JPS5950912B2 - refrigeration cycle - Google Patents

refrigeration cycle

Info

Publication number
JPS5950912B2
JPS5950912B2 JP54100848A JP10084879A JPS5950912B2 JP S5950912 B2 JPS5950912 B2 JP S5950912B2 JP 54100848 A JP54100848 A JP 54100848A JP 10084879 A JP10084879 A JP 10084879A JP S5950912 B2 JPS5950912 B2 JP S5950912B2
Authority
JP
Japan
Prior art keywords
refrigerant
heater
liquid reservoir
liquid
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54100848A
Other languages
Japanese (ja)
Other versions
JPS5625663A (en
Inventor
登 中川
眞人 堤
明 河本
稔志 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP54100848A priority Critical patent/JPS5950912B2/en
Publication of JPS5625663A publication Critical patent/JPS5625663A/en
Publication of JPS5950912B2 publication Critical patent/JPS5950912B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 本発明は液溜め部に連結された冷媒供給通路をヒータで
加熱することにより冷媒供給を行なう冷凍サイクルに関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration cycle in which refrigerant is supplied by heating a refrigerant supply passage connected to a liquid reservoir with a heater.

例えば二温度式冷蔵庫では、通常冷凍室用冷却器及び冷
蔵室用冷却器を用いて、冷凍室及び冷蔵室を夫々個別に
冷却するようにしている。
For example, in a two-temperature refrigerator, a freezer compartment cooler and a refrigerator compartment cooler are usually used to separately cool the freezer compartment and the refrigerator compartment.

この場合、夫々の冷却器への冷媒供給を制御する方式の
一例として、コンプレッサで圧縮されてコンデンサによ
り液化された液冷媒を液溜め器に一旦貯留し、液溜め器
内に貯留する液冷媒が所定液量を越えると冷凍室用冷却
器への冷媒供給を開始し、一方液溜め器と冷蔵室用冷却
器とを連結する冷媒供給用通路の所定部位を冷蔵室温に
応じて通断電されるヒータで加熱することによりこの冷
媒供給用通路内の加熱部分の液冷媒を沸騰させ、その気
泡のポンプ作用を利用して液溜め器から冷蔵室用冷却器
への冷媒供給を行うようにしたものが供されている。
In this case, as an example of a method for controlling refrigerant supply to each cooler, liquid refrigerant that has been compressed by a compressor and liquefied by a condenser is temporarily stored in a liquid reservoir, and the liquid refrigerant stored in the liquid reservoir is When a predetermined amount of liquid is exceeded, refrigerant supply to the freezer compartment cooler is started, while a predetermined portion of the refrigerant supply passage connecting the liquid reservoir and the refrigerator compartment cooler is energized or disconnected depending on the refrigerator room temperature. The liquid refrigerant in the heated portion of the refrigerant supply passage is heated by a heater, and the pumping action of the bubbles is used to supply refrigerant from the liquid reservoir to the cooler for the refrigerator compartment. Something is being offered.

しかしながらこの構成のものでは、冷蔵室温の上昇を検
知してヒータへの通電を開始した場合、加熱された液冷
媒はその液温か沸点に達しても直ちに沸騰せず、実際に
は沸点以上の温度にまで過熱された後に突沸して気泡を
発生するために、ヒータへの通電開始から突沸の起る過
熱状態へ至るまでの間冷蔵室用冷却器への冷媒供給が遅
れその間に冷蔵室温が上昇してしまうという問題があっ
た。
However, with this configuration, when a rise in the refrigerator room temperature is detected and power is started to the heater, the heated liquid refrigerant does not boil immediately even if the liquid temperature reaches the boiling point, and the temperature actually exceeds the boiling point. After being overheated, bumping occurs and bubbles are generated, so the refrigerant supply to the refrigerator room cooler is delayed from the time the heater is turned on until it reaches the overheated state where bumping occurs, during which time the refrigerator room temperature rises. There was a problem with this.

このため前記構成のものにおいては、冷蔵室の正確な温
度制御を行うために、冷媒供給の開始がヒータの通断電
に対してより迅速に応答して行なわれるよう改良するこ
とが要望されていた。
Therefore, in order to accurately control the temperature of the refrigerator compartment, it is desired to improve the structure described above so that the refrigerant supply can be started more quickly in response to the energization or disconnection of the heater. Ta.

本発明は上記事情に鑑みてなされたもので、液溜め部に
連結された冷媒供給通路のヒータ加熱部分の内面に凹凸
部を形成させ、液冷媒を冷媒の沸点に達した時点で直ち
に気泡を発生し得るようにして、正確な冷媒供給制御を
図ることのできる冷凍サイクルを提供するにある。
The present invention has been made in view of the above-mentioned circumstances, and is made by forming an uneven part on the inner surface of the heater heating part of the refrigerant supply passage connected to the liquid reservoir, so that air bubbles are immediately removed when the liquid refrigerant reaches the boiling point of the refrigerant. An object of the present invention is to provide a refrigeration cycle that can accurately control refrigerant supply so that refrigerant can occur.

以下本発明を二温度式冷蔵庫に適用した一実施例を図面
を参照して説明する。
An embodiment in which the present invention is applied to a two-temperature refrigerator will be described below with reference to the drawings.

1はコンプレッサで、これの吐出口1aをコンデンサ2
及びキャピラリチューブ3を順に介して液溜め器4の向
上部に連結している。
1 is a compressor, and its discharge port 1a is connected to a condenser 2
It is connected to the upper part of the liquid reservoir 4 via the capillary tube 3 and the capillary tube 3 in this order.

5は冷蔵室(図示せず)内に配設される冷蔵室用冷却器
、6は箱形に形成されてその内部を冷凍室(図示せず)
とした冷凍室用冷神器で、冷蔵室用冷却器5の出口5a
を冷凍室用冷却器6の入口6aに連結し、更に冷凍室用
冷却器6の出口6bをサクションパイプ7を介して前記
コンプレッサ1の吸入口1bに連結している。
Reference numeral 5 denotes a refrigerator cooler installed in the refrigerator compartment (not shown), and 6 is formed into a box shape, the inside of which is used as a freezer compartment (not shown).
In the refrigerator compartment cooler 5, the outlet 5a of the refrigerator compartment cooler 5 is
is connected to the inlet 6a of the freezer compartment cooler 6, and furthermore, the outlet 6b of the freezer compartment cooler 6 is connected to the suction port 1b of the compressor 1 via a suction pipe 7.

8は前記液溜め器4から冷凍室用冷却器6へ液冷媒を供
給する冷媒パイプで、これの一端部を液溜め器4の底壁
から内部へ上向きに所定長さ突出させ、他端部を冷凍室
用冷却器6の入口6aに前記冷蔵室用冷却器5の出口5
aと共に連結している。
Reference numeral 8 denotes a refrigerant pipe for supplying liquid refrigerant from the liquid reservoir 4 to the freezer compartment cooler 6, one end of which projects upward for a predetermined length from the bottom wall of the liquid reservoir 4, and the other end. The outlet 5 of the refrigerator compartment cooler 5 is connected to the inlet 6a of the freezer compartment cooler 6.
It is connected with a.

これにより、キャピラリチューブ3の吐出口3aから吐
出されて液溜め器4内に貯留した液冷媒の液位が前記冷
媒パイプ8上端部を越えるようになったとき、液冷媒が
冷媒パイプ8に流入して液溜め器4内とサクションパイ
プ7との圧力差によって液冷媒が冷凍室用冷却器6に供
給されるようになっている。
As a result, when the level of the liquid refrigerant discharged from the discharge port 3a of the capillary tube 3 and stored in the liquid reservoir 4 exceeds the upper end of the refrigerant pipe 8, the liquid refrigerant flows into the refrigerant pipe 8. The liquid refrigerant is supplied to the freezer compartment cooler 6 due to the pressure difference between the liquid reservoir 4 and the suction pipe 7.

9は冷媒供給通路としての制御パイプで、これはその一
端部を液溜め器4内に上向きに若干突出させていると共
に、途中部分を略U字状に曲成して上向きに指向させ、
他端部を液溜め器4内よりも高い位置で略逆U字状に曲
成して前記冷蔵室用冷却器50入口5bに連通する接続
パイプ10の上端部に連結している。
Reference numeral 9 designates a control pipe as a refrigerant supply passage, which has one end slightly protruding upward into the liquid reservoir 4, and a midway portion bent into a substantially U-shape to direct upward.
The other end is bent into a substantially inverted U shape at a position higher than the inside of the liquid reservoir 4, and is connected to the upper end of a connecting pipe 10 communicating with the inlet 5b of the refrigerator compartment cooler 50.

ところで、この制御パイプ9の立上り部9aの下部位は
、後述するヒータにより加熱されるヒータ加熱部分とし
ての加熱部11であって、この加熱部11の周壁には内
側に凹ませた多数の略V字状の溝12を形成し、もって
その内面を凹凸状に形成している(第3図参照)。
By the way, the lower part of the rising part 9a of this control pipe 9 is a heating part 11 as a heater heating part heated by a heater to be described later, and the peripheral wall of this heating part 11 has a large number of inwardly recessed portions. A V-shaped groove 12 is formed, and the inner surface thereof is formed into an uneven shape (see FIG. 3).

13は加熱部11の外周壁に巻装した前述のヒータで、
これは制御パイプ9の加熱部11を加熱して内部の液冷
媒を沸騰させ、その気泡のポンプ作用によって液冷媒を
冷蔵室用冷却器5へ供給するためのものである。
13 is the aforementioned heater wrapped around the outer peripheral wall of the heating section 11;
This is for heating the heating part 11 of the control pipe 9 to boil the liquid refrigerant inside, and supplying the liquid refrigerant to the refrigerator compartment cooler 5 by the pump action of the bubbles.

14は液溜め器4の上部と前記接続パイプ10の上端部
との間を連結する均圧パイプで、これにより、接続パイ
プ10の内圧を液溜め器4の内圧と均衡させて、液溜め
器4内の液冷媒が圧力差によって冷蔵室用冷却器5側に
供給されることのないようにしている。
Reference numeral 14 denotes a pressure equalizing pipe that connects the upper part of the liquid reservoir 4 and the upper end of the connecting pipe 10, and thereby balances the internal pressure of the connecting pipe 10 with the internal pressure of the liquid reservoir 4, so that the liquid reservoir The liquid refrigerant in the refrigerator compartment 4 is prevented from being supplied to the refrigerator compartment cooler 5 side due to the pressure difference.

次に上記構成の作用を説明する。Next, the operation of the above configuration will be explained.

まず、本実施例では、コンプレッサ1のモータは冷凍室
温を検知してオンオフ作動する冷凍室温検知スイッチに
よって通断電制御され、またヒータ13は冷蔵室温検知
スイッチにより通断電制御されることを基本とする。
First, in this embodiment, the motor of the compressor 1 is controlled to be turned on and off by a freezing room temperature detection switch which detects the freezing room temperature and turns on and off, and the heater 13 is basically controlled to be turned on and off by a refrigeration room temperature detection switch. shall be.

さて冷凍室及び冷蔵室の各室温が設定値以上にあること
を検知すると、上記両検知スイッチは共にオンになり、
従ってコンプレッサ1は運転状態に入り、またヒータ1
3は制御パイプ9の加熱部11を力[熱し始める。
Now, when it is detected that the room temperature in the freezer and refrigerator compartments is above the set value, both of the above detection switches are turned on.
Therefore, the compressor 1 goes into operation and the heater 1
3 starts heating the heating part 11 of the control pipe 9.

この状態では、コンデンサ2で液化した液冷媒はキャピ
ラリチューブ3の吐出口3aから液溜め器4内に流入し
て一旦ここに貯留され、同時に制御パイプ9内にも液溜
め器4内と同一液位になるよう自然流入する。
In this state, the liquid refrigerant liquefied in the condenser 2 flows into the liquid reservoir 4 from the discharge port 3a of the capillary tube 3 and is temporarily stored there. There will be a natural influx of water.

そして液溜め器4に貯留された液冷媒の一部は、冷媒パ
イプ8を介して冷凍室用冷却器6へ供給され、ここでガ
ス化してサクションパイプ7を介してコンプレッサ1に
戻される。
A part of the liquid refrigerant stored in the liquid reservoir 4 is supplied to the freezer compartment cooler 6 via the refrigerant pipe 8, where it is gasified and returned to the compressor 1 via the suction pipe 7.

一方、制御パイプ9の加熱部11はヒータ13による加
熱状態にあるから、ついには内部の液冷媒が沸騰を始め
多数の気泡を発生するようになる。
On the other hand, since the heating section 11 of the control pipe 9 is heated by the heater 13, the liquid refrigerant inside eventually begins to boil and generate many bubbles.

このため制御パイプ9内の液冷媒ひいては液溜め器4内
の液冷媒は、その気泡のポンプ作用によってこの制御パ
イプ9及び接続パイプ10を介して連続的に冷蔵室用冷
却器5に供給され、ここでその大部分がガス化し、更に
冷凍室用冷却器6でその残部が全てガス化してサクショ
ンパイプ7を介してコンプレッサ1に戻される。
Therefore, the liquid refrigerant in the control pipe 9 and, in turn, the liquid refrigerant in the liquid reservoir 4 is continuously supplied to the refrigerator compartment cooler 5 via the control pipe 9 and the connecting pipe 10 by the pumping action of the bubbles. Most of it is gasified here, and the remaining part is all gasified in the freezer cooler 6 and returned to the compressor 1 via the suction pipe 7.

以上のような冷媒供給により、冷蔵室用冷却器5及び冷
凍室用冷却器6は冷却作用を生じ、冷凍室及び冷蔵室の
各室温が徐々に低下し、冷蔵室が設定温度まで冷却され
ると冷蔵室温検知スイッチがオフしてヒータ13への通
電を断つ。
By supplying the refrigerant as described above, the refrigerator compartment cooler 5 and the freezer compartment cooler 6 produce a cooling effect, and the room temperature of each of the freezer compartment and the refrigerator compartment gradually decreases, and the refrigerator compartment is cooled to the set temperature. Then, the refrigerator room temperature detection switch turns off and the power to the heater 13 is cut off.

すると、液溜め器4から冷蔵室用冷却器5への液冷媒の
供給が停止され、冷凍室用冷却器6による冷凍室の冷却
のみが続行される状態となる。
Then, the supply of liquid refrigerant from the liquid reservoir 4 to the refrigerator compartment cooler 5 is stopped, and only the freezing compartment cooler 6 continues to cool the freezer compartment.

この状態において冷蔵室側扉の開閉を頻繁に行う等して
冷蔵室温が上昇した場合には、ヒータ13が再び通電さ
れて冷蔵室用冷却器5への液冷媒の供給が再開する。
In this state, if the refrigerator room temperature rises due to frequent opening and closing of the refrigerator compartment side door, the heater 13 is energized again and the supply of liquid refrigerant to the refrigerator compartment cooler 5 is restarted.

而して、冷凍室が設定温度まで冷却されると、冷凍室温
検知スイッチがオフしてコンプレッサ1を停止させ、以
上により一冷却サイクル動作が完了する。
When the freezing chamber is cooled to the set temperature, the freezing room temperature detection switch is turned off to stop the compressor 1, and one cooling cycle operation is thus completed.

そして、冷凍室温が設定温度以上になると、再びコンプ
レッサ1が運転され、上記のような一冷却サイクル動作
が開始される。
Then, when the freezing room temperature becomes equal to or higher than the set temperature, the compressor 1 is operated again, and one cooling cycle operation as described above is started.

ところで、一般に液体を加熱して気泡を発生させる場合
、伝熱面が平滑であると、気泡発生の契機が無いことか
ら、液体がその沸点に達しても直ちに沸騰を開始せず、
ある程度の過熱状態に達したところで突然沸騰を始める
という突沸現象が見られる。
By the way, in general, when heating a liquid to generate bubbles, if the heat transfer surface is smooth, there is no opportunity for bubble generation, so even if the liquid reaches its boiling point, it will not start boiling immediately.
A bumping phenomenon occurs in which boiling suddenly begins when a certain level of overheating is reached.

そして気泡ポンプ作用を利用して冷媒供給制御を行なう
冷凍サイクルにあっては1、内面が平滑な通常のパイプ
を使用した場合、庫内温度が所定以上に達したことを感
知してヒータを通電しても、気泡を発生するまでの時間
が長くかかり、しかもその時間が一定しないため、効果
的な温度制御が行なえない。
In a refrigeration cycle that uses bubble pump action to control refrigerant supply, 1. If a normal pipe with a smooth inner surface is used, the heater will be energized when it senses that the internal temperature has reached a predetermined level. However, since it takes a long time to generate bubbles and the time is not constant, effective temperature control cannot be performed.

また、通電開始から気泡を発生させるまでの時間を短縮
させるためヒータ容量を必要以上に大きくし、短時間で
過熱状態に至らせしめるようにすると、ヒータ外周部へ
の熱影響が大となり、また、消費電力量も増大する等の
問題点がある。
Furthermore, in order to shorten the time from the start of energization to the generation of bubbles, if the heater capacity is made larger than necessary and the heater reaches an overheating state in a short time, the thermal effect on the outer periphery of the heater becomes large. There are problems such as an increase in power consumption.

これに対し本実施例では、制御パイプ9の加熱部11の
外周壁に多数の溝12を形成することによってその内面
を凹凸状に形成し、特に凹部分において生ずる微小気泡
を核として沸騰が円滑に開始されるようにしてその沸点
に達したところで直ちに気泡を発生するようにしたもの
である。
In contrast, in this embodiment, a large number of grooves 12 are formed on the outer circumferential wall of the heating section 11 of the control pipe 9, thereby making the inner surface uneven and smooth boiling with microbubbles generated especially in the concave portions as nuclei. When the boiling point is reached, bubbles are generated immediately after the boiling point is reached.

このためヒータ13への通電開始から短時間で冷媒が冷
蔵室用冷却器5に供給され始め、冷蔵室は迅速に冷却さ
れることになる。
Therefore, the refrigerant starts to be supplied to the refrigerator compartment cooler 5 within a short time from the start of energization to the heater 13, and the refrigerator compartment is quickly cooled.

また、加熱部11を高過熱状態にする必要がないため、
ヒータ13への通電を断てば液冷媒の温度は直ちに沸点
以下まで降下し気泡の発生は速やかに停止する。
In addition, since it is not necessary to bring the heating section 11 into a highly overheated state,
When the power to the heater 13 is cut off, the temperature of the liquid refrigerant immediately drops below its boiling point, and the generation of bubbles immediately stops.

このため、冷媒を供給し過ぎて冷蔵室が適冷状態になる
虞れもない。
Therefore, there is no risk that the refrigerant compartment will become appropriately cooled due to excessive supply of refrigerant.

即ち本実施例では、液冷媒の突沸現象による冷媒の供給
あるいは停止の応答の遅れを防止することができるから
、冷蔵室温の上下変動を小さく抑えることができ、冷蔵
室の正確な温度制御を行うことができる。
That is, in this embodiment, it is possible to prevent a delay in the response of supplying or stopping the refrigerant due to the bumping phenomenon of the liquid refrigerant, so it is possible to suppress fluctuations in the temperature of the refrigerator room to a small extent, and to perform accurate temperature control of the refrigerator compartment. be able to.

しかもこのように優れた効果を奏するものでありながら
、制御パイプ9内面の凹凸は、その周壁を内部に凹ませ
て形成した多数の溝12により形成したから、加工は外
部から行い得て比較的容易で、しかも溝12はその周囲
に巻装したヒータ13の動き止めとしても作用させるこ
とができる。
Moreover, although it has such an excellent effect, since the unevenness on the inner surface of the control pipe 9 is formed by a large number of grooves 12 formed by recessing the peripheral wall inside, the processing can be performed from the outside and is relatively simple. This is easy, and the groove 12 can also act as a stop for the heater 13 wrapped around it.

本発明は以上述べたように、液溜め部に連結された冷媒
供給通路をヒータで加熱して冷媒供給を行うようにした
ものにおいて、冷媒供給通路のヒータ加熱部分の内面を
凹凸状に形成したことによって、冷媒供給通路内の液冷
媒の気泡の発生あるいはその停止をヒータの通断電に対
し迅速に応答し得るようになし得て冷媒の供給制御の応
答性を改善し、もって正確な温度制御を図ることのでき
る冷凍サイクルを提供することができる。
As described above, the present invention supplies a refrigerant by heating a refrigerant supply passage connected to a liquid reservoir with a heater, in which the inner surface of the heater heating portion of the refrigerant supply passage is formed in an uneven shape. By doing so, it is possible to quickly respond to the heater's energization or disconnection to prevent the generation or stop of bubbles in the liquid refrigerant in the refrigerant supply passage, thereby improving the responsiveness of refrigerant supply control and ensuring accurate temperature control. A refrigeration cycle that can be controlled can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は冷凍サイクル
構成図、第2図は液溜め器の側断面図、第3図は一部破
断して示す要部の側面図である。 図中、4は液溜め器(液溜め部)、9は制御パイプ(冷
媒供給通路)、11は加熱部(ヒータ加熱部分)、13
はヒータである。
The drawings show an embodiment of the present invention; FIG. 1 is a configuration diagram of a refrigeration cycle, FIG. 2 is a sectional side view of a liquid reservoir, and FIG. 3 is a partially cutaway side view of essential parts. In the figure, 4 is a liquid reservoir (liquid reservoir part), 9 is a control pipe (refrigerant supply passage), 11 is a heating part (heater heating part), 13
is a heater.

Claims (1)

【特許請求の範囲】[Claims] 1 コンデンサ側からの冷媒を液溜め部に貯留して、こ
の液溜め部に連結された冷媒供給通路をヒータにより加
熱し、この加熱により生ずる気泡のポンプ作用によって
前記液溜め部の冷媒を冷却器側に供給するようにしたも
のにおいて、前記冷媒供給通路のヒータ加熱部分の内面
に凹凸状部を形成したことを特徴とする冷凍サイクル。
1 The refrigerant from the condenser side is stored in a liquid reservoir, the refrigerant supply passage connected to this liquid reservoir is heated by a heater, and the refrigerant in the liquid reservoir is pumped into the cooler by the pumping action of bubbles generated by this heating. 1. A refrigeration cycle in which refrigerant is supplied to the side, characterized in that an uneven portion is formed on an inner surface of a heater heating portion of the refrigerant supply passage.
JP54100848A 1979-08-08 1979-08-08 refrigeration cycle Expired JPS5950912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54100848A JPS5950912B2 (en) 1979-08-08 1979-08-08 refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54100848A JPS5950912B2 (en) 1979-08-08 1979-08-08 refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS5625663A JPS5625663A (en) 1981-03-12
JPS5950912B2 true JPS5950912B2 (en) 1984-12-11

Family

ID=14284733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54100848A Expired JPS5950912B2 (en) 1979-08-08 1979-08-08 refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS5950912B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120162A (en) * 1983-11-30 1985-06-27 松下冷機株式会社 Changeover device for flow path of refrigerant
JPS62135827A (en) * 1985-12-09 1987-06-18 Konishiroku Photo Ind Co Ltd Heat developable color photosensitive material
JPH07120015B2 (en) * 1986-04-18 1995-12-20 富士写真フイルム株式会社 Dye fixing element

Also Published As

Publication number Publication date
JPS5625663A (en) 1981-03-12

Similar Documents

Publication Publication Date Title
WO2020233675A1 (en) Single-system refrigerator, control system and control method for same, and storage medium
US2359595A (en) Refrigerating system
EP1714095B1 (en) Heater cycling for improved oil return
US10753675B2 (en) Refrigerator and method of controlling the same
JPS5950912B2 (en) refrigeration cycle
US20140260349A1 (en) Method and system for controlling the initiation of a freeze cycle pre-set time in an ice maker
JP2005201626A (en) Cooling device and cooling method
KR20180057274A (en) Refrigerator and method for controlling defrosting of the same
KR101652523B1 (en) A refrigerator and a control method the same
JP2002122362A (en) Heat pump hot water supplier
US3465537A (en) Icemaker using condenser cooling water as thawing medium
JP4284304B2 (en) Heat pump water heater, operating method thereof, refrigeration cycle apparatus
JP2003056907A (en) Heat pump water heater
JPH08296895A (en) Heat pump hot-water supply apparatus
JPH05240547A (en) Device for controlling temperature in cold-storage chamber in refrigerator
KR100424071B1 (en) A method for operating kimchi-refrigerators
KR100607262B1 (en) Wine cellar and temperature controlling method of the same
JPS5928285Y2 (en) Refrigeration equipment
JP3365387B2 (en) Heat pump water heater
KR0145809B1 (en) Control method and device for hot water in a refrigerator
SU1183795A1 (en) Domestic refrigerator
KR840000421Y1 (en) Refrigerating apparatus
JP2008101810A (en) Control device for refrigerator
KR20020057091A (en) Control Method for Refrigerator Cooling Speed
JPS626459Y2 (en)