JPS5951335B2 - Catalyst for treatment of heavy oil containing high sulfur content - Google Patents

Catalyst for treatment of heavy oil containing high sulfur content

Info

Publication number
JPS5951335B2
JPS5951335B2 JP12473379A JP12473379A JPS5951335B2 JP S5951335 B2 JPS5951335 B2 JP S5951335B2 JP 12473379 A JP12473379 A JP 12473379A JP 12473379 A JP12473379 A JP 12473379A JP S5951335 B2 JPS5951335 B2 JP S5951335B2
Authority
JP
Japan
Prior art keywords
catalyst
iron
heavy oil
high sulfur
oil containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12473379A
Other languages
Japanese (ja)
Other versions
JPS5648249A (en
Inventor
幸夫 井上
輝男 鈴鹿
廣 沖野
史朗 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Original Assignee
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai filed Critical Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority to JP12473379A priority Critical patent/JPS5951335B2/en
Publication of JPS5648249A publication Critical patent/JPS5648249A/en
Publication of JPS5951335B2 publication Critical patent/JPS5951335B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、重質油、特に硫黄含有量の高い重質油を水素
の不存在下に接触分解し、硫黄含有重量の低い分解留分
を得るための触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst for catalytically cracking heavy oil, particularly heavy oil with a high sulfur content, in the absence of hydrogen to obtain a cracked fraction with a low sulfur content.

従来、上記重質油の接触分解用触媒としては例えば、シ
リカ、アルミナ、マグネシア等の担体にニッケル、コバ
ルト、タングステン等の金属を担持させた担持触媒或い
は、各種天然鉱石例えばニッケル鉱石を900乃至12
00℃で焼成して得られる焼成¥!IJ(特開昭52−
72388)等種々提案されている。
Conventionally, catalysts for the catalytic cracking of heavy oil include supported catalysts in which metals such as nickel, cobalt, and tungsten are supported on carriers such as silica, alumina, and magnesia, and various natural ores such as nickel ores with 900 to 12
Baked ¥ obtained by firing at 00℃! IJ (Unexamined Japanese Patent Publication No. 1983-
72388), etc. have been proposed.

しかしながら上記のような従来の触媒では、水素の存在
下で重質油を処理しない限りは分解留分中の硫黄化合物
を効果的に除去することはできず、又、特に分解ガス中
に硫化水素がほとんど存在しないようにすることは極め
て困難であった。
However, with the conventional catalysts mentioned above, sulfur compounds in the cracked fraction cannot be effectively removed unless heavy oil is treated in the presence of hydrogen, and especially hydrogen sulfide in the cracked gas cannot be removed. It was extremely difficult to ensure that there were almost no

本発明者らは、これらの問題を解消させるために鋭意検
討した結果、特定範囲の還元状態にある鉄及び/又は酸
化鉄を触媒として高硫黄含有重質油を接触分解すると、
分解留出油中の硫黄化合物が減少し、しかも分解ガス中
にほとんど硫化水素を含まず、又さらに重質油の分解率
も上昇することが分かった。
As a result of intensive studies to solve these problems, the present inventors found that when high sulfur-containing heavy oil is catalytically cracked using iron and/or iron oxide in a specific range of reduction state as a catalyst,
It was found that the sulfur compounds in the cracked distillate were reduced, the cracked gas contained almost no hydrogen sulfide, and the cracking rate of heavy oil was also increased.

本発明は、このような知見にもとづいて得られたもので
あり、分解留分中の硫黄化合物を減少させることにより
、後続の脱硫処理工程での水素消費量を減少させつる等
工業上極めて有用な触媒を提案するものである。
The present invention was obtained based on such knowledge, and by reducing the sulfur compounds in the cracked fraction, the amount of hydrogen consumed in the subsequent desulfurization treatment process is reduced, which is extremely useful in the industrial field of vines, etc. This paper proposes a new catalyst.

すなわち本発明は、鉄の含有量がFeとして30重量%
以上で、Fe、 FeO又はFe3O4の少なくとも1
種を含み、触媒中の鉄の平均構成が鉄1原子に対し酸素
1.4乃至0.8原子の範囲である水素の不存在下で行
なう高硫黄含有重質油の処理用触媒である。
That is, in the present invention, the iron content is 30% by weight as Fe.
In the above, at least one of Fe, FeO or Fe3O4
The present invention is a catalyst for the treatment of high sulfur-containing heavy oils in the absence of hydrogen, in which the average composition of iron in the catalyst is in the range of 1.4 to 0.8 atoms of oxygen per 1 atom of iron.

以下本発明を詳細に述べる。The present invention will be described in detail below.

本発明における触媒は、鉄がFeとして30重量%以下
であれば、分解生成した硫黄化合物を硫化鉄として捕捉
する機能が十分でなく、本発明の目的を達成することが
できない。
In the catalyst of the present invention, if the iron content is 30% by weight or less as Fe, the function of capturing decomposed sulfur compounds as iron sulfide is insufficient, and the object of the present invention cannot be achieved.

また、本発明においては、触媒中の鉄と酸素の平均構成
比が特定範囲にあれば、原料上特に支障となるものはな
い。
Further, in the present invention, as long as the average composition ratio of iron and oxygen in the catalyst is within a specific range, there is no particular problem in terms of raw materials.

従って鉄を30重量%以上含有する天然鉱石例えばラテ
ライト、磁鉄鉱、磁鉄鉱等或いはこれらの混合物又はこ
れらにシリカ、アルミナ、マグネシア等の耐火物を混合
したもの、さらには、塩化鉄、酸化鉄、硫酸鉄等の鉄化
合物或いはこれらに上記天然鉱石、耐火物等を混合した
もの等を原料として用いることができる。
Therefore, natural ores containing 30% by weight or more of iron, such as laterite, magnetite, magnetite, etc., or mixtures thereof, or mixtures thereof with refractories such as silica, alumina, and magnesia, as well as iron chloride, iron oxide, and iron sulfate. Iron compounds such as these, or mixtures thereof with the above-mentioned natural ores, refractories, etc., can be used as raw materials.

これらの化合物のうちでも、天然鉱石を用いるのが安価
で好ましく、特にラテライトは、触媒の調整の容易さか
ら好ましい。
Among these compounds, it is preferable to use natural ores because they are inexpensive, and laterite is particularly preferable because the catalyst can be easily adjusted.

これらの触媒原料を粉砕し造粒乾燥したのち必要な強度
を持たせるために空気中で900〜1200℃で焼成す
る。
After pulverizing, granulating and drying these catalyst raw materials, they are calcined in air at 900 to 1200°C to give them the necessary strength.

こお過程で、上記各種の鉄化合物は全てFe2O4形体
の酸化鉄となる。
In the heating process, all of the above-mentioned various iron compounds become iron oxide in the form of Fe2O4.

もちろん」−記焼成を還元雰囲気下で行なうことも考え
られるが、これは、還元された鉄がシンタリングを起し
て表面積を減少させるため触媒の分解活性が低下したり
又触媒粒子間の融着が生じるため、余り好ましくない。
Of course, it is conceivable to carry out the calcination in a reducing atmosphere, but this would reduce the decomposition activity of the catalyst due to sintering of the reduced iron and reduce the surface area, or fusion between catalyst particles. This is not very preferable because it causes staining.

ヤ次にこれ
らの焼成物を炭素と混合して還元雰囲気下に燃焼させる
か或いは、水素、一酸化炭素ガス気流中で還元させる。
Next, these fired products are mixed with carbon and burned in a reducing atmosphere, or reduced in a hydrogen or carbon monoxide gas stream.

この時750°〜950℃の温度で行なうとこの還元は
非常に円滑に進む。
At this time, this reduction proceeds very smoothly if carried out at a temperature of 750° to 950°C.

これにより上記焼成物中の酸化鉄を還元し、触媒中の鉄
の平均構成が鉄1原子に対して酸素1.4〜0.8原子
の比になるような触媒を得る。
Thereby, the iron oxide in the fired product is reduced, and a catalyst is obtained in which the average composition of iron in the catalyst is a ratio of 1.4 to 0.8 atoms of oxygen to 1 atom of iron.

一般に」二記の触媒を得る条件は、前記焼成物の結晶状
態、粒径、鉄の含有量等により変化するため一種に決め
ることはできない。
In general, the conditions for obtaining the catalyst described in section 2 cannot be determined as a single condition because they vary depending on the crystal state, particle size, iron content, etc. of the fired product.

しかし鉄の還元状態は還元工程より排出されたガス中の
酸素原子と還元工程へ導入された酸素原子のバランスに
より、次式から還元率を求め、これにより触媒中の平均
の鉄と酸素の構成原子比を算出することができる。
However, the reduction state of iron is determined by the balance between oxygen atoms in the gas discharged from the reduction process and oxygen atoms introduced into the reduction process, and the reduction rate is calculated from the following equation. Atomic ratio can be calculated.

この還元率とO/Feの原子比との関係はとして示され
る。
The relationship between this reduction rate and the O/Fe atomic ratio is shown as follows.

例えばFe2O3,Fe3O4,FeOノ形体の酸化鉄
はそれぞれ還元率が0.11.1.33.3%であり、
0/Fe (7)構成原子比は、1.5.1,33゜1
.0である。
For example, Fe2O3, Fe3O4, and FeO forms of iron oxide each have a reduction rate of 0.11.1.33.3%,
0/Fe (7) Constituent atomic ratio is 1.5.1, 33°1
.. It is 0.

一般に鉄は上記の3種の安定な酸化物を作るが本発明に
於いては、これらの酸化物或いはFeの4種の混合物と
して存在し、還元率が上がる程Fed、 Fe等の構成
比が高くなる。
Generally, iron forms the above three types of stable oxides, but in the present invention, it exists as a mixture of these oxides or four types of Fe, and the composition ratio of Fed, Fe, etc. increases as the reduction rate increases. It gets expensive.

本発明においては、この0/Feの比が1.4以上では
、分解留分中の硫黄化合物を減少させることはできず、
又、0/Feか゛0.8以下では、鉄のシンタリングが
生じ比表面積が小さくなり分解活性も、脱硫活性も低下
するため0/Feの比が1.4〜0.8の範囲において
適宜選定される。
In the present invention, if the ratio of 0/Fe is 1.4 or more, it is not possible to reduce the sulfur compounds in the cracked fraction,
Furthermore, if the ratio of 0/Fe is less than 0.8, sintering of iron occurs, the specific surface area decreases, and the decomposition activity and desulfurization activity also decrease. Selected.

上述のようにして調整した触媒は水素の不存在下に45
0−600℃の温度0〜15kg/cm□ Gの圧力下
べ高硫黄含有重質油例えば常圧蒸留残渣油、減圧蒸留残
渣油、脱れき残渣油、シエールオイル、タールサンド等
と接触させて分解する。
The catalyst prepared as described above was heated to 45% in the absence of hydrogen.
Contact with high sulfur-containing heavy oil such as atmospheric distillation residue oil, vacuum distillation residue oil, deasphalting residue oil, shale oil, tar sand, etc. at a temperature of 0-600℃ and a pressure of 0-15kg/cm□ G Disassemble.

この分解は触媒粒径を適宜選択することにより、固定層
、流動層、気流層で行なうことができる。
This decomposition can be carried out in a fixed bed, fluidized bed, or gas bed by appropriately selecting the catalyst particle size.

又、これらの触媒の脱硫活性或いは分解活性は、使用し
ている間に漸次低下していくが、触媒上に付着したコー
クの燃焼成いはスチーム等による硫化鉄の酸化鉄及び硫
化水素への分解及び還元を行なうことにより再生するこ
とができるが一般には、安価な天然鉱石を用いる場合は
、再生しないでそのまま製鉄或いは製錬工程に移送して
有価金属を回収する方法も可能である。
In addition, the desulfurization activity or decomposition activity of these catalysts gradually decreases during use, but due to the combustion of coke adhering to the catalyst or the conversion of iron sulfide into iron oxide and hydrogen sulfide due to steam, etc. Although it can be regenerated by decomposition and reduction, in general, when using inexpensive natural ores, it is also possible to recover valuable metals by directly transferring them to the iron making or smelting process without regenerating them.

以上述べたような本発明の触媒を使用することにより分
解留分中の硫黄化合物の含有量を低減することができる
ため次工程での脱硫装置での水素消費量を低下かせうる
By using the catalyst of the present invention as described above, the content of sulfur compounds in the cracked fraction can be reduced, so that the amount of hydrogen consumed in the desulfurization equipment in the next step can be reduced.

又、分解ガスにおいては、硫化水素をほとんど含まない
ため、そのまま燃料として用いることができる等の効果
を有し、さらに分解率が上昇する等工業上極めて有利な
ものといえる。
In addition, since the cracked gas contains almost no hydrogen sulfide, it has the advantage of being able to be used as a fuel as it is, and further increases the decomposition rate, making it extremely advantageous industrially.

以下本発明の実施例及び比較例に基づき本発明の効果を
具体的に述べる。
The effects of the present invention will be specifically described below based on Examples and Comparative Examples of the present invention.

実施例1〜4.比較例1〜2 Fe 55.1wt%、 Ni’ 1.26wt%、
Cr 4.09wt%。
Examples 1-4. Comparative Examples 1-2 Fe 55.1wt%, Ni' 1.26wt%,
Cr 4.09wt%.

Mg02.56wt%、 51024,69wt%、A
l2032.81wt%よりなるラテライト鉱石を粉砕
、造粒、乾燥後、空気中で1200℃3時間焼成した。
Mg02.56wt%, 51024,69wt%, A
Laterite ore consisting of 12032.81 wt% was crushed, granulated, dried, and then calcined in air at 1200°C for 3 hours.

この触媒の平均粒径は1.2mmであった。The average particle size of this catalyst was 1.2 mm.

これを水素気流中、850℃で第2表に示すそれぞれの
07Fの原子比になるまで還元した。
This was reduced in a hydrogen stream at 850° C. to the atomic ratio of each 07F shown in Table 2.

この触媒を管径43mmのステンレス製反応容器に充填
し、第1表上欄の性状を有するクラエート原油より得ら
れた減圧残渣を、第1表下欄に示す条件にて接触分解し
た。
This catalyst was filled in a stainless steel reaction vessel with a tube diameter of 43 mm, and the vacuum residue obtained from craate crude oil having the properties shown in the upper column of Table 1 was catalytically cracked under the conditions shown in the lower column of Table 1.

この実験結果を第2表に示す。The results of this experiment are shown in Table 2.

実施例 5 ラテライI・鉱石にシリカ、マグネシアを添加混合し、
粉砕、造粒、乾燥後、空気中にて1200℃で3時間焼
成した。
Example 5 Adding and mixing silica and magnesia to Laterai I ore,
After pulverization, granulation, and drying, the mixture was calcined in air at 1200° C. for 3 hours.

この焼成物の組成はFe 33.1wt%、 N12,
5wt%、 Mg019.6wt%、 5in317,
5wt%+ Al2O31,0wt%、 CaOQ、6
wt%であった。
The composition of this fired product is Fe 33.1wt%, N12,
5wt%, Mg019.6wt%, 5in317,
5wt% + Al2O3 1.0wt%, CaOQ, 6
It was wt%.

これを水素気流中850℃で還元し、0/Feの原子比
が°1.0の還元触媒を得た。
This was reduced at 850°C in a hydrogen stream to obtain a reduced catalyst with an 0/Fe atomic ratio of 1.0°.

この触媒を用いて、前記実施例と同じ原料油を接触分解
した。
Using this catalyst, the same feedstock oil as in the previous example was catalytically cracked.

この結果も併せて第2表に示した。The results are also shown in Table 2.

以上のように還元率が高い程分解留分中のS分が低下し
、又分解生成ガス中に硫化水素がほとんど含まれないこ
とが分る。
As described above, it can be seen that the higher the reduction rate, the lower the S content in the cracked fraction, and the less hydrogen sulfide is contained in the cracked gas.

このように、分解留分及び分解ガス中の硫黄化合物が低
下するのは、分解生成した硫黄化合物中の硫黄が触媒中
の還元状態の鉄と結合して硫化鉄を生成することにより
分解生成物から硫黄分力”51き抜かれるためと推測さ
れ、またこの硫黄の引抜きにより分解率も向上するもの
と考えられ、さらに逆に比較例2のように還元された鉄
がシンタリングを生じる条件では分解活性が低下するこ
とを考え合せれば、ラテライト鉱石以外でも、特定の範
囲の還元状態の鉄を含む触媒であれば、本発明に適用で
きることは明らかである。
In this way, the sulfur compounds in the cracked fraction and cracked gas decrease because the sulfur in the cracked sulfur compounds combines with the reduced iron in the catalyst to produce iron sulfide. It is assumed that this is because the sulfur component "51" is extracted from the sulfur, and that the decomposition rate is also improved by the extraction of sulfur.On the other hand, under the conditions where the reduced iron causes sintering as in Comparative Example 2, Considering that the decomposition activity decreases, it is clear that any catalyst other than laterite ore that contains iron in a reduced state within a specific range can be applied to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄の含有量がFeとして30重量%以上で、Fe、
Fed、又はFe3O4ノ少なくとも1種を含み、触
媒中の鉄の平均構成が鉄1原子に対し酸素1.4乃至0
.8原子の範囲であることを特徴とする水素の不存在下
で行う高硫黄含有重質油の処理用触媒。
1 The iron content is 30% by weight or more as Fe, Fe,
Contains at least one type of Fed or Fe3O4, and the average composition of iron in the catalyst is 1.4 to 0 oxygen per 1 atom of iron.
.. A catalyst for treating heavy oil containing high sulfur in the absence of hydrogen, characterized in that the number of atoms is in the range of 8 atoms.
JP12473379A 1979-09-29 1979-09-29 Catalyst for treatment of heavy oil containing high sulfur content Expired JPS5951335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12473379A JPS5951335B2 (en) 1979-09-29 1979-09-29 Catalyst for treatment of heavy oil containing high sulfur content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12473379A JPS5951335B2 (en) 1979-09-29 1979-09-29 Catalyst for treatment of heavy oil containing high sulfur content

Publications (2)

Publication Number Publication Date
JPS5648249A JPS5648249A (en) 1981-05-01
JPS5951335B2 true JPS5951335B2 (en) 1984-12-13

Family

ID=14892755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12473379A Expired JPS5951335B2 (en) 1979-09-29 1979-09-29 Catalyst for treatment of heavy oil containing high sulfur content

Country Status (1)

Country Link
JP (1) JPS5951335B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2013248B3 (en) * 1985-11-08 1990-05-01 Ici Plc MATERIAL FOR PACKING BED.
GB8527663D0 (en) * 1985-11-08 1985-12-11 Ici Plc Catalyst precursors

Also Published As

Publication number Publication date
JPS5648249A (en) 1981-05-01

Similar Documents

Publication Publication Date Title
US4224140A (en) Process for producing cracked distillate and hydrogen from heavy oil
US2438584A (en) Preparation of nonsintered iron catalyst
US4025604A (en) Method of removing nitrogen oxides from exhaust gas by reduction
US4208302A (en) Passivating metals on cracking catalysts
EP0016648B1 (en) A catalyst for cracking and/or oxidation of heavy hydrocarbons
US4120780A (en) Catalysts for hydrodemetallization of hydrocarbons containing metallic compounds as impurities and process for hydro-treating such hydrocarbons using such catalysts
US4264433A (en) Passivating metals on cracking catalysts by indium antimonide
US4115324A (en) Catalyst for treating heavy oils
JPH10500713A (en) Stacked bed catalyst system for advanced hydrodesulfurization
US4075125A (en) Catalysts for hydrodemetallization of hydrocarbons containing metallic compounds as impurities
US2615831A (en) Desulfurization of hydrocarbon mixtures with nickel carbonyl
JPS5951335B2 (en) Catalyst for treatment of heavy oil containing high sulfur content
US4036785A (en) Catalyst for reduction of nitrogen oxides in presence of ammonia
US4421635A (en) Process for simultaneously cracking heavy hydrocarbons into light oils and producing hydrogen
JPS6339521B2 (en)
JPS5839193B2 (en) Coal liquefaction method
CA1313651C (en) Regeneration of an iron based natural catalyst used in the hydroconversion of heavy crudes and residues
JPS58194983A (en) Coal liquid phase hydrogenation method
JPS59113090A (en) Liquefaction of coal
JPS6111278B2 (en)
JP2863920B2 (en) Method for catalytic conversion of hydrocarbon oils
SUZUKA et al. Residual Oil Cracking with Generation of Hydrogen (Part 2) Reduction and Oxidation of Iron Oxide in Fluidized Bed
CN115725334B (en) Method for treating gasoline raw material
JPS5829837B2 (en) Tankasuisoyuinoshiyorihohou
US4465784A (en) Hydrotreatment catalyst