JPS5951569B2 - Method for producing resin-coated fine particles - Google Patents

Method for producing resin-coated fine particles

Info

Publication number
JPS5951569B2
JPS5951569B2 JP4276878A JP4276878A JPS5951569B2 JP S5951569 B2 JPS5951569 B2 JP S5951569B2 JP 4276878 A JP4276878 A JP 4276878A JP 4276878 A JP4276878 A JP 4276878A JP S5951569 B2 JPS5951569 B2 JP S5951569B2
Authority
JP
Japan
Prior art keywords
fine particles
monomer
coated
producing resin
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4276878A
Other languages
Japanese (ja)
Other versions
JPS54134752A (en
Inventor
修一 宮
明 鈴木
新太郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP4276878A priority Critical patent/JPS5951569B2/en
Publication of JPS54134752A publication Critical patent/JPS54134752A/en
Publication of JPS5951569B2 publication Critical patent/JPS5951569B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 本発明は微細粒子の表面の改質方法に関する。[Detailed description of the invention] The present invention relates to a method for modifying the surface of fine particles.

さらに詳述すれば、他媒体への分散性、分散安定性、耐
摩耗性、電気特性等、要求される性質が改良された樹脂
コーテツド微細粒子を製造するために基質微細粒子の表
面上で樹脂モノマーの重合反応を行うことを特徴とする
樹脂コーテツド微細粒子の製造方法に関する。微細粒子
は、例えば顔料として塗料、印刷インキあるいは樹脂の
成形加工等において、他の媒体中に混合され分散ないし
は懸濁された形態で用いられることが多い。
More specifically, in order to produce resin-coated fine particles with improved required properties such as dispersibility in other media, dispersion stability, abrasion resistance, and electrical properties, resin is coated on the surface of the substrate fine particles. The present invention relates to a method for producing resin-coated fine particles characterized by carrying out a polymerization reaction of monomers. Fine particles are often used in the form of being mixed and dispersed or suspended in other media, for example, as pigments in paints, printing inks, resin molding, and the like.

従つて微細粒子には媒体へ混合する段階での分散性、混
合された状態での分散安定性、耐摩耗性が要求され、又
用途によつては電気特性も要求される。そのため微細粒
子の改質、特に界面特性の改質、については従来から様
々な方法が用いられて来ており、例えば無機微細粒子に
親油性を付与し有機系バインダーとの混合性を向上させ
る方法としては金属石鹸あるいはその他の界面活性剤等
を吸着させる方法、有機重合体物質の溶液に分散させる
方法等がある。
Therefore, fine particles are required to have dispersibility when mixed into a medium, dispersion stability in the mixed state, and abrasion resistance, and depending on the use, electrical properties are also required. Therefore, various methods have been used to modify fine particles, especially their interfacial properties. For example, methods of imparting lipophilicity to inorganic fine particles to improve their miscibility with organic binders have been used. Examples include a method of adsorbing metal soap or other surfactants, and a method of dispersing it in a solution of an organic polymer substance.

しかしこれらの方法によつて得られるコーテツド微細粒
子は吸着層の強度が低く樹脂コンパウンド製造のために
混練する際に吸着層が微細粒子表面から脱落し、性能が
低下してしまう現象が見られる。またγ−Fe。
However, the coated fine particles obtained by these methods have low adsorption layer strength, and the adsorption layer falls off from the surface of the fine particles during kneading to produce a resin compound, resulting in a decrease in performance. Also γ-Fe.

O。、Fe。O。、変態γ−Fe。O。(γ一Fe。O
。をベースとする磁性物質であつて例えばCoドープγ
−Fe2O3、γ−Fe2O3−Fe3o4等をいう)
等の磁性物質は、例えば磁気塗料、その他の磁気製品の
製造に用いられるが、このような磁性物質にコーテイン
グする場合は上記の如き界面特性のはか磁気特性が大巾
に低下しないことが要求される。本発明者等はコーテツ
ド微細粒子に要求される諸特性を満足することができる
コーテツド微細粒子の製造方法につき種々検討した結果
、本発明を完成するに到つた。
O. , Fe. O. , modified γ-Fe. O. (γ-Fe.O
. A magnetic material based on, for example, Co-doped γ
-Fe2O3, γ-Fe2O3-Fe3o4, etc.)
Magnetic substances such as these are used, for example, in the manufacture of magnetic paints and other magnetic products, but when coating such magnetic substances, it is required that the magnetic properties of the interfacial properties described above do not deteriorate significantly. be done. The present inventors have completed the present invention as a result of various studies on a method for producing coated fine particles that can satisfy the various properties required of coated fine particles.

本発明方法より製造される樹脂コーテツド微細粒子は有
機バインダーとの混和性にすぐれ、それが混練される場
合にも混練操作中にコーテイングが脱落することのない
強い付着力を有する。
The resin-coated fine particles produced by the method of the present invention have excellent miscibility with organic binders, and even when they are kneaded, they have a strong adhesive force that prevents the coating from falling off during the kneading operation.

例えば磁性物質が被コーテイング物質(基質微細粒子)
である場合、その磁気特性が著しく低下することがない
。本発明の特徴とするところは、樹脂コーテインダされ
るべき微細粒子の表面を予め活性化してその表面に重合
開始活性化能を付与しておき、この重合開始活性化能を
付与された表面でアクリロニトリル、酢酸ビニル、塩化
ビニリデン等のモノマーを重合させることにある。
For example, a magnetic substance is the material to be coated (substrate fine particles)
In this case, the magnetic properties do not deteriorate significantly. A feature of the present invention is that the surface of the fine particles to be resin-coated is activated in advance to impart polymerization initiation activation ability to the surface, and the surface imparted with polymerization initiation activation ability is used to coat acrylonitrile. , vinyl acetate, vinylidene chloride, and other monomers.

表面活性化は還元雰囲気中で行ない、通常は水素気流中
、50〜450℃、好ましくは150〜 350℃で、
0.5〜10時間、好ましくは1〜3時間の条件で行な
う。
Surface activation is carried out in a reducing atmosphere, usually in a hydrogen stream at 50 to 450°C, preferably 150 to 350°C.
The heating time is 0.5 to 10 hours, preferably 1 to 3 hours.

また水素流量は、粒子100gに対し0.1〜81/分
、好ましくは0.5〜41/分で行なう。微細粒子への
コーテイングは、気相モノマーを含む雰囲気中、好まし
くは不活性雰囲気中において個々の粒子の表面上でモノ
マーの重合を生じさせるようにする。
The hydrogen flow rate is 0.1 to 81/min, preferably 0.5 to 41/min, per 100 g of particles. The coating on the fine particles allows polymerization of the monomer to occur on the surface of the individual particles in an atmosphere containing the gas phase monomer, preferably in an inert atmosphere.

活性化された表面をもつ微細粒子へのコーテイングは、
予め加温してあるモノマー浴(モノマーの沸点により変
動するが通常40〜80℃程度が好ましい)に不活性ガ
ス、例えば窒素、アルゴン等を通じモノマーを同伴させ
、微細粒子の活性化表面上にモノマーを導入することに
より達成される。この場合、重合反応による発熱、重合
度等を考慮し、次のような条件で行なうのが好ましい。
反応温度は室温ないし100℃、好ましくは40〜80
℃である。
Coatings on fine particles with activated surfaces are
The monomer is entrained in a preheated monomer bath (varies depending on the boiling point of the monomer, but usually about 40 to 80°C is preferable) through an inert gas such as nitrogen or argon, and the monomer is deposited on the activated surface of the fine particles. This is achieved by introducing In this case, it is preferable to carry out the reaction under the following conditions, taking into consideration the heat generated by the polymerization reaction, the degree of polymerization, etc.
The reaction temperature is room temperature to 100°C, preferably 40 to 80°C.
It is ℃.

モノマー供給量は基質微細粒子100gに対して0.1
〜50g/時、好ましくは2 〜20g/時である。不
活性ガス流量は基質微細粒子100gに対して10cc
/分〜41/分、好ましくは50cc/分〜11/分で
ある。モノマー供給量は、モノマー予熱温度および不活
性ガス流量により調整するが、例えば実施例1について
はモノマー予熱温度50℃、不活性ガス量100cc/
分で、モノマー供給量は平均6.5g/時であつた。本
発明に用いられる原料モノマーとしては重合あるいは共
重合可能なモノマー、例えば酢酸ビニル、塩化ビニル、
アクリル酸エステル類、メタクリル酸エステル類、アク
リロニトリル、塩化ビニリデン等が挙げられるが、アク
リロニトリル、酢酸ビニル及び塩化ビニリデンより選択
された1種又は2種以上の組合せが特に好ましい。
The monomer supply amount is 0.1 per 100g of substrate fine particles.
-50 g/hour, preferably 2-20 g/hour. Inert gas flow rate is 10cc per 100g of substrate fine particles
/min to 41/min, preferably 50 cc/min to 11/min. The monomer supply amount is adjusted by the monomer preheating temperature and the inert gas flow rate. For example, in Example 1, the monomer preheating temperature is 50°C and the inert gas amount is 100cc/
min, and the monomer feed rate was on average 6.5 g/h. The raw material monomers used in the present invention include monomers that can be polymerized or copolymerized, such as vinyl acetate, vinyl chloride,
Examples include acrylic esters, methacrylic esters, acrylonitrile, vinylidene chloride, etc., and one or a combination of two or more selected from acrylonitrile, vinyl acetate, and vinylidene chloride is particularly preferred.

原料微細粒子の粒度は、塊状物ないしは球状物の場合そ
の平均直径がおよそ0.01〜 5ミクロン、立方状物
の場合その平均対頂点距離が0.1〜 5ミクロン、針
状物の場合その平均長軸長が0.1〜 5ミクロンの範
囲であるのが好ましく、これらの粒度範囲に入るα−F
eOOWα−Fe。
The particle size of the raw material fine particles is approximately 0.01 to 5 microns in the case of lumps or spheres, 0.1 to 5 microns in the average distance between the apexes in the case of cubic objects, and 0.1 to 5 microns in the case of acicular objects. It is preferable that the average major axis length is in the range of 0.1 to 5 microns, and α-F particles falling within these particle size ranges
eOOWα-Fe.

O,、フエラ・イト、Fe。O,、変態Fe,O,,γ
−Fe。O。、変態γ一Fe。O,、Fe及びFe合金
の微細粒子が用いられる。本発明方法によるコーテイン
グ量は、基質微細粒子100gに対して2 〜40g、
特に7 〜25gであることが好ましい。2g未満の場
合はコーテイングの効果が顕著でなく、40gより多い
と粒子自身の有する特性、例えば磁気特性等が著しく低
下してしまうことがある。
O,, Fuera Ito, Fe. O,, transformed Fe, O,, γ
-Fe. O. , metamorphosed γ-Fe. Fine particles of O, Fe and Fe alloys are used. The amount of coating according to the method of the present invention is 2 to 40 g per 100 g of substrate fine particles,
In particular, it is preferably 7 to 25 g. If the amount is less than 2 g, the coating effect will not be significant, and if it is more than 40 g, the properties of the particles themselves, such as magnetic properties, may deteriorate significantly.

以下本発明を実施例および比較例により説明するが、本
発明はこれによつて限定されるものでは″なく、本発明
の精神の範囲において様々の改変が可能である。
The present invention will be explained below with reference to Examples and Comparative Examples, but the present invention is not limited thereto, and various modifications can be made within the spirit of the present invention.

実施例 1 平均長軸長0.5ミクロンのFe。Example 1 Fe with an average major axis length of 0.5 microns.

O。粉末(保磁力4250e、飽和磁束密度85.0e
mu/g)の100gを長さ2m、直径20cmの管に
装入し、窒素雰囲気中で300℃に昇温し、この温度で
窒素雰囲気を水素流(21/分)に切り換えて1時間保
つた後再び窒素に切り換え80℃まで冷却した。粉末を
この温度に保持したまま、予め50℃に温めてあつたア
クリロニトリル中に窒素をバブリングさせ(100〜2
50cc/分)、これによりアクリロニトリルを同伴し
た窒素を該Fe。O,粉末に導いた。この操作を20時
間行ない終了後、室温迄窒素雰囲気中で冷却し、取り出
し時発熱しない安定なコーテツドFe。O。を115g
得た。このコーテツドFe3O4の保磁力は4330e
、飽和磁束密度は74.2emu/gであり、固有抵抗
は1.3×1012Ω−Cmであつた。尚基質Fe3O
4の固有抵抗は1.5X106Ω−Cmであつた。実施
例 2平均長軸長0.2ミクロンのFe粉末を用い実施
例1と同じ方法で得たコーテツドFeの粉末の固有抵抗
は8.8×1011Ω−Cmであつた。
O. Powder (coercive force 4250e, saturation magnetic flux density 85.0e
100 g of 2 m/g) was charged into a tube with a length of 2 m and a diameter of 20 cm, the temperature was raised to 300 °C in a nitrogen atmosphere, and at this temperature the nitrogen atmosphere was switched to a hydrogen flow (21/min) and kept for 1 hour. After that, the temperature was changed to nitrogen again and the temperature was cooled to 80°C. While keeping the powder at this temperature, nitrogen was bubbled into the acrylonitrile that had been preheated to 50°C (100 to 2
50 cc/min), thereby removing nitrogen entrained with acrylonitrile from the Fe. O, led to powder. After carrying out this operation for 20 hours, it was cooled to room temperature in a nitrogen atmosphere to obtain a stable coated Fe that did not generate heat when taken out. O. 115g
Obtained. The coercive force of this coated Fe3O4 is 4330e
The saturation magnetic flux density was 74.2 emu/g, and the specific resistance was 1.3×10 12 Ω-Cm. Furthermore, the substrate Fe3O
The specific resistance of No. 4 was 1.5×10 6 Ω-Cm. Example 2 A coated Fe powder obtained in the same manner as in Example 1 using Fe powder having an average major axis length of 0.2 microns had a specific resistance of 8.8 x 10<11 >Ω-Cm.

原料Fe粉末の固有抵抗は5.6×105Ω−Cmであ
つた。比較例 1実施例1で用いたのと同じFe3O4
の10kgとPVCコンパウンド(4)本ゼオン社製H
B2OOO×10)の10kgとをペンシェルミキサー
で2時間混練して、その混練物の固有抵抗を測定したと
ころ2.4×107Ω−Cmであつた。
The specific resistance of the raw material Fe powder was 5.6×10 5 Ω-Cm. Comparative Example 1 Same Fe3O4 as used in Example 1
10 kg of PVC compound (4) H manufactured by Zeon Co., Ltd.
10 kg of B2OOOO x 10) were kneaded in a pen shell mixer for 2 hours, and the specific resistance of the kneaded product was measured and found to be 2.4 x 10 7 Ω-Cm.

従つて実施例1のコーテツド粒子のコーテイングは混練
に充分耐える強度をもつことが判る。
Therefore, it can be seen that the coating of the coated particles of Example 1 has sufficient strength to withstand kneading.

比較例 2実施例2でモノマーを吹き込まない場合には
生成物は取り出すと発火して全てα−Fe2O3に酸化
していることが判明した。
Comparative Example 2 It was found that when the monomer was not blown in in Example 2, the product ignited when taken out and was completely oxidized to α-Fe2O3.

Claims (1)

【特許請求の範囲】 1 樹脂コーテツド微粒子を製造するに際して、基質微
細粒子を還元雰囲気中において活性化処理してその表面
に重合開始活性化能を付与し、次いで該微細粒子にモノ
マーを吹き込んで重合開始活性化能を有する表面で重合
反応を行なわせることを特徴とする樹脂コーテツド微細
粒子の製造方法。 2 微細粒子がα−FeOOH、α−Fe_2O_3、
フェライト、Fe_3O_4、変態Fe_3O_4、γ
−Fe_2O_3、変態γ−Fe_2O_3Fe、及び
Fe合金である特許請求の範囲1記載の方法。 3 微細粒子が塊状物又は球状物の場合その平均直径が
、立方状物の場合その平均対頂点距離がそして針状物の
場合その平均長軸長が、各々0.01ないし5ミクロン
の範囲にある特許請求の範囲1記載の方法。 4 モノマーが酢酸ビニル、塩化ビニル、アクリル酸エ
ステル類、メタクリル酸エステル類、アクリロニトリル
及び塩化ビニリデンより選択された1種又は2種以上で
ある特許請求の範囲1記載の方法。
[Claims] 1. When producing resin-coated fine particles, substrate fine particles are activated in a reducing atmosphere to impart polymerization initiation activation ability to their surfaces, and then a monomer is blown into the fine particles for polymerization. A method for producing resin-coated fine particles, characterized in that a polymerization reaction is carried out on a surface having initiation activation ability. 2 Fine particles are α-FeOOH, α-Fe_2O_3,
Ferrite, Fe_3O_4, modified Fe_3O_4, γ
-Fe_2O_3, modified γ-Fe_2O_3Fe, and Fe alloy. 3. If the fine particles are agglomerated or spherical, their average diameter, if they are cubic, their average vertex distance, and if they are acicular, their average major axis length is in the range of 0.01 to 5 microns. A method according to claim 1. 4. The method according to claim 1, wherein the monomer is one or more selected from vinyl acetate, vinyl chloride, acrylic esters, methacrylic esters, acrylonitrile, and vinylidene chloride.
JP4276878A 1978-04-12 1978-04-12 Method for producing resin-coated fine particles Expired JPS5951569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4276878A JPS5951569B2 (en) 1978-04-12 1978-04-12 Method for producing resin-coated fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4276878A JPS5951569B2 (en) 1978-04-12 1978-04-12 Method for producing resin-coated fine particles

Publications (2)

Publication Number Publication Date
JPS54134752A JPS54134752A (en) 1979-10-19
JPS5951569B2 true JPS5951569B2 (en) 1984-12-14

Family

ID=12645144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4276878A Expired JPS5951569B2 (en) 1978-04-12 1978-04-12 Method for producing resin-coated fine particles

Country Status (1)

Country Link
JP (1) JPS5951569B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5560709B2 (en) * 2007-03-30 2014-07-30 日本ゼオン株式会社 Manufacturing method of molded body

Also Published As

Publication number Publication date
JPS54134752A (en) 1979-10-19

Similar Documents

Publication Publication Date Title
US3674461A (en) Hollow spherical articles
JP6547229B2 (en) Ferrite particle, resin composition and resin film
JPS59116303A (en) Manufacture of fine copper powder
JPS5951569B2 (en) Method for producing resin-coated fine particles
EP0442022B1 (en) Method of forming ferrite coatings
JPH04157615A (en) Treating method of magnetic powder
JP3144683B2 (en) Spindle-shaped iron-based metal magnetic particle powder
JPS6017337B2 (en) Method for producing resin-coated inorganic fine particles
JP3042101B2 (en) Method for producing composite particles and hollow particles
JPS60111403A (en) Iron nitride ultrafine particle
JP3446960B2 (en) Method for producing magnetic metal powder for magnetic recording using α-iron oxyhydroxide
JPS649246B2 (en)
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP2545054B2 (en) Method of manufacturing magnetic recording medium
JPS61159502A (en) Production of magnetic metallic powder
JPS61132521A (en) Magnetic iron oxide particle powder for magnetic recording medium and production thereof
JPH0268138A (en) Preparation of resin-coated porous inorganic spherical granule
JP2004263229A (en) Copper-coated powder, and production method therefor
JPS63105035A (en) Production of black fine particle
JPH01176229A (en) Magnetic particle powder and production thereof
JPS60127243A (en) Production of ferromagnetic iron oxide powder
JPH08183618A (en) Fusiform iron oxide granule and its production
JPS60107730A (en) Magnetic recording medium
JPH1041112A (en) Ferromagnetic metal fine particles
JPS61136601A (en) Production of stabilized ferromagnetic metallic powder