JPS5950945B2 - Probe for 3-directional measurement - Google Patents

Probe for 3-directional measurement

Info

Publication number
JPS5950945B2
JPS5950945B2 JP6406579A JP6406579A JPS5950945B2 JP S5950945 B2 JPS5950945 B2 JP S5950945B2 JP 6406579 A JP6406579 A JP 6406579A JP 6406579 A JP6406579 A JP 6406579A JP S5950945 B2 JPS5950945 B2 JP S5950945B2
Authority
JP
Japan
Prior art keywords
axis
ultrasonic
probe
wind
wind speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6406579A
Other languages
Japanese (ja)
Other versions
JPS55156877A (en
Inventor
泰宏 小堀
政史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaijo Denki Co Ltd
Original Assignee
Kaijo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaijo Denki Co Ltd filed Critical Kaijo Denki Co Ltd
Priority to JP6406579A priority Critical patent/JPS5950945B2/en
Publication of JPS55156877A publication Critical patent/JPS55156877A/en
Publication of JPS5950945B2 publication Critical patent/JPS5950945B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • G01P5/245Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave by measuring transit time of acoustical waves

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Description

【発明の詳細な説明】 本発明は、超音波を利用して風速(又は流速)を測定す
る場合に用いるプローブに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a probe used when measuring wind speed (or flow speed) using ultrasonic waves.

風速や流速(以下単に風速という)を測定する際に超音
波を利用するのは、風があるときと、風が無いときとで
は、超音波の伝播速度が変り、超音波の伝播方向と同じ
方向に、風速のベクトル成分があると、見掛上の超音波
伝播速度は速くなるが、一方超音波伝播方向と逆つた方
向に、風速のベクトル成分があると、見掛上の超音波伝
播速度は遅くなるから、両者に就て超音波伝播時間を測
定し、測定結果に基づいて演算すれば、風速の値を算出
できるからである。
The reason why ultrasonic waves are used to measure wind speed and flow velocity (hereinafter simply referred to as wind speed) is that the propagation speed of the ultrasonic waves changes depending on whether there is wind or when there is no wind, and the direction of propagation of the ultrasonic waves is the same. If there is a vector component of wind speed in the direction, the apparent ultrasonic propagation speed becomes faster, but if there is a vector component of wind speed in the opposite direction to the ultrasonic propagation direction, the apparent ultrasonic propagation becomes faster. This is because since the speed is slow, the value of the wind speed can be calculated by measuring the ultrasonic propagation time for both and calculating based on the measurement results.

実際の測定に当つては、必要に応じて、X軸方向とY軸
方向の2方向の風速成分を求めたり、X軸とY軸に加え
てZ軸(垂直)の3方向に就て風速成分を測定する。
In actual measurements, wind speed components in two directions, the X-axis direction and the Y-axis direction, may be determined as necessary, or wind speed components may be determined in three directions, the Z-axis (vertical) in addition to the X-axis and Y-axis. Measure the ingredients.

そして各軸毎に、超音波の伝播方向に対して、風の成分
が一致する場合と、逆になる場合の2つの条件で制]定
できるように超音波送受波器を配列したプローブを構成
し、XとY軸の2方向を測定する場合は、X軸測定用プ
ローブとY軸測定用のプローブをそれぞれ別個に用い、
3方向測定も之に準する。
For each axis, a probe is constructed with ultrasonic transducers arranged so that it can be controlled under two conditions: when the wind components match and when the wind components are opposite to the propagation direction of the ultrasonic waves. However, when measuring in the two directions of the X and Y axes, use separate probes for the X-axis measurement and Y-axis measurement.
The same applies to 3-direction measurements.

そのため従来行なわれている第1の方法は、第1図に示
すように、例えばX軸方向の風速成分VXを測定する際
、超音波送受波器AとB及びCとDからなるプローブを
、それぞれ一定距離1だけ隔て、軸線の方向をX軸と一
致させ、両者を平行して並べ、AからBに向い、その反
対方向のCからDに向つて超音波を送出し、超音波の伝
播時間を測定する。
Therefore, the first method that has been conventionally used is, as shown in FIG. 1, when measuring the wind speed component VX in the They are separated by a certain distance 1, their axes are aligned with the X-axis, they are lined up in parallel, and ultrasonic waves are transmitted from A to B, and in the opposite direction from C to D, and the ultrasonic waves propagate. Measure time.

AからBに向つて超音波を送出すると、超音波伝播方向
と風速成分の方向とが一致するから、AからBまでの超
音波伝播時間を、は Jを4二 ・・・・・・・・・(1) 但し C;音の伝播速度 Vx;風速成分 次にCからDに向つて超音波を送出すると、超音フ波伝
播方向と風速成分の方向が逆であるから、CからDまで
の超音波伝播時間を。
When an ultrasonic wave is sent from A to B, the ultrasonic propagation direction and the direction of the wind speed component match, so the ultrasonic propagation time from A to B is J = 42... ...(1) However, C: Sound propagation velocity Vx: Wind velocity component Next, when ultrasonic waves are sent from C to D, the direction of ultrasonic F wave propagation and the direction of the wind velocity component are opposite, so from C to D Ultrasonic propagation time up to.

は(1)と(2)から 故に (3)式でlは一定で既知の値であるから、t1とT2
を測定すれば、風速は数値計算から求まる。
From (1) and (2), therefore, in equation (3), l is a constant and known value, so t1 and T2
If you measure , the wind speed can be found through numerical calculation.

第2図はこの方式を用い、xとY及びZの3軸方向の風
速を測定する場合のプローブの配置要領を示したもので
あり、直交する二つの面上にx軸とY軸をとり、両者と
垂直の方向をZ軸とし、かつ各プローブの軸線上に一定
距離を隔て・超音波送受波器を対向して設置し(図の・
印参照)である。そして各軸に就て、x+とx−、y+
とy一及びz+とz−で示した矢印の如く、正逆両方向
の超音波伝播時間を測定して風速を求める。しかし、一
般に風は水平方向に吹く場合が多いから、水平方向36
0゜の範囲においては、X軸かY軸と一致するか、極め
て接近する場合があり、この場合は超音波送受波器のを
面に風の影響を生じ、超音波伝播経路の中に風の乱れが
起り、測定し,ようとする風の真の姿と違つた姿になる
ので、乱れの発生を阻止することが望まれる。
Figure 2 shows the procedure for arranging the probe when measuring the wind speed in the three axes x, Y, and Z using this method. The direction perpendicular to both is the Z axis, and the ultrasonic transducers are installed facing each other at a certain distance on the axis of each probe (as shown in the figure).
(see mark). And for each axis, x+, x-, y+
As shown by the arrows y1, z+, and z-, the ultrasonic propagation time in both forward and reverse directions is measured to determine the wind speed. However, generally speaking, wind often blows horizontally, so
In the 0° range, the X-axis or Y-axis may coincide with or be very close to each other, and in this case, the effect of wind is generated on the plane of the ultrasonic transducer, and there is no wind in the ultrasonic propagation path. It is desirable to prevent the occurrence of turbulence, as this will result in a figure that is different from the true figure of the wind that is being measured.

また風速が速くなると、乱れの影響が大きくなり、その
結果、風速測定可能範囲の上限が低くなる。
Furthermore, as the wind speed increases, the influence of turbulence increases, and as a result, the upper limit of the wind speed measurable range becomes lower.

プローブを水平面と平行に設置する方法では上記の欠点
があるので、この欠点を避けるため、第2の方法では第
3図に示す通り、超音送受波器A,とBのプローブと、
CとDのプローブの軸線が互に適宜の角度で交るように
配列して構成したものを用いる。
The method of installing the probes parallel to the horizontal plane has the above-mentioned drawbacks, so in order to avoid this drawback, in the second method, as shown in FIG. 3, the probes of ultrasonic transducers A and B are
A probe is used in which the axes of the probes C and D are arranged so that they intersect with each other at an appropriate angle.

この場合は、第1図と同様にAからBに、そしてCから
Dに超音彼を送出してその伝播時間を測4定し、Y軸方
向の風速成分Vxを算出すると、となり、(3)式と異
なる点は係数Kが入ることであるが、この係数はプロー
ブの形で決る。
In this case, as in Fig. 1, we send an ultrasonic wave from A to B and from C to D, measure its propagation time, and calculate the wind speed component Vx in the Y-axis direction, which becomes ( The difference from formula 3) is that a coefficient K is included, but this coefficient is determined by the shape of the probe.

第4図は、この交又方式を用い、3軸方向の風速を測定
する場合の例を示すもので、図に見る通り、第2図と異
なる点は、x軸とY軸に関してはそれぞれの軸に傾斜を
もつて交るように、超音波送受波器を配置してある。
Figure 4 shows an example of measuring wind speed in three axes using this crossing method.As you can see, the difference from Figure 2 is that the Ultrasonic transducers are arranged so as to cross the axis at an angle.

測定の要領は第2図の場合と同様である。The measurement procedure is the same as in the case of FIG.

x軸とY軸に対して、対向して設けた超音波送θ受波器
を結ぶ軸線の方向が傾斜しているから、自然風はほとん
どが水平方向であり、垂直方向の風が少いことを考えれ
ば、超音波送受波器の軸線に沿つて風が吹くことは極め
て少いのは明らかであり、したがつて超音波伝播系路の
上に風の乱れを5生ずることが大巾に避けられる。
Since the direction of the axis connecting the ultrasonic transmitter and θ receiver installed opposite to the x-axis and Y-axis is inclined, most of the natural wind is horizontal, and there is little vertical wind. Taking this into consideration, it is clear that wind blows along the axis of the ultrasonic transducer is extremely rare, and therefore it is extremely unlikely that wind turbulence will occur on the ultrasonic propagation path. can be avoided.

しかし、この方式では超音波送受波器が送受兼用でない
ため、正逆両方向の測定にはそれぞれ違つた超音波伝播
系路を使わなければいけない、ところが、二つの系路長
1を厳密に等しくすることフは困難であり、その変差に
伴い、測定上のゼロ点がづれ、精密を要する場合は誤差
が問題となる。
However, in this method, the ultrasonic transducer is not used for both transmission and reception, so different ultrasonic propagation paths must be used for measurements in both forward and reverse directions.However, it is necessary to ensure that the two path lengths 1 are strictly equal. It is difficult to measure this, and as a result of this variation, the zero point of measurement shifts, and errors become a problem when precision is required.

本発明は、以上に述べた現状に鑑み、プローブを卒定の
対象軸上に置いた場合の欠点、すなわち超音波送受波器
による風の乱れが超音波伝播系路に発生するのを極力少
くすると共に、測定可能範囲の拡大を期し、かつ超音波
送受彼器の間隔1の偏差に基因するゼロ点の変動を除く
ようにするものである。すなわち測定の対象軸に対して
プローブを傾けることによつて、超音波送受波器による
乱れが、超音波伝播系路上に発生するのを極力避けると
共に、同一の超音波伝播系路を用いて正逆両方向の測定
を行い、超音波送受波器の間隔1の不一致に伴つて生ず
る測定上のゼロ点変動を除くように配慮したものである
In view of the current situation described above, the present invention aims to minimize the disadvantage of placing the probe on the target axis of graduation, that is, the occurrence of wind disturbance caused by the ultrasonic transducer in the ultrasonic propagation path. At the same time, it is intended to expand the measurable range, and to eliminate fluctuations in the zero point due to deviations in the interval 1 between the ultrasonic transmitter and receiver. In other words, by tilting the probe with respect to the measurement target axis, disturbances caused by the ultrasonic transducer can be avoided as much as possible on the ultrasonic propagation path, and the same ultrasonic propagation path can be used for correct measurement. Measurements are taken in both opposite directions, and consideration is given to eliminating zero-point fluctuations in measurements that occur due to discrepancies in the distance 1 between the ultrasonic transducers.

以下に実施例に就て説明する。Examples will be described below.

第5図は、本発明の実施例における3軸方向の風速測定
用のプローブの配置要領を示し、プローブはAとB及び
Cの3組で構成し、それぞれのプローブには対向して超
音波送受波器を設ける。
FIG. 5 shows the arrangement of probes for measuring wind speed in three axial directions according to the embodiment of the present invention. A transducer will be installed.

ただし之等の超音波送受波器は、送波作用と受波作用を
兼用して行う送受兼用方式に構成し、同一の系路に就て
正逆両方向の超音波伝播時間を測定するようにしてある
。3組のプローブは、水平面において適宜の角度(図は
120゜の等しい角度で3等分した例)をもつて互に交
叉させ、かつ垂直面に対して適宜の角度(図は45゜の
例)で傾斜してある。
However, such ultrasonic transducers are constructed in a dual-purpose system that performs both transmitting and receiving functions, and measure the ultrasonic propagation time in both forward and reverse directions in the same path. There is. The three sets of probes are intersected with each other at an appropriate angle in the horizontal plane (the figure shows an example of dividing the probe into three equal angles of 120 degrees), and at an appropriate angle with respect to the vertical plane (the figure shows an example of 45 degrees). ).

3組のプローブ毎に超音波伝播時間を測定すると、それ
ぞれのプローブの軸線方向における風速が求まるが、こ
のま・では所望のxとY及びZ軸に就ての風速を表示で
きないから、XとY及びZ軸の値に換算しなければいけ
ない。
By measuring the ultrasonic propagation time for each of the three sets of probes, the wind speed in the axial direction of each probe can be determined, but as it is currently impossible to display the desired wind speeds in the x, Y, and Z axes, It must be converted into Y and Z axis values.

この換算は、幾何学の座標変換を行い解析した数値計算
の結果を用いればよいから、プローブの配置が決まつて
おれば、予め換算の要領を決めておける。
This conversion can be performed by using the results of numerical calculations performed and analyzed by geometric coordinate transformation, so if the arrangement of the probes is determined, the method of conversion can be determined in advance.

図の場合は、途中の計算過程を省略して結果だけをまと
めてみると、かくして、本発明によるプローブを用いて
風速を測定すると、超音波伝播系路に対する風の乱れの
発生が大巾に少くなり、また超音波伝播系路の長さの違
いによつて生ずる測定上のゼロ点の変動が無くなるなど
、実用上の効果は大きい。
In the case of the figure, if we omit the intermediate calculation process and just summarize the results, we can see that when wind speed is measured using the probe according to the present invention, the occurrence of wind turbulence in the ultrasonic propagation system is greatly reduced. This has great practical effects, such as eliminating fluctuations in the measurement zero point caused by differences in the length of the ultrasonic propagation path.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超音波送受波器を、測定対象軸に沿つて対向し
て設置した従来の例。
Figure 1 shows a conventional example in which ultrasonic transducers are installed facing each other along the measurement target axis.

Claims (1)

【特許請求の範囲】[Claims] 1 超音波を用いて水平面内のX軸とY軸及び之等2軸
と直角のZ軸に対する3方向の風速(又は流速)を測定
する装置に用いる3組のプローブであつて、各プローブ
には一定距離を隔て、送受兼用型の超音波送受波器が向
き合つて取付けられており、かつ向き合つた超音波送受
波器同志を結ぶ各プローブの軸線は、それぞれ相互の間
に、超音波送受波器の置かれる水平面において適宜に決
めた角度を保つようにして軸線の中点を通つて交叉する
と共に、適宜に決めた角度だけ垂直面に対して傾斜して
いることを特徴とする3方面測定用のプローブ。
1 Three sets of probes used in a device that uses ultrasonic waves to measure wind speed (or flow speed) in three directions relative to the X-axis, Y-axis in a horizontal plane, and Z-axis perpendicular to the two axes, each probe having a Ultrasonic transducers for transmitting and receiving are installed facing each other at a certain distance apart, and the axis of each probe that connects the facing ultrasonic transducers is It is characterized by intersecting through the midpoint of the axis so as to maintain an appropriately determined angle in the horizontal plane on which the transducer is placed, and being inclined with respect to the vertical plane by an appropriately determined angle. Probe for measuring direction.
JP6406579A 1979-05-25 1979-05-25 Probe for 3-directional measurement Expired JPS5950945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6406579A JPS5950945B2 (en) 1979-05-25 1979-05-25 Probe for 3-directional measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6406579A JPS5950945B2 (en) 1979-05-25 1979-05-25 Probe for 3-directional measurement

Publications (2)

Publication Number Publication Date
JPS55156877A JPS55156877A (en) 1980-12-06
JPS5950945B2 true JPS5950945B2 (en) 1984-12-11

Family

ID=13247312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6406579A Expired JPS5950945B2 (en) 1979-05-25 1979-05-25 Probe for 3-directional measurement

Country Status (1)

Country Link
JP (1) JPS5950945B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180471U (en) * 1982-05-28 1983-12-02 海上電機株式会社 Ultrasonic anemometer that prevents snow from accreting

Also Published As

Publication number Publication date
JPS55156877A (en) 1980-12-06

Similar Documents

Publication Publication Date Title
EP0598720B1 (en) Nonintrusive flow sensing system
JPS62197714A (en) Ultrasonic type measuring apparatus
CN110346600B (en) Ultrasonic wind speed and wind direction measuring method
EP1149268B1 (en) Method for improving measurements by laser interferometer
JPH0447770B2 (en)
JPS5950945B2 (en) Probe for 3-directional measurement
WO2022082698A1 (en) Correction method and apparatus for ultrasonic anemograph
JPS629223A (en) Air flow rate measuring method using ultrasonic wave
US4391136A (en) Three-axis current meter
JPH09257818A (en) Ultrasonic anemometer
JPS6140050B2 (en)
JPH0447768B2 (en)
JPH0882540A (en) Ultrasonic flow-rate measuring method and ultrasonic flowmeter
JP2001183200A (en) Flowmeter and flow-rate measuring method
US4295378A (en) Method and apparatus for flow measurement using Doppler frequency shift
Ashrafzadeh et al. Analysis of velocity estimation error for a multidimensional Doppler ultrasound system
Jackson et al. A three-path ultrasonic flowmeter for small-diameter pipelines
JPH0791996A (en) Ultrasonic flowmeter
CA2506399A1 (en) An apparatus and method for providing a flow measurement compensated for entrained gas
JPS6098324A (en) Thermometer
JPH08178943A (en) Method and device for measuring wind velocity and direction
JPS63266376A (en) Acoustic wave positioning system
JPS622182A (en) Underwater position measuring instrument
JPS60202310A (en) Ultrasonic-wave type flow-rate measuring device
JPH10260253A (en) Method and apparatus for controlling position of wave transmitter