JPS5951410B2 - Continuous manufacturing equipment for synthetic resin pipes - Google Patents

Continuous manufacturing equipment for synthetic resin pipes

Info

Publication number
JPS5951410B2
JPS5951410B2 JP52010469A JP1046977A JPS5951410B2 JP S5951410 B2 JPS5951410 B2 JP S5951410B2 JP 52010469 A JP52010469 A JP 52010469A JP 1046977 A JP1046977 A JP 1046977A JP S5951410 B2 JPS5951410 B2 JP S5951410B2
Authority
JP
Japan
Prior art keywords
core mold
belt
tube
synthetic resin
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52010469A
Other languages
Japanese (ja)
Other versions
JPS5396068A (en
Inventor
弘 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP52010469A priority Critical patent/JPS5951410B2/en
Publication of JPS5396068A publication Critical patent/JPS5396068A/en
Publication of JPS5951410B2 publication Critical patent/JPS5951410B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/74Winding and joining, e.g. winding spirally helically using a forming surface inthe shape of an endless belt which is recycled after the forming operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Description

【発明の詳細な説明】 本発明は合成樹脂材および合成樹脂材を含む管形成材を
もつて連続的に管を成形するような連続製造において、
芯型を離れる成形管が十分な自己保持耐力を持つように
芯型内部の先端部に積極的に芯型形成部材および/若し
くは成形管の裸内面を冷却する手段を設けた合成樹脂管
の連続製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to continuous manufacturing in which tubes are continuously formed using synthetic resin materials and tube forming materials containing synthetic resin materials.
A series of synthetic resin tubes with a means for actively cooling the core forming member and/or the bare inner surface of the molded tube at the tip inside the core so that the molded tube leaving the core mold has sufficient self-retention strength. This relates to manufacturing equipment.

合成樹脂管の連続成形において、熱硬化性樹脂材を含浸
した繊維集合体、或は熱硬化性樹脂材を含んだ粒状物等
の管形成材を回転する芯型に巻装し、その途中で補強繊
維或は他の管形成材を添巻して管を形成すると共にこれ
らの形成材が芯型に巻かれた状態で熱硬化炉によつて硬
化され、硬化・された管が芯型から押し出されるように
離型して連続的に樹脂管を製造する方法はよく知られて
いる。
In continuous molding of synthetic resin pipes, tube forming materials such as fiber aggregates impregnated with thermosetting resin material or granules containing thermosetting resin material are wound around a rotating core die, and during the process A tube is formed by winding reinforcing fibers or other tube forming materials, and these forming materials are cured in a thermosetting furnace while being wound around a core mold, and the hardened tube is removed from the core mold. A method of continuously manufacturing resin pipes by extrusion-like mold release is well known.

例えばドロストホルム機による強化合成樹脂管の製造手
段は第1図にその概要を示すように、機台駆動装置1の
中に中空軸2がほぼ水平に固設され、該中空固定軸2に
は中空回転軸3が遊支されると共に該中空回転軸3は機
台駆動装置1内で積極的に回転駆動される。一方中空回
転軸3には支え枠18を介してマンドレル枠4が固定さ
れ、該マンドレル枠4は多数のバーがマンドレル方向に
平行して支え枠18に固設して形成され、該バーの頂面
は後述する無端スチールベルト7が巻き付けられかつ横
すベーできるように適当な当接面を形成するか、或はコ
ロを設けて構成する。無端スチールベルト7は前記マン
ドレル枠4に螺旋状に巻き付けられ、該ベルト7はマン
ドレル枠4の先端部で沖空固定軸2内に導かれ矢印のよ
うに進んで再び巻き始め位置に至つてマンドレル枠4に
巻き付けられる。即ちマンドレル枠4は機台駆動装置1
で積極的に回動され、ベルト7は特定張力を保持してマ
ンドレル4に巻かれる。そしてベルト7の巻き始め位置
には巻かれたベルト7をマンドレル枠4の先端方向に押
す摺動部材5がマンドレル枠4の端部に摺動自在に設け
られ、該摺動部材5は常時機台駆動装置1側に突出する
ようにばね等で付勢して支持される。またマンドレル枠
4のベルト巻付側には駆動装置1に固定してカム6が設
けられ、前記摺動部材5はその付勢突出端をこのカム6
の面に当接してマンドレル枠4と共に回動し、この回動
に伴なつて摺動部材5はマンドレル枠4上でマンドレル
枠方向に摺動する。一方摺動部材5の他端マンドレル枠
側は巻き付けられたベルト7の端縁に当接するように構
成される。従つて巻き付けられたベルト7はこの摺動部
材5によつてマンドレル枠4の回動と共にマンドレル枠
4に沿つて先端方向に押され、摺動部材5のベルト押し
移動量はマンドレル枠4の1回転につきベルト7の巾で
ある。従つて芯型は回動するマンドレル枠4の外周に螺
旋状に密接して巻かれた無端スチールベルト7で形成さ
れ、このスチールベルト7は循環して芯型を構成する。
このような芯型を用いて各種の樹脂管が連続成形され、
管の利用目的或は種別によつて管形成材が異なつたり或
は複合管のように多層から構成されたりする、第1図に
例示した管製造法は複合管の1例で、芯型には離型用セ
ロフアンテープ8が巻き付けられ、次いで熱硬化性樹脂
例えば不飽和ポリエステル樹脂を含浸させた不織布9が
その外周に巻かれ、補強材として同じく熱硬化性樹脂に
浸漬したガラス繊維条10が巻かれ、必要によつてガラ
ス繊維条10には縦方向の補強繊条が加えられて管層を
形成し、中間層として樹脂モルタル11が巻き付けられ
る。そして樹脂モルタル11は混和装置12.で混練さ
れて押し出され、適当な案内具を介して螺旋状に巻き付
けられる。そしてこの樹脂モルタル層の外周には再び樹
脂含浸不織布等が巻かれてもよいが図示例は再びガラス
繊維条13が前記10と同様に巻かれ、仕上外層として
再び樹脂含浸こ不触布14等が巻かれる。このように芯
型外周に巻回された管形成材はベルト7の移行に伴なつ
て順次芯型先端部に移動し、芯型を取り巻くように配置
された加熱炉15に導かれて硬化処理され強化樹脂管1
6が成形される。そして芯型を形成すこるベルト7は加
熱炉15を過ぎた位置でマンドレル枠4から解かれ、前
記したように中空固定軸2を通つて循環する。また成形
管16は適当な長さで切断され離型テープ8は適当に巻
き取られる。しかるにこのような樹脂管の連続成形にお
いて4生産を増大するためには、当然ながらマンドレル
の回転速度を上昇し、加熱炉の温度を上昇させなければ
ならないが加熱炉の温度は樹脂材の種類によつて制約が
あり例えば前記不飽和ポリエステル樹脂では140℃を
越えるとポリエステル内のスチレンが気化して管内面が
膨れたり、或は小さいひびわれが発生する等の欠点が生
ずる。従つて比較的低い温度しか設計できず、その代り
に加熱炉15の加熱面積を増大させる必要がある。しか
るにこれらの改良を行なおうとするとマンドレル枠4を
長くすると共にベルト7も取替える必要があり改良のた
めに多大の費用を必要とする。そこで本発明者は従来の
装置を利用して生産を増大しよう″と鋭意検討した結果
本発明に到達したものである。即ち従来の加熱炉を出た
樹脂管では、外層部は十分に硬化されているが、内層部
特にベルト7の離脱部においては、十分な硬化が進んで
いない場合もあり、ベルト7から離れた後は管の形態保
持耐力が十分でなかつた。
For example, as shown in FIG. 1, a method for producing reinforced synthetic resin pipes using a Drostholm machine has a hollow shaft 2 fixed almost horizontally in a machine drive device 1. The hollow rotating shaft 3 is freely supported, and at the same time, the hollow rotating shaft 3 is actively rotationally driven within the machine drive unit 1. On the other hand, a mandrel frame 4 is fixed to the hollow rotating shaft 3 via a support frame 18, and the mandrel frame 4 is formed by a large number of bars fixed to the support frame 18 in parallel with the mandrel direction. The surface is constructed by forming a suitable abutment surface or by providing rollers so that an endless steel belt 7, which will be described later, can be wound thereon and placed horizontally thereon. The endless steel belt 7 is spirally wound around the mandrel frame 4, and the belt 7 is guided into the offshore fixed shaft 2 at the tip of the mandrel frame 4, advances in the direction of the arrow, reaches the winding start position again, and then wraps around the mandrel. It is wrapped around the frame 4. That is, the mandrel frame 4 is connected to the machine driving device 1.
The belt 7 is rotated actively at , and the belt 7 is wound around the mandrel 4 while maintaining a specific tension. At the winding start position of the belt 7, a sliding member 5 that pushes the wound belt 7 toward the tip of the mandrel frame 4 is slidably provided at the end of the mandrel frame 4, and the sliding member 5 is always in operation. It is biased and supported by a spring or the like so as to protrude toward the platform driving device 1 side. Further, a cam 6 is fixed to the drive device 1 on the belt-wrapping side of the mandrel frame 4, and the sliding member 5 has its biasing protruding end connected to the cam 6.
The sliding member 5 contacts the surface of the mandrel frame 4 and rotates together with the mandrel frame 4, and along with this rotation, the sliding member 5 slides on the mandrel frame 4 in the direction of the mandrel frame. On the other hand, the other end of the sliding member 5 on the mandrel frame side is configured to abut against the edge of the wound belt 7. Therefore, the wound belt 7 is pushed in the distal direction along the mandrel frame 4 by the sliding member 5 as the mandrel frame 4 rotates, and the amount of belt pushing movement of the sliding member 5 is equal to 1 of the mandrel frame 4. It is the width of the belt 7 per rotation. Therefore, the core mold is formed by an endless steel belt 7 tightly wound spirally around the outer periphery of the rotating mandrel frame 4, and this steel belt 7 circulates to form the core mold.
Various resin pipes are continuously molded using such core molds,
The pipe manufacturing method illustrated in Figure 1 is an example of a composite pipe, in which the pipe forming material differs depending on the purpose or type of pipe, or it is composed of multiple layers like a composite pipe. A releasing cellophane tape 8 is wrapped around the outer periphery of the tape, and then a nonwoven fabric 9 impregnated with a thermosetting resin, such as an unsaturated polyester resin, is wrapped around the outer circumference of the tape, and a glass fiber strip also soaked in the thermosetting resin is used as a reinforcing material. If necessary, longitudinal reinforcing fibers are added to the glass fiber strip 10 to form a tube layer, and a resin mortar 11 is wound as an intermediate layer. The resin mortar 11 is mixed with a mixing device 12. The mixture is kneaded, extruded, and wound spirally through a suitable guide. Then, a resin-impregnated nonwoven fabric or the like may be wrapped again around the outer periphery of this resin mortar layer, but in the illustrated example, the glass fiber strip 13 is wrapped again in the same manner as in 10 above, and the resin-impregnated non-woven fabric 14 or the like is again wrapped as a finishing outer layer. is wound. The tube-forming material wound around the outer circumference of the core mold in this way is sequentially moved to the tip of the core mold as the belt 7 moves, and is led to a heating furnace 15 arranged so as to surround the core mold, where it is hardened. Reinforced resin pipe 1
6 is molded. Then, the belt 7 forming the core mold is unwound from the mandrel frame 4 at a position past the heating furnace 15, and circulates through the hollow fixed shaft 2 as described above. Further, the molded tube 16 is cut to an appropriate length, and the release tape 8 is appropriately wound. However, in order to increase production in continuous molding of resin pipes, it is necessary to increase the rotation speed of the mandrel and the temperature of the heating furnace, but the temperature of the heating furnace depends on the type of resin material. Therefore, there are restrictions, and for example, with the unsaturated polyester resin, when the temperature exceeds 140° C., the styrene in the polyester evaporates, causing problems such as swelling of the inner surface of the tube or formation of small cracks. Therefore, only a relatively low temperature can be designed, and instead it is necessary to increase the heating area of the heating furnace 15. However, if these improvements were to be made, it would be necessary to lengthen the mandrel frame 4 and also replace the belt 7, which would require a great deal of expense. Therefore, the inventor of the present invention has arrived at the present invention as a result of intensive study to increase production using conventional equipment.In other words, the outer layer of the resin pipe that exits the conventional heating furnace is not sufficiently hardened. However, in some cases, sufficient curing did not proceed in the inner layer, particularly in the part where the belt 7 was removed, and the shape retention strength of the tube was not sufficient after being separated from the belt 7.

ところが成形管の離脱部における温度は100℃にも及
ぶこと力神リつているが、一般に強化合成樹脂管の耐力
は、温度が100℃から70℃に低下させた場合2〜3
倍に向上することも判つている。そこで本発明者は前記
成形管16が芯金を離れる直前にベルト及び/若しくは
管内面に積極的に冷気を吹き付け管内面の温度を20℃
〜50℃程度低下させることによつて管内層の耐力を向
上させることに着目し、ここに本発明の完成をみるに至
つた。以下本発明を図面に基づいて説明するが図は本発
明装置の具体例を示したもので本発明が図示した装置の
みに限定されず以下説明する範囲若しくは記載の趣旨に
徴して他の手段を利用したり或は設計を変更して実施で
きるものである。
However, it is said that the temperature at the detached part of the molded tube can reach as high as 100℃, but in general, the yield strength of reinforced synthetic resin pipes is 2 to 3 when the temperature is lowered from 100℃ to 70℃.
It is also known that the improvement can be doubled. Therefore, the inventor of the present invention actively blows cold air onto the belt and/or the inner surface of the tube just before the formed tube 16 leaves the core metal, thereby increasing the temperature of the inner surface of the tube to 20°C.
The present invention has been completed by focusing on improving the yield strength of the pipe inner layer by lowering the temperature by about 50°C. The present invention will be explained below based on the drawings, but the drawings show specific examples of the device of the present invention, and the present invention is not limited to the device shown in the drawings. It can be used or implemented by changing the design.

第2図は第1図に例示した芯型でベルト7および駆動部
を省略して示した中央断面略図で沖空回転軸3には歯車
17が固設されて駆動される。第3図は第2図に例示し
た芯型に本発明を適用した断面図、第4図は第3図の切
断線IV−IVに沿う矢印方向断面図である。これらの
図において19は噴気ドラムを示し、該噴気ドラム19
は周壁と両側壁で構成され、両側壁は中空回転軸3に固
設若しくはフランジ部を形成して固設され中空回転軸3
の先端部に設けられる。図は中空回転軸3の先端一部が
噴気ドラム19で構成されたものを示したが中空回転軸
3に噴気ドラム19を嵌装して取り付けてもよい。しか
して噴気ドラム19の周壁面には噴気孔20を穿設し、
両側壁のうち先端測側壁23にのみ噴気孔24を穿設す
る。一方中空回転軸3の噴気ドラム19配設部に相当す
る中空固定軸2には噴気ドラム19に連通する孔22を
穿設し、冷気は中空固定軸2を介して噴気ドラム19に
送られるように構成する。21,21は冷気導入口であ
る。
FIG. 2 is a schematic central sectional view of the core type illustrated in FIG. 1 with the belt 7 and drive section omitted, and a gear 17 is fixed to the offshore rotary shaft 3 and driven. FIG. 3 is a cross-sectional view of the core mold illustrated in FIG. 2 to which the present invention is applied, and FIG. 4 is a cross-sectional view taken along cutting line IV--IV in FIG. 3 in the direction of the arrow. In these figures, 19 indicates a fumarole drum, and the fumarole drum 19
is composed of a peripheral wall and both side walls, and the both side walls are fixed to the hollow rotating shaft 3 or are fixed by forming a flange part to the hollow rotating shaft 3.
provided at the tip of the Although the figure shows that a part of the tip of the hollow rotating shaft 3 is constituted by a fume drum 19, the fume drum 19 may be fitted and attached to the hollow rotating shaft 3. Therefore, fumarole holes 20 are bored in the peripheral wall surface of the fumarole drum 19,
A blowhole 24 is bored only in the tip measurement side wall 23 of both side walls. On the other hand, a hole 22 communicating with the fume drum 19 is bored in the hollow fixed shaft 2 corresponding to the fume drum 19 installation part of the hollow rotary shaft 3, so that cold air is sent to the fume drum 19 via the hollow fixed shaft 2. Configure. 21, 21 are cold air introduction ports.

しかるに中空固定軸2はスチールベルト7の通過を許す
ように構成されるがベルト7は薄片で形成され中空固定
軸2のベルト案内人口および出口にはそれぞれ冷気のシ
ール装置が設けられる。第5図および第6図はベルト入
口側のシール装置を例示し、第7図および第8図は出口
側のシール装置を例示した。即ち入口側シール装置25
は中空固定軸2に被嵌される嘴状案内部材27を取り付
け、該案内部材27の先端にはベルト通過{L28を設
ける。そして案内部材27は二つ割りで構成し弾性材例
えば合成ゴム、樹脂材で成形する。一方出口側シール装
置26は入口側に設けたと同じような嘴状案内部材31
を割形取付環29に包持させて中空固定軸2に取り付け
る。31はベルト通過孔である。
However, the hollow fixed shaft 2 is constructed to allow the passage of a steel belt 7, but the belt 7 is formed of a thin piece, and a cold air sealing device is provided at each of the belt guide port and the outlet of the hollow fixed shaft 2. 5 and 6 illustrate a sealing device on the belt inlet side, and FIGS. 7 and 8 illustrate a sealing device on the outlet side. That is, the inlet side sealing device 25
A beak-shaped guide member 27 is attached to be fitted onto the hollow fixed shaft 2, and a belt passage {L28 is provided at the tip of the guide member 27. The guide member 27 is divided into two pieces and molded from an elastic material such as synthetic rubber or resin. On the other hand, the exit side sealing device 26 has a beak-shaped guide member 31 similar to that provided on the inlet side.
is enclosed in a split mounting ring 29 and attached to the hollow fixed shaft 2. 31 is a belt passage hole.

なおこれらのシールには弾性のある嘴状部材を利用した
が他のシール装置例えばラビリンス手段を用いてシール
してもよい。本発明合成樹脂管の連続製造装置はこのよ
うにしてマンドレルの先端部でかつベルト7が管内面か
ら離脱する近傍で、冷気をベルト7の裏面及び若しくは
ベルト7の離脱した管内面に吹き付けるようになしたか
ら、管肉内層を可及的に冷却して硬化を促進させ芯型よ
り離脱した管肉内層の形態保持耐力を十分に保持するこ
とができるようになり、管成形速度を上昇させることが
でき、しかも変形のおそれが全くなくなつて品質の向上
、生産の増大に寄与することができたものである。
Note that although an elastic beak-like member is used for these seals, other sealing devices such as labyrinth means may be used for sealing. In this way, the continuous production apparatus for synthetic resin pipes of the present invention blows cold air at the tip of the mandrel and near the part where the belt 7 separates from the inner surface of the tube, and onto the back surface of the belt 7 and/or the inner surface of the tube from which the belt 7 has separated. This makes it possible to cool the inner layer of the pipe wall as much as possible to promote hardening and maintain sufficient strength to maintain the shape of the inner layer of the pipe wall after it has separated from the core mold, thereby increasing the tube forming speed. Moreover, there is no fear of deformation, contributing to improved quality and increased production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用するに好適な合成樹脂管の連続製
造装置を略示した平面図、第2図は第1図例の装置に利
用される巻芯型を中央断面で示した断面図、第3図は第
2図で略示した芯型に本発明を用いた中央断面図、第4
図は第3図の切断線1−1に沿う矢印方向断面図、第5
図は入口側シール装置の側面図で一部破断して示し、第
6図は第5図の右側正面図である。 第7図は出口側シール装置の背面図で第8図の左側を示
し、第8図は出口側シール装置を示した断面図である。
1・・・・・・機台駆動装置、2・・・・・・中空固定
軸、3・・・・・・中空回転軸、4・・・・・・マンド
レル枠、5・・・・・・摺動部材、6・・・・・・カム
、7・・・・・・ベルト、8・・・・・・離型テープ、
9・・・・・・樹脂含浸不織布、10・・・・・・ガラ
ス繊条、11・・・・・・樹脂モルタル、12・・・・
・・混和装置、13・・・・・・ガラス繊条、14・・
・・・・樹脂含浸不織布、15・・・・・・加熱炉、1
6・・・・・・成形管、17・・・・・・歯車、18・
・・・・・支え枠、19・・・・・・噴気ドラム、20
・・・・・・噴気孔、21・・・・・・冷気導入口、2
2・・・・・・通気孔、23・・・・・・側壁、24・
・・・・・噴気孔、25・・・・・・入口側シール装置
、26・・・・・・出口側シール装置、27,31・・
・・・・嘴状案内部材、28,30・・・・・・ベルト
通過孔、29・・・・・・割形取付環。
FIG. 1 is a plan view schematically showing a continuous manufacturing apparatus for synthetic resin pipes suitable for applying the present invention, and FIG. 2 is a cross-sectional view showing a central cross-section of a winding core used in the apparatus shown in FIG. 1. Figure 3 is a central cross-sectional view of the core mold shown schematically in Figure 2 using the present invention;
The figure is a cross-sectional view taken along section line 1-1 in Figure 3 in the direction of the arrow.
The figure shows a partially cutaway side view of the inlet side sealing device, and FIG. 6 is a right front view of FIG. 5. FIG. 7 is a rear view of the outlet side sealing device, showing the left side of FIG. 8, and FIG. 8 is a sectional view showing the outlet side sealing device.
1... Machine drive device, 2... Hollow fixed shaft, 3... Hollow rotating shaft, 4... Mandrel frame, 5...・Sliding member, 6...Cam, 7...Belt, 8...Release tape,
9...Resin-impregnated nonwoven fabric, 10...Glass fiber, 11...Resin mortar, 12...
...Mixing device, 13...Glass fiber, 14...
... Resin-impregnated nonwoven fabric, 15 ... Heating furnace, 1
6... Formed tube, 17... Gear, 18.
... Support frame, 19 ... Fumarole drum, 20
... Fumarole, 21 ... Cold air introduction port, 2
2...Vent hole, 23...Side wall, 24.
... Fumarole, 25 ... Inlet side seal device, 26 ... Outlet side seal device, 27, 31 ...
...Beak-shaped guide member, 28, 30...Belt passage hole, 29...Split mounting ring.

Claims (1)

【特許請求の範囲】[Claims] 1 回転する枠型の外周にスチールベルトを螺旋状に隣
接巻回して芯型を構成し、該芯型の外周に熱硬化性樹脂
を含む管体形成材を螺旋状に巻回し、該管体形成材は芯
型に巻かれた状態でその外周に設けた熱硬化炉を通つて
硬化され、螺旋巻回を解かれたスチールベルトは芯型の
軸芯に設けた中空固定軸を通過して再び巻き初め位置に
戻るように構成された樹脂管の連続製造装置において、
該芯型の先端部内側に噴気ドラムを設け、該噴気ドラム
には前記中空固定軸を介して冷気を導入すると共に該冷
気はスチールベルトの裏面及び/若しくは成形管の裸内
面に向けて噴出するように構成したことを特徴とする合
成樹脂管の連続製造装置。
1 A core mold is formed by spirally winding a steel belt adjacent to the outer periphery of a rotating frame mold, a tube forming material containing a thermosetting resin is spirally wound around the outer periphery of the core mold, and the tube body is The forming material is wound around a core mold and hardened through a thermosetting furnace installed around its outer periphery, and the steel belt, which has been unwound spirally, passes through a hollow fixed shaft installed at the core of the core mold. In a continuous manufacturing apparatus for resin pipes configured to return to the winding start position,
A blow drum is provided inside the tip of the core mold, and cold air is introduced into the blow drum through the hollow fixed shaft, and the cold air is ejected toward the back surface of the steel belt and/or the bare inner surface of the formed tube. A continuous manufacturing device for synthetic resin pipes, characterized in that it is configured as follows.
JP52010469A 1977-02-01 1977-02-01 Continuous manufacturing equipment for synthetic resin pipes Expired JPS5951410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52010469A JPS5951410B2 (en) 1977-02-01 1977-02-01 Continuous manufacturing equipment for synthetic resin pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52010469A JPS5951410B2 (en) 1977-02-01 1977-02-01 Continuous manufacturing equipment for synthetic resin pipes

Publications (2)

Publication Number Publication Date
JPS5396068A JPS5396068A (en) 1978-08-22
JPS5951410B2 true JPS5951410B2 (en) 1984-12-13

Family

ID=11750984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52010469A Expired JPS5951410B2 (en) 1977-02-01 1977-02-01 Continuous manufacturing equipment for synthetic resin pipes

Country Status (1)

Country Link
JP (1) JPS5951410B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102802900A (en) * 2009-06-23 2012-11-28 Ocv智识资本有限责任公司 Thermoplastic pipe made with commingled glass fibers

Also Published As

Publication number Publication date
JPS5396068A (en) 1978-08-22

Similar Documents

Publication Publication Date Title
US2502638A (en) Method of extruding plastics in tubular form and wrapping the tubing
US4078957A (en) Filament winding apparatus and method
US4010054A (en) Thermoplastic filament winding process
US3068133A (en) Method of and apparatus for manufacturing a reinforced plastic product
DE2739465C3 (en) Process for the continuous production of reinforced plastic pipes with an outer jacket surface formed to receive a seal for a socket connection on one pipe end and device for carrying out the process
US3565984A (en) Method of making rubber articles
US3894901A (en) Method of making hoses and profiled belts in a continuous process
US3220910A (en) Removable mandrel for forming resin reinforced wound articles
US4213641A (en) Filament wound pipe coupling
EP0003641B1 (en) Method and apparatus for producing a composite pipe
US3733233A (en) Method of making a roller
US3191230A (en) Machines for extruding tubes
JPS5951410B2 (en) Continuous manufacturing equipment for synthetic resin pipes
US3640656A (en) Apparatus for continuous manufacture of reinforced hose
DE1704713A1 (en) Method and device for the production of pipes from foamed plastic material
EP3235621B1 (en) Method for producing a continuous transmission belt
DE2362465B2 (en) METHOD FOR PRODUCING RIGID PIPE ELBOWS FROM PLASTIC AND DEVICE FOR CARRYING OUT THE METHOD
US3507011A (en) Apparatus for manufacturing reinforced tubular plastics material
US2354062A (en) Method of making belts
GB1498892A (en) Racket manufacture
JP2683636B2 (en) Manufacturing method of synthetic resin pipe
US3319294A (en) Apparatus for expanding and curing strip materials
JPS5812849B2 (en) Method for manufacturing glass fiber reinforced plastic pipe having a pipe socket
DE2715493A1 (en) METHOD OF MANUFACTURING A REINFORCED HOSE FROM ELASTOMERAL MATERIAL
JP2607111B2 (en) Synthetic resin tube and method of manufacturing the same