウム塩、トリエ
チルアミン、ジエチルアミンなどの有機アミン塩、ナト
リウム、カリウムなどのアノレカリ金属塩またはカノレ
シウムなどのアルカリ土類金属塩などの塩の形で電解還
元するか、あるいはα、β″−またはα、β″−ビス(
MPG)のアミド(メチル、エチルなどのアルキルの置
換アミドも含む)または、そのエステル(メチル、エチ
ルなどの低級アルキルも含む)の形で電解還元する。
As a result, α,β″- or α,β″-bis(MPG)
or derivatives thereof (e.g. salts such as ammonium salts, organic amine salts, derivatives such as amides or esters)
High purity MPG is produced by electrochemically reducing
The present invention was completed based on the discovery that the product can be produced extremely easily with good yield and at low cost. To explain the present invention in more detail, the reaction of the present invention may include α, β″- or α, β″
- electrolytic reduction in the form of salts such as bis(MPG) or its ammonium salts, organic amine salts such as triethylamine and diethylamine, anolekali metal salts such as sodium and potassium salts, or alkaline earth metal salts such as canolecium, or α, β″- or α, β″-bis (
MPG) in the form of amides (including substituted amides of alkyls such as methyl and ethyl) or esters thereof (including lower alkyls such as methyl and ethyl).

この反応は通常の電解還元槽を用いて行なうことができ
る。たとえば、陽極および陰極を備えた電解槽は隔膜を
備えていてもいなくてもよいが、イオン交換膜等の隔膜
をもつたものが好ましい。電極としては通常用いられる
ものが使用可能であるが、電解液の液性によつて電極の
材質を選ぶ必要がある。一般には電極として白金、銀、
水銀、鉛、過酸化塩、炭素、亜鉛、ニツケル、銅、チタ
ン、パラジウムなどが用いることができる。該電解槽は
機械的にかきまぜるか、またはポンプなどによつて反応
液を循環できるようにしてすることが好ましい。電解還
元における電圧、電流密度、あるいは温度はとくに制限
はないが、電解電圧は0.5〜50V、好ましくは1〜
10Vで、電流密度は50A/Dm2以下で、0.01
A/Dm2の少量でもよい。一般には0.02〜25A
/Dm・の電流密度を使用するのが好ましい。電解還元
の温度は80℃以下で行なえるが−10℃でもよい。適
当な温度としては0〜55℃である。被還元物の溶媒と
しては通常の電解質を含む溶媒であればよい。
This reaction can be carried out using a conventional electrolytic reduction tank. For example, an electrolytic cell equipped with an anode and a cathode may or may not have a diaphragm, but it is preferable to have a diaphragm such as an ion exchange membrane. Although commonly used electrodes can be used, the material of the electrodes must be selected depending on the liquid properties of the electrolyte. Generally, platinum, silver,
Mercury, lead, peroxide salt, carbon, zinc, nickel, copper, titanium, palladium, etc. can be used. It is preferable that the electrolytic cell be configured so that the reaction solution can be circulated by mechanical stirring or by a pump or the like. There are no particular restrictions on the voltage, current density, or temperature in electrolytic reduction, but the electrolytic voltage is 0.5 to 50 V, preferably 1 to 50 V.
At 10V, the current density is 50A/Dm2 or less, 0.01
A small amount of A/Dm2 may be sufficient. Generally 0.02~25A
Preferably, a current density of /Dm. is used. The electrolytic reduction can be carried out at a temperature of 80°C or lower, but may be -10°C. A suitable temperature is 0 to 55°C. As the solvent for the reductant, any solvent containing a normal electrolyte may be used.

水を用いるのが最も?済的で好ましいが被還元物の溶解
性を高めるために他の有機溶媒を添加することもできる
。たとえば、メタノール、エタノール、ジオキサン、テ
トラヒドロフラン、N.N−ジメチルホルムアミド、ス
ルホランなどが用い得る。被還元物の濃度は、溶解度の
許す範囲で高濃度の方が経済的であり、60重量%(対
溶媒当り)でも使用できるが、1重量%の低濃度でも良
い。
Is it best to use water? Other organic solvents can also be added in order to increase the solubility of the reductant, although this is preferable for economical reasons. For example, methanol, ethanol, dioxane, tetrahydrofuran, N. N-dimethylformamide, sulfolane, etc. can be used. As for the concentration of the reductant, it is more economical to have a high concentration within the range allowed by the solubility, and a concentration as low as 1% by weight may be used, although a concentration of 60% by weight (based on the solvent) can be used.

一般的には10〜40重量%が好ましい。被還元物の溶
解度を高めるために有機溶媒を添加する場合は、被還元
物および還元物の水に対する溶解度が高いところから、
添加有機溶媒量は水溶媒当り60重量%以下で十分であ
る。該電解反応に用いる通常の電解質には、水酸化ナト
リウム、酢酸ナトリウム、リン酸ナトリウム、炭酸カリ
ウム、水酸化アンモニウム、塩酸、硫酸ナトリウムなど
が含まれる。
Generally, 10 to 40% by weight is preferred. When adding an organic solvent to increase the solubility of the reductant, the solubility of the reductant and the reduced product in water is high.
It is sufficient that the amount of the organic solvent added is 60% by weight or less based on the water solvent. Common electrolytes used in the electrolytic reaction include sodium hydroxide, sodium acetate, sodium phosphate, potassium carbonate, ammonium hydroxide, hydrochloric acid, sodium sulfate, and the like.

一般的には、電解液当り電解質として0.1〜15重量
%で利用される。電解反応は少なくとも0.5時間、ま
たはそれ以上で実施できるが、一般的には1〜15時間
で実施するのが好ましい。本発明によつて生成したMP
Gおよびその誘導体を含有する反応液から、目的物の取
得は常法によつて、容易に実施できる。
Generally, it is used in an amount of 0.1 to 15% by weight as an electrolyte per electrolyte solution. The electrolytic reaction can be carried out for at least 0.5 hours or more, but is generally preferably carried out for 1 to 15 hours. MP produced according to the present invention
The desired product can be easily obtained from a reaction solution containing G and its derivatives by a conventional method.

たとえば、単に鉱酸を添加するとか、反応液中の電解質
を電気透析あるいは、イオン交換樹脂を用いて除去した
のち、溶液を濃縮乾固して、有機溶媒、たとえばエタノ
ール〜酢酸エチルなどから再結して目的物を得ることが
できる。本反応に用いるα、β″−またはα、β″−ビ
ス(MPG)およびその誘導体は既知物質であり、たと
えば、以下に示す如き方法で工業的に容易に製造するこ
とができる。
For example, by simply adding a mineral acid, or by removing the electrolyte in the reaction solution using electrodialysis or an ion exchange resin, the solution is concentrated to dryness and then reconstituted from an organic solvent such as ethanol to ethyl acetate. You can get what you want. α, β″- or α, β″-bis (MPG) and its derivatives used in this reaction are known substances, and can be easily produced industrially, for example, by the method shown below.

即ち、たとえば、工業的に容易に入手できるビス(α−
またはβ−メルカプトプロピオン酸)をハロゲン化試薬
、たとえば、塩化チオニルなどで酸ハロゲニドとし、こ
れにグリシンまたは、グリシンのエステルを中・I生ま
たは、弱塩基性を保持しながら加えて、ビス(αまたは
β−MPG)またはそのエステルとする。このものを精
製することなく電解還元反応に供することができる。精
製する場合は、塩酸酸性にして分離してくるビス(MP
G)およびその誘導体を水または、適当な有機溶媒(た
とえば酢酸エチル)で再結すれば容易に精製できる。ま
た、アミド誘導体を得る場合は、ビス (MPG)のエステルを常法により、アンモニアで処理
すればよい。
That is, for example, bis(α-
or β-mercaptopropionic acid) is converted into an acid halide with a halogenating reagent such as thionyl chloride, glycine or an ester of glycine is added thereto while maintaining the medium- or weakly basicity. or β-MPG) or its ester. This product can be subjected to an electrolytic reduction reaction without being purified. For purification, bis(MP) is acidified with hydrochloric acid and separated.
G) and its derivatives can be easily purified by recrystallization with water or a suitable organic solvent (eg, ethyl acetate). Moreover, when obtaining an amide derivative, the ester of bis(MPG) may be treated with ammonia by a conventional method.

以下実施例により、更に詳しく本発明を説明する。The present invention will be explained in more detail with reference to Examples below.

実施例−1 α、β″−ジチオビスプロピオニルグリシン〔α、β″
−ビス(MPG)〕 (Mpl98℃)50gを濃アン
モニア水50m1に溶解し、水で250m1とし、これ
を陰極液とする。
Example-1 α, β″-dithiobispropionylglycine [α, β″
-Bis(MPG)] (Mpl 98°C) 50g was dissolved in 50ml of concentrated ammonia water, the volume was made up to 250ml with water, and this was used as a catholyte.

一方、陽極液は10%硫酸を使用する。電解槽は陰極に
銀板(1/2dm2)と陽極に炭素板(1/2dm・)
を用いる隔膜に陽イオン交換膜を使用し、陰極液および
陽極液はそれぞれポンプで1.41/Hrの速度で各極
槽を循環させる。直流電圧3.5V〜4.2V、電流密
度6〜7A/Dm2をもつて、20〜25℃で電解還元
する。電流効率約70%、還元時間6.5hrをもつて
、α、β″−ビス(MPG)は還元される。電解終了後
、陰極液を取り出し、減圧下に150m1まで濃縮し、
この残査を強酸性陽イオン交換樹脂(H型)220m1
に通塔し、水300m1で押出し、溶出液を濃縮乾固す
れば、白色の粉末状β−MPGを48.5gを得る(収
率97%)。
On the other hand, 10% sulfuric acid is used as the anolyte. The electrolytic cell has a silver plate (1/2 dm2) on the cathode and a carbon plate (1/2 dm) on the anode.
A cation exchange membrane is used as the diaphragm, and the catholyte and anolyte are each circulated through each electrode cell at a rate of 1.41/Hr using a pump. Electrolytic reduction is carried out at 20 to 25° C. with a DC voltage of 3.5 V to 4.2 V and a current density of 6 to 7 A/Dm2. α, β″-bis (MPG) is reduced with a current efficiency of about 70% and a reduction time of 6.5 hr. After the electrolysis is completed, the catholyte is taken out and concentrated to 150 ml under reduced pressure.
220ml of strongly acidic cation exchange resin (H type)
The mixture was passed through a column, extruded with 300 ml of water, and the eluate was concentrated to dryness to obtain 48.5 g of white powdery β-MPG (yield 97%).

このものをイソプロピルアルコールと石油エーテルから
再結すればMplOl.5℃の精製β−MPGを得る。
実施例−2α、β″−ジチオビスプロピオニルグリシン
エチルエステル〔α、β″ビス(MPG)〕50gを1
N一塩酸200m1にけん濁し、90℃で3hr加水分
解する。
If this product is reconstituted from isopropyl alcohol and petroleum ether, MplOl. Obtain purified β-MPG at 5°C.
Example-2 50g of α,β″-dithiobispropionylglycine ethyl ester [α,β″bis(MPG)]
Suspend in 200ml of N-hydrochloric acid and hydrolyze at 90°C for 3 hours.

得られた均一溶液を陰極液とする他は実施例一1と同様
の方法で還元を行なう。電解還元終了液を取り出し、こ
の液を弱塩基性陰イオン交換樹脂(0H型)250m1
に通塔し、水300m1で押出す。
Reduction was carried out in the same manner as in Example 11, except that the obtained homogeneous solution was used as the catholyte. Take out the electrolytically reduced solution and add 250ml of weakly basic anion exchange resin (0H type) to this solution.
and extrude with 300ml of water.

濃縮液を濃縮乾固すると白色結晶として、α−MPG4
l.5gを得る。 (収率97.4%)。このものを酢
酸エチルエステルから再結すればMp96.5℃の精製
α−MPGを得る。実施例−3実施例−1の方法中、α
、β″−ビス(MPG)の代りにα、β″ジチオビスプ
ロピオニルグリシンアミド50gを用いる他は同条件で
電解還元し、電解終了液を濃縮乾固すれば、白色粉末と
して粗α−メノレカプトプロピオニノレグリシンアミド
を49gを得る (収率98%)。
When the concentrated solution is concentrated to dryness, α-MPG4 is obtained as white crystals.
l. Obtain 5g. (Yield 97.4%). If this product is recrystallized from ethyl acetate, purified α-MPG with an Mp of 96.5°C is obtained. Example-3 In the method of Example-1, α
, β″-bis(MPG) was replaced with α,β″-dithiobispropionylglycinamide (50 g) under the same conditions, and the electrolyzed solution was concentrated to dryness to obtain crude α-menole as a white powder. Obtain 49 g of captopropioninoleglycinamide (yield 98%).

Claims (1)

【特許請求の範囲】[Claims] 1 α:β′−またはβ,β′−ジチオビスプロピオニ
ルグリシンまたはその誘導体を電解環元することを特徴
とするα−またはβ−メルカプトプロピオニルグリシン
またはその誘導体の製造法。
1. A method for producing α- or β-mercaptopropionylglycine or a derivative thereof, which comprises electrolytically cyclizing α: β′- or β,β′-dithiobispropionylglycine or a derivative thereof.
JP51056055A 1976-05-18 1976-05-18 Method for producing mercaptopropionylglycine and its derivatives Expired JPS5952234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51056055A JPS5952234B2 (en) 1976-05-18 1976-05-18 Method for producing mercaptopropionylglycine and its derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51056055A JPS5952234B2 (en) 1976-05-18 1976-05-18 Method for producing mercaptopropionylglycine and its derivatives

Publications (2)

Publication Number Publication Date
JPS52139017A JPS52139017A (en) 1977-11-19
JPS5952234B2 true JPS5952234B2 (en) 1984-12-18

Family

ID=13016389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51056055A Expired JPS5952234B2 (en) 1976-05-18 1976-05-18 Method for producing mercaptopropionylglycine and its derivatives

Country Status (1)

Country Link
JP (1) JPS5952234B2 (en)

Also Published As

Publication number Publication date
JPS52139017A (en) 1977-11-19

Similar Documents

Publication Publication Date Title
US4938854A (en) Method for purifying quaternary ammonium hydroxides
CN110344077A (en) A method of by l-cysteine electrochemistry formated n-acetyl-L-cysteine
US6475370B2 (en) Process for the production of 2-hydroxy-4-methylmercaptobutyric acid
JP2000509705A (en) Method for electrochemical synthesis of N-acetyl-cysteine from cystine
JPS5952234B2 (en) Method for producing mercaptopropionylglycine and its derivatives
US5106463A (en) High yield methods for electrochemical preparation of cysteine and analogues
JPS60243293A (en) Manufacture of m-hydroxybenzyl alcohol
EP0436055A1 (en) High yield methods for electrochemical preparation of cysteine and analogues
JPS6237386A (en) Electric synthesis of ketone
JP3478893B2 (en) Method for producing high-purity choline
SU1664789A1 (en) Method for obtaining p-aminobenzoic acid
EP0778360A1 (en) Process for producing by electrochemical methods thioethers for pharmaceutical use
US3431186A (en) Electrolytic process for the cleavage of thiol esters of aromatic carboxylic acids
US4718994A (en) Method for preparing hydroxy compounds of aromatic and heteroaromatic series
US4387245A (en) Preparation of diacetoneketogulonic acid by oxidation of diacetonesorbose
US2916426A (en) Electrolytic production of unsymmetrical dimethylhydrazine
JP3455942B2 (en) Method for producing metal alkoxide by electrolytic method
US4035252A (en) Process for producing 2-aminomethyl-1-ethylpyrrolidine
US3629080A (en) Electrochemical mercuration or organic compounds
JPS62135455A (en) Purification of s-carboxymethyl-l-cysteine
SU1558997A1 (en) Method of obtaining hydrogen sulfide
Caram et al. On the anodic polarization of limonene in Br− containing acetonitrile solutions on platinum electrodes
JPS6018755B2 (en) Method for producing benzylic acid derivatives
SU1456427A1 (en) Method of producing 3-morpholine propylamine
EP0209611A1 (en) Electrolytic cell comprising stainless steel anode and a process for preparing polychloropicolinate anions