JPS5951684B2 - Manufacturing method of plastic insulated cable - Google Patents

Manufacturing method of plastic insulated cable

Info

Publication number
JPS5951684B2
JPS5951684B2 JP7853777A JP7853777A JPS5951684B2 JP S5951684 B2 JPS5951684 B2 JP S5951684B2 JP 7853777 A JP7853777 A JP 7853777A JP 7853777 A JP7853777 A JP 7853777A JP S5951684 B2 JPS5951684 B2 JP S5951684B2
Authority
JP
Japan
Prior art keywords
plastic
conductor
die
cooling
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7853777A
Other languages
Japanese (ja)
Other versions
JPS5412489A (en
Inventor
正明 大辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichi Nippon Cables Ltd
Original Assignee
Dainichi Nippon Cables Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichi Nippon Cables Ltd filed Critical Dainichi Nippon Cables Ltd
Priority to JP7853777A priority Critical patent/JPS5951684B2/en
Publication of JPS5412489A publication Critical patent/JPS5412489A/en
Publication of JPS5951684B2 publication Critical patent/JPS5951684B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【発明の詳細な説明】 本発明は、架橋プラスチック絶縁ケーブル特に、架橋ポ
リエチレンケーブルの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing crosslinked plastic insulated cables, and in particular crosslinked polyethylene cables.

架橋ポリエチレンケーブルを製造する場合、第3図に示
すように、押出機のヘッド1に長ランドダイ2を、該ダ
イ2に冷却筒3をそれぞれ連結し、押出機1により導体
a上に押出被覆された架橋可能なポリエチレン被覆層b
’を、長ランドダイ2の区間において架橋し、長ランド
ダイ2から出てくる架橋ポリエチレン被覆導体bを、冷
却筒3内の高圧冷却水で冷却することがある。
When manufacturing a cross-linked polyethylene cable, as shown in FIG. crosslinkable polyethylene coating layer b
' is crosslinked in the section of the long land die 2, and the crosslinked polyethylene coated conductor b coming out of the long land die 2 may be cooled with high pressure cooling water in the cooling cylinder 3.

この冷却筒には、長さ数10mの長尺冷却筒が使用され
、被覆導体は、冷却筒内面の底部に接触されつつ移動さ
れる。上記において、長ランドダイ2の先端部内のプラ
スチックは架橋されているから、ダイ2内の未架橋プラ
スチックの圧力がこの架橋部分で受圧され、しかも該架
橋部分と導体とは、実質上結着されている。
A long cooling cylinder with a length of several tens of meters is used for this cooling cylinder, and the coated conductor is moved while being in contact with the bottom of the inner surface of the cooling cylinder. In the above, since the plastic in the tip of the long land die 2 is crosslinked, the pressure of the uncrosslinked plastic in the die 2 is received by this bridged portion, and the bridged portion and the conductor are substantially bonded. There is.

従つて、導体外径をd、長ランドダイ2の内径をDoと
すると導体にはプラスチックの押出圧力Poによる推進
力Foが作用している。F0=π/4(Do2−d2)
Po更に、長ラウンドダイを出た直後の架橋プラスチッ
ク被覆層は、まだ冷却固化されておらず、加圧冷却水の
圧力が伝播され得る状相である。
Therefore, if the outer diameter of the conductor is d and the inner diameter of the long land die 2 is Do, a driving force Fo due to the plastic extrusion pressure Po is acting on the conductor. F0=π/4(Do2-d2)
Furthermore, the crosslinked plastic coating layer immediately after exiting the long round die has not yet been cooled and solidified, and is in a state where the pressure of pressurized cooling water can be propagated.

従つて、冷却筒内の完全に冷却固化された被覆層部分に
は、その見かけ上の端面に、上記の不完全乃至未冷却固
化部分を介して冷却水の圧力が伝播される。この面圧力
F、は、冷却水圧力をPhプラスチック絶縁層の外径を
D、とするとF、■π/4(D、”−d”)P、 で与えられる。
Therefore, the pressure of the cooling water is propagated to the apparent end surface of the completely cooled and solidified coating layer portion in the cooling cylinder via the incompletely or uncooled solidified portion. This surface pressure F is given by F, ■π/4(D, "-d")P, where the cooling water pressure is Ph and the outer diameter of the plastic insulating layer is D.

更に、被覆導体と冷却筒との接触長さをL、この接触動
摩擦係数をμo、被覆導体単位長さ当りの冷却水中重量
をWoとすれば、被覆導体に作用する摩擦力F。
Further, if the contact length between the coated conductor and the cooling tube is L, the coefficient of dynamic friction of this contact is μo, and the weight of the cooling water per unit length of the coated conductor is Wo, then the friction force acting on the coated conductor is F.

はF2■LμoWo ・である。is F2■LμoWo ・It is.

第3図において、押出機に供給される、導体aに作用す
るバックテンションをTo、被覆導体bの引張り力をT
lとすると、Ti+F1+F0=F2+T0 であり、プラスチック被覆導体は Ti■F2+To−(F1+Fo) 1 の引張り力で゛牽引される。
In Fig. 3, the back tension acting on conductor a supplied to the extruder is To, and the tensile force of coated conductor b is T.
1, Ti+F1+F0=F2+T0, and the plastic-coated conductor is pulled by the tensile force of Ti*F2+To-(F1+Fo)1.

ところで、上記の製造の初期においては、冷却筒は無加
圧状態とされ、プラスチツク被覆導体は上記プラスチツ
タの押出圧力による推進力FOで長ランドダイから出現
され、その出現端に、冷却筒内に予め引通されたリード
ワイヤーが連結され、以後、このリードワイヤーによる
牽引と上記の推進力とによつて、プラスチツク被覆導体
の先端が冷却筒の出川こまで移動され、プラスチツク被
覆導体の先端部が冷却筒の出口のシールパツキングに挿
通される。
By the way, in the early stage of the above manufacturing, the cooling tube is in a non-pressurized state, and the plastic-coated conductor is emerged from the long land die by the driving force FO due to the extrusion pressure of the plastic tube, and at the emerging end, it is placed in the cooling tube in advance. The lead wires are connected, and the tip of the plastic-coated conductor is moved to the exit of the cooling cylinder by the pull of the lead wire and the above-mentioned propulsive force, and the tip of the plastic-coated conductor is cooled. It is inserted into the seal packing at the outlet of the cylinder.

しかしながら、従来においては、初期に製造された、冷
却筒内に延在せる被覆導体の被覆層が、ダイ側に至るほ
ど押し太りになることが避けられなかつた。
However, in the past, it was unavoidable that the coating layer of the coated conductor that was manufactured in the early stage and extending inside the cooling cylinder became thicker as it reached the die side.

この押し太りの原因は、ダイの先端部に出現されたプラ
スチツク被覆導体の先端部が冷却筒内の底面に接すると
、この接触摩擦力のために、ダイ内を、通過する導体の
線速が低下されることによる。而して、被覆導体と冷却
筒との接触長さが増大する程、すなわち、被覆導体が冷
却筒内を進行していく程、上記の摩擦力が増加していく
から、ダイから出現されてくる被覆導体の被覆層外径は
、ますます増大されていく。上記した製造初期の被覆導
体部分は、加圧冷却が施されておらず、被覆層の絶縁特
性は、劣弱である。
The reason for this thickening is that when the tip of the plastic-coated conductor that appears at the tip of the die touches the bottom of the cooling cylinder, the linear velocity of the conductor passing through the die decreases due to the frictional force of this contact. By being lowered. Therefore, as the contact length between the coated conductor and the cooling tube increases, that is, as the coated conductor advances inside the cooling tube, the above frictional force increases. The outer diameter of the coating layer of the coated conductor is increasing more and more. The above-mentioned coated conductor portion at the initial stage of manufacture has not been subjected to pressure cooling, and the insulation properties of the coating layer are poor.

従つて、この被覆導体部分は最終的には除去され、ケー
ブルとしては使用されない。か・る面からすれば、上記
した製造初期での被覆導体の被覆層の押太りを、問題視
する必要はことさらないしかしながら、冷却筒内に加圧
冷却水を圧入して定常運転を行う際、上記の押太りがあ
る場合は、定常運転の初期において、冷却筒出口のシー
ルパツキンを通過する被覆導体の被覆層外径が絶えず増
大していくから、冷却筒出口のシールを確実に保証し難
いといつた不都合が避けられない。
Therefore, this coated conductor portion is eventually removed and is not used as a cable. From that point of view, there is no need to consider the above-mentioned thickening of the coating layer of the coated conductor at the initial stage of production as a problem. However, when pressurized cooling water is injected into the cooling cylinder for steady operation, If there is the above-mentioned thickening, the outer diameter of the sheathing layer of the sheathed conductor passing through the seal packing at the outlet of the cooling cylinder will constantly increase at the beginning of steady operation, so the seal at the outlet of the cooling cylinder cannot be reliably guaranteed. The inconveniences mentioned above are unavoidable.

か・る状態では、冷却筒内の冷却水圧力を所定の圧力に
保持することが難かしく、定常運転の初期に製造される
被覆導体の品質への悪影響が懸念される。上記したよう
に、長ランドダイ、加圧冷却筒使用のプラスチツタ被覆
導体の製造においては、その製造法の特殊性のために、
上記した初期製造時における被覆導体の被覆層外径を厳
密に管理する必要がある。
In such a state, it is difficult to maintain the cooling water pressure in the cooling cylinder at a predetermined pressure, and there is concern that the quality of the coated conductor manufactured at the beginning of steady operation may be adversely affected. As mentioned above, in the production of plastic coated conductors using long land dies and pressurized cooling tubes, due to the special manufacturing method,
It is necessary to strictly control the outer diameter of the coating layer of the coated conductor at the time of initial manufacturing.

本発明に係るプラスチツク絶縁ケーブルの製造法は、か
・る点に鑑みて発明されたものである。
The method of manufacturing a plastic insulated cable according to the present invention was invented in view of the above points.

すなわち、本発明に係るプラスチツタ絶縁ケーブルの製
造方法は、押出機に長ランドダイを、該長ランドダイに
は冷却筒をそれぞれ連結し、押出機内で導体上に被覆さ
れた架橋可能なプラスチツタ被覆層を長ランドダイ内に
おいて架橋し、該長ランドダイから出てくる架橋プラス
チツク被覆導体が冷却筒を通過する間に、架橋プラスチ
ツダ被ノ覆層を冷却筒内の加圧冷却水で冷却してケーブ
ルを製造する場合の初期において、冷却筒内を無加圧と
した状態で、長ランドダイから出てくるプラスチツク被
覆導体の先端部を冷却筒の出口にまで移動させる間、長
ラウンドダイから出てくるプラスチツク被覆導体と冷却
筒底面との接触長さの増加による摩擦力の増大に相応し
て導体引張り力を増強することを特徴とする方法である
。以下、図面により本発明を説明する。
That is, in the method for manufacturing a plastic insulated cable according to the present invention, a long land die is connected to an extruder, a cooling cylinder is connected to the long land die, and a crosslinkable plastic ivy coating layer coated on a conductor is lengthened in the extruder. When manufacturing a cable by cross-linking in a land die and cooling the cross-linked plastic covering layer with pressurized cooling water in the cooling cylinder while the cross-linked plastic-coated conductor coming out of the long land die passes through the cooling cylinder. At the beginning of the process, while the tip of the plastic-covered conductor coming out of the long round die is moved to the outlet of the cooling tube with no pressure inside the cooling tube, the plastic-covered conductor coming out of the long round die and This method is characterized in that the tensile force of the conductor is increased in accordance with the increase in the frictional force due to the increase in the length of contact with the bottom surface of the cooling cylinder. The present invention will be explained below with reference to the drawings.

第1図乃至第3図において、1は押出機のクロ゛スヘツ
ド、2はクロスヘツド1に連結された長ラウンドダイ、
3は長ラウンドダイ2に連結された冷却筒である。
1 to 3, 1 is the crosshead of the extruder, 2 is a long round die connected to the crosshead 1,
3 is a cooling cylinder connected to the long round die 2.

41は送り出機、42は引取り機である。41 is a sending machine, and 42 is a taking machine.

51は導体aのバツタテンシヨンを調整するための重錘
、52は被覆導体bの牽引張力を調整するための重錘で
ある。
51 is a weight for adjusting the bouncing tension of the conductor a, and 52 is a weight for adjusting the pulling tension of the covered conductor b.

第1図は、導体aがプラスチツクの押出圧力による推進
力FOで長ランドダイ2内を移動しつつある状態を示し
、この移動中、プラスチツク被覆層b″はダイ2により
架橋される。
FIG. 1 shows a state in which the conductor a is being moved within the long land die 2 by the driving force FO due to the extrusion pressure of the plastic, and during this movement, the plastic coating layer b'' is crosslinked by the die 2.

推進力FOは、長ランドダイ2の内径をDO、導体外径
をd、プラスチツクの押出圧力をPOとすると、既述し
た通り、FO=π/4(DO−D2)PO である。
As mentioned above, the driving force FO is FO=π/4(DO-D2)PO, where DO is the inner diameter of the long land die 2, d is the outer diameter of the conductor, and PO is the extrusion pressure of the plastic.

この推進力と、導体に作用するバツクテンシヨンTOと
は、平衡されている。すなわち、上記した重錘51によ
る導体aの弛み量が、導体張力TOを上記推進力FOに
等しくするように設定されている。第1図において、冷
却筒3と長ランドダイ2とは分離されている。
This driving force and the back tension TO acting on the conductor are balanced. That is, the amount of slack in the conductor a caused by the weight 51 is set so that the conductor tension TO is equal to the propulsive force FO. In FIG. 1, the cooling tube 3 and the long land die 2 are separated.

また、冷却筒3にはリードワイヤーRが既に挿通されて
いる。上記したプラスチツク被覆導体がダイ2から出現
されると、その先端にリードワイヤーRが連結され、冷
却筒3とダイ2とが連結される。
Further, the lead wire R has already been inserted into the cooling cylinder 3. When the plastic-coated conductor described above emerges from the die 2, a lead wire R is connected to its tip, and the cooling tube 3 and the die 2 are connected.

その後は、第2図に示すように、被覆導体bが冷却筒3
内の底面に接触されつつリードワイヤーRの牽引により
移動されていく。
Thereafter, as shown in FIG. 2, the coated conductor b is
It is moved by being pulled by the lead wire R while being in contact with the inner bottom surface.

本発明は、このリードワイヤーRの牽引張力を制御して
、既述した被覆導体bの被覆層の押太りを防止するもの
である。
The present invention controls the pulling tension of the lead wire R to prevent the coating layer of the covered conductor b from becoming thicker as described above.

第2図において、被覆導体bが冷却筒3内を進行するに
従つて、冷却筒内底面との接触長さXが増大する。
In FIG. 2, as the coated conductor b advances inside the cooling cylinder 3, the contact length X with the bottom surface of the cooling cylinder increases.

この摩擦力は、被覆導体単位長さ当りの重量をWO’、
摩擦係数をμo’とすると、μo’WO’xである。而
して、リードワイヤーRの牽引張力は理想的には、その
張力を上記の摩擦力に等しくするように、重錘52によ
るリードワイヤーRの弛み量の制御に基づいて調整され
る。
This frictional force is expressed as the weight per unit length of the coated conductor, WO',
Letting the coefficient of friction be μo', it is μo'WO'x. Ideally, the pulling tension of the lead wire R is adjusted based on control of the slack amount of the lead wire R by the weight 52 so that the tension is equal to the above-mentioned frictional force.

従つて、上記摩擦力は、リードワイヤーRの牽引張力に
よつて打ち消され、ダイ2内を通過する導体aには、何
らの移動拘束力も加わらない。このため、ダイ2内の導
体aは、プラスチツクの押出圧力に基ずく推進力によつ
てのみ移動され、ダイ2から出現してくる被覆導体の被
覆層外径は、第1図の場合と同一の一定外径となる。勿
論、ダイ2内を通過する導体aに移動抵抗力が作用して
も、その抵抗力が上記被覆層の内径変動を許容値以内に
納め得るものであれば問題はな.い。
Therefore, the above-mentioned frictional force is canceled by the pulling tension of the lead wire R, and no movement restraining force is applied to the conductor a passing through the die 2. Therefore, the conductor a inside the die 2 is moved only by the driving force based on the extrusion pressure of the plastic, and the outer diameter of the coating layer of the coated conductor emerging from the die 2 is the same as in the case of Fig. 1. has a constant outer diameter. Of course, even if a movement resistance force acts on the conductor a passing through the inside of the die 2, there is no problem as long as the resistance force can keep the variation in the inner diameter of the coating layer within the permissible value. stomach.

従つて、上記リードワイヤーRの撓み量の調整も、ある
程度の余裕度をもつて、行うことができる。リードワイ
ヤーRの弛みとリードワイヤーRの張力T,との間には
、弛みの最大デイップをλ, ・弛みのスパンをl、重
錘52の重量をQとすると、の関係があり、被覆等導体
bが冷却筒出口のパツキング31を通過するまでの間、
上記した摩擦力を打ち消すように、第2式に基づくデイ
ップの調整により、リードワイヤーRの張力を増大して
いく。
Therefore, the amount of deflection of the lead wire R can be adjusted with a certain degree of margin. There is a relationship between the slack of the lead wire R and the tension T of the lead wire R, where the maximum dip of the slack is λ, the span of the slack is l, and the weight of the weight 52 is Q. Until the conductor b passes through the packing 31 at the outlet of the cooling cylinder,
In order to cancel the above-described frictional force, the tension of the lead wire R is increased by adjusting the dip based on the second equation.

上記のようにリードワイヤーRの張力を調整することに
よつて、初期に押出された、冷却筒3内に延在せる被覆
導体bの被覆層外径は一定にできる。
By adjusting the tension of the lead wire R as described above, the outer diameter of the coating layer of the initially extruded coated conductor b extending into the cooling cylinder 3 can be made constant.

被覆導体bの先端が冷却筒3の出口を通過すると、冷却
筒3内に冷却水が圧入され、以後は、第3図に示すよう
に、定常運転が行なわれる。
When the tip of the coated conductor b passes through the outlet of the cooling cylinder 3, cooling water is forced into the cooling cylinder 3, and from then on, steady operation is performed as shown in FIG.

この場合、第2図における冷却筒3内の被覆導体bの被
覆層外径は一定であるから、この被覆導体bが冷却筒出
口パツキング31を通過する際のパツキング31のシー
ル性は一定に保持され得、冷却水の漏れの変動の懸念は
ない。即ち、冷却水圧力は極めて安定し、安定した牽引
力F,が得られる。なお、定常運転時の被覆導体の牽引
については、第1式を満すように、デイツプ^1が設定
される。本発明に係るプラスチツク絶縁ケーブルの製造
方法によれば、上述した通り、長ランドダイ、加圧冷却
筒を使用する被覆導体の製造方法において、定常運転の
初期時でも、加圧冷却水による加圧冷却を、水漏れ変動
の懸念なく良好に行うことができる。
In this case, since the outer diameter of the coating layer of the coated conductor b in the cooling cylinder 3 in FIG. There is no concern about fluctuations in cooling water leakage. That is, the cooling water pressure is extremely stable, and a stable traction force F can be obtained. Regarding the traction of the coated conductor during steady operation, the dip^1 is set so as to satisfy the first equation. According to the method for manufacturing a plastic insulated cable according to the present invention, as described above, in the method for manufacturing a coated conductor using a long land die and a pressurized cooling cylinder, pressurized cooling using pressurized cooling water is possible even at the initial stage of steady operation. This can be done without worrying about fluctuations in water leakage.

従つて同上製造方法の作業性の向上に極めて有用である
Therefore, it is extremely useful for improving the workability of the above manufacturing method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図並びに第3図は本発明を示すための説明
図であり、第1図並びに第2図は初期製造時を第3図は
、装置が定常運転であるときの製造時のそれぞれの状態
を示している。 図において、1は押出機のへツド、2はダイ、3は冷却
筒、Rはリードワイヤー、52はデイツプ^,で牽引張
力を調整するための重錘である。
FIGS. 1, 2, and 3 are explanatory diagrams for showing the present invention. FIGS. 1 and 2 are during initial manufacturing, and FIG. 3 is during manufacturing when the device is in steady operation. It shows the status of each. In the figure, 1 is a head of the extruder, 2 is a die, 3 is a cooling cylinder, R is a lead wire, and 52 is a dip for adjusting the pulling tension.

Claims (1)

【特許請求の範囲】[Claims] 1 押出機に長ランドダイを、該長ランドダイには冷却
筒をそれぞれ連結し、押出機内で導体上に被覆された架
橋可能なプラスチック被覆層を長ランドダイ内において
架橋し、該長ランドダイから出てくる架橋プラスチック
被覆導体が冷却筒を通過する間に、架橋プラスチック被
覆層を冷却筒内の加圧冷却水で冷却してケーブルを製造
する場合の初期において、冷却筒内を無加圧とした状態
で、長ランドダイから出てくるプラスチック被覆導体の
先端部を冷却筒の出口にまで移動させる間、長ランドダ
イから出てくるプラスチック被覆導体と冷却筒底面との
接触長さの増加による摩擦力の増大に相応して導体引張
り力を増強することを特徴とプラスチック絶縁ケーブル
の製造方法。
1. A long land die is connected to the extruder, and a cooling tube is connected to the long land die, and the crosslinkable plastic coating layer coated on the conductor is crosslinked in the long land die in the extruder, and the material comes out from the long land die. While the cross-linked plastic coated conductor passes through the cooling tube, the cross-linked plastic coating layer is cooled with pressurized cooling water inside the cooling tube.In the initial stage of manufacturing a cable, the inside of the cooling tube is left unpressurized. While the tip of the plastic-coated conductor coming out of the long land die is moved to the outlet of the cooling cylinder, the frictional force increases due to the increased contact length between the plastic-coated conductor coming out of the long land die and the bottom of the cooling cylinder. A method of manufacturing a plastic insulated cable, characterized by correspondingly increasing the conductor tensile force.
JP7853777A 1977-06-30 1977-06-30 Manufacturing method of plastic insulated cable Expired JPS5951684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7853777A JPS5951684B2 (en) 1977-06-30 1977-06-30 Manufacturing method of plastic insulated cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7853777A JPS5951684B2 (en) 1977-06-30 1977-06-30 Manufacturing method of plastic insulated cable

Publications (2)

Publication Number Publication Date
JPS5412489A JPS5412489A (en) 1979-01-30
JPS5951684B2 true JPS5951684B2 (en) 1984-12-15

Family

ID=13664650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7853777A Expired JPS5951684B2 (en) 1977-06-30 1977-06-30 Manufacturing method of plastic insulated cable

Country Status (1)

Country Link
JP (1) JPS5951684B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60264389A (en) * 1984-06-14 1985-12-27 Agency Of Ind Science & Technol Production of crystals using laser
JPS61197493A (en) * 1985-02-26 1986-09-01 Kyozo Kaneko Method of crystallizing metallic oxide

Also Published As

Publication number Publication date
JPS5412489A (en) 1979-01-30

Similar Documents

Publication Publication Date Title
US6188822B1 (en) Self-supporting fiber optic cable and an apparatus and methods for making the same
US4600268A (en) Cable for telecommunications purposes and a method of manufacturing the same
US4156624A (en) Manufacture of optical fibre cables with simultaneous laying
JPH0235405B2 (en)
US3944459A (en) Method and apparatus for applying reinforced insulation to a conductor
US7182900B2 (en) Winding tape and method of making winding tape
US5283392A (en) Electric power cable line and a method of fabricating the same
US3693250A (en) Method of making metallic sheathed cables with foam cellular polyolefin insulation and method of making
GB2169094A (en) Optical cables
US6047586A (en) Method for manufacturing a metal tube with at least one optical fiber therein
JPS5951684B2 (en) Manufacturing method of plastic insulated cable
US3211818A (en) Extruder and method
US4378267A (en) Apparatus for manufacturing coaxial cable
JPS584105A (en) Manufacture of cable
US4305900A (en) Method and apparatus for covering a multiple wire conductor with a cross-linkable or vulcanizable insulation
US6500365B1 (en) Process for the manufacture of an optical core for a telecommunications cable
JPS6176346A (en) Method and device for manufacturing heat-shrinkable sleeve using solid core
EP1036344B1 (en) Process for the manufacture of an optical core for a telecommunications cable
US4229238A (en) Process for manufacturing coaxial cable
US4904323A (en) Manufacture of plastic jacketed steel pipe
US3446883A (en) Method and apparatus for producing conductors surrounded by three or more extruded layers
JP2868068B2 (en) Method for manufacturing self-supporting optical cable
US2246149A (en) Method of continuously applying insulating material to a strand
US3413167A (en) Manufacture of plastic-insulated electrical cable
KR820002260B1 (en) Process for manufacturing coaxial cable