JPS5950896A - Attitude acquisition system of triaxial attitude control satellite - Google Patents

Attitude acquisition system of triaxial attitude control satellite

Info

Publication number
JPS5950896A
JPS5950896A JP57161882A JP16188282A JPS5950896A JP S5950896 A JPS5950896 A JP S5950896A JP 57161882 A JP57161882 A JP 57161882A JP 16188282 A JP16188282 A JP 16188282A JP S5950896 A JPS5950896 A JP S5950896A
Authority
JP
Japan
Prior art keywords
axis
attitude
satellite
euler
acquisition system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57161882A
Other languages
Japanese (ja)
Other versions
JPH0319840B2 (en
Inventor
健 前田
村中 昇
順一 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57161882A priority Critical patent/JPS5950896A/en
Publication of JPS5950896A publication Critical patent/JPS5950896A/en
Publication of JPH0319840B2 publication Critical patent/JPH0319840B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は人工衛星の姿勢制御方式に関し、著に三軸姿勢
制御さf+る衛星の姿勢捕捉方式に門するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an attitude control system for an artificial satellite, and particularly relates to an attitude acquisition system for a satellite using three-axis attitude control (f+).

従来、三軸姿勢制御方式の人工骨:星において、慣性基
準装置(衛星の各軸゛まわりの角速1■を検出する装置
)を第1団1した人工衛Fの姿勢抽tj′方式がいくつ
かr(;1発されている。これらの主なものは、悄+′
F−基準装置から出力される伽星の角速度をオイラーパ
ラメータ法、オイラー角法、オイラー軸/オイラー角法
等の1′夕学的′手段を利用して粕分し、逐次の衛」姿
勢を検出することにより姿勢誤差を引算し、それにスベ
ーいて1・11μの姿勢1間fi’l+を実施する方式
である。このような方式は、姿勢検出の精IL−がよい
反面、上記積分の為に特殊な!−IAか必要であり、ま
た引33枳を利用する%p I、+1〆1自体が主11
を11になるという欠点がある。更に姿勢林出の本η的
なダδ何学的悼質よシ制御系自住非紗型のものになると
いう火力もある。
Conventionally, an artificial bone using a three-axis attitude control method: At a star, the attitude extraction method of the artificial satellite F, which uses an inertial reference device (a device that detects the angular velocity 1 about each axis of the satellite) in the first group, was used. There are several r(;1 utterances. The main ones of these are
The angular velocity of the comet output from the F-reference device is divided into pieces using 1'-event methods such as the Euler parameter method, Euler angle method, Euler axis/Euler angle method, etc., and the successive "guard" attitude is determined. This is a method of subtracting the attitude error by detecting it, and based on it, performs fi'l+ for one attitude of 1.11μ. Although such a method is good at accurately detecting posture, it requires a special method for the above-mentioned integration. -IA is required, and %p I, +1〆1 itself is the main 11
It has the disadvantage that it becomes 11. In addition, there is also the firepower that Hayashide's original η-like, mathematical nature is transformed into a control system that is self-sufficient.

木兄りIIの目的は、前述の様な初頼な数学的手段な第
1;用する姿勢検出を小剣にし、また、姿勢制御を重唱
l!制御系で構成することによりて系全体の安定性のm
Wをh′易にてきるようにした三軸姿勢fliili(
’fli星の′e勢・神折、方式を提供することにある
The purpose of Kienori II is to use the basic mathematical means mentioned above to detect posture, and also to improve posture control! The stability of the entire system can be improved by configuring it with a control system.
Three-axis posture flilli (
The goal is to provide a method for the 'fli stars'.

本発明は、姿勢捕捉のシーケンスを各軸まわシの微小角
に分散し各個の微小角の捕捉のみに閉ループ制御を適用
し、その微小角の姿勢変更指定をシーケンス制*nによ
りて行なうことを% ?としている。
The present invention distributes the posture capture sequence into minute angles around each axis, applies closed-loop control only to the capture of each minute angle, and specifies the posture change of that minute angle using a sequence system*n. %? It is said that

本発明によれば、三軸姿勢制御される人工衛星の三軸方
向の衛星角速度を検出する手段と、との検出手段に接続
され角速度を和分する手段と、との積分手段に入力され
る姿勢震災のだめの信号を発生ずる手段と、前記積分手
段の出力を零にするようfC,各軸まわりの回転角を制
御する手段とを含み、前記人工衛星の姿勢を任意に捕捉
する三軸姿勢制御1衛星の於勢抽捉方式が得られる。
According to the present invention, the means for detecting the satellite angular velocity in the three-axis directions of an artificial satellite subjected to three-axis attitude control; the means connected to the detecting means of and for integrating the angular velocity; A three-axis system for arbitrarily capturing the attitude of the artificial satellite, including means for generating an attitude earthquake signal, and means for controlling fC and rotation angles around each axis so as to make the output of the integrating means zero; A force acquisition method for attitude control 1 satellite is obtained.

以下図面を参照しながら本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は本発明の実施例を示すブロック図である。リア
クションホイール1はX軸方向にトル7を発生し、X軸
ジャイロ装置4はX軸方向に入力軸を持ち1.角度増分
パルスを出力するタイプのものである。11はシーケン
ス制nt+の為の基準クロック発振器であり、オイラー
角fJt算カウンター10はこの発振器11より出力さ
れるパルス数をカウントし、目標姿勢までの回転角に相
当する値(Nα)になれば捕捉イ・仝止スイッチ12を
開く。X軸分周器8はX軸まわシに足レートω、で回転
さゼる為に発振器11からのパルスをNxに分周してい
る。
FIG. 1 is a block diagram showing an embodiment of the present invention. The reaction wheel 1 generates a torque 7 in the X-axis direction, and the X-axis gyro device 4 has an input shaft in the X-axis direction. It is of the type that outputs angular incremental pulses. 11 is a reference clock oscillator for the sequence system nt+, and the Euler angle fJt calculation counter 10 counts the number of pulses output from this oscillator 11, and when it reaches a value (Nα) corresponding to the rotation angle to the target attitude, Open the capture stop switch 12. The X-axis frequency divider 8 divides the pulse from the oscillator 11 into Nx in order to rotate around the X-axis at a foot rate ω.

X軸角度積分カウンター7はX軸ジャイロ装置4及びX
弔、1分周器8より出力されたパルスを加3?シたもの
をカウントする。X軸補角器9はカウンター7の仙を當
に零とするように衛星の姿勢を制御Y軸制御系14及び
Z軸制御系15は、X軸制御系13と同様の構成を持つ
装置である。
The X-axis angle integral counter 7 is connected to the X-axis gyro device 4 and
Add the pulse output from 1 frequency divider 8 to 3? Count the things that are lost. The X-axis compensator 9 controls the attitude of the satellite so that the center of the counter 7 is exactly zero.The Y-axis control system 14 and the Z-axis control system 15 are devices having the same configuration as the X-axis control system 13. be.

第2図は各機器の衛星座押上での配置を示す図である。FIG. 2 is a diagram showing the arrangement of each device on the satellite seat.

1′ 及び4′はX軸すアクションホイール1及びX軸
ジャイロ装置4にそれぞれ対応している。2はY軸方向
にリアクショントルクを発生するリアクシミンホイール
、同様に3はZ軸方向のそれであシ、5はY41.方向
に入力軸を持つジャイロ装置、同様に6はZ軸方向のそ
れである。
1' and 4' correspond to the X-axis action wheel 1 and the X-axis gyro device 4, respectively. 2 is a rear axis wheel that generates reaction torque in the Y-axis direction, 3 is the one in the Z-axis direction, and 5 is Y41. A gyro device having an input axis in the direction, similarly 6 is that in the Z-axis direction.

次にこの装置の動作を説明する。第1図において、捕捉
停止スイッチ12を閉じれば、X軸分周器8にて分周率
Nxに分周されたパルスがX軸角度積分カウンター7に
加えられる。その結果、カウンタ7に蓄積されたパルス
数が零になるようにX Il+補イh゛器9によシX軸
すアクションホイール1が制御される。リアクションホ
イール1が発生したリアクショントルクにょシ稈[星本
体がX軸“まわりに回転し、その回転をX軸ジャイロ装
債4にて検出し、その出力が角Flit分カウンター7
にフィードバックされることにより、X軸分周器8より
の入力が杓ち消爆れる。この様にジャ・r口装置f7.
4−角度積分カウンター7−袖(A&9−リアクション
ホイール1で構成される閉ループ制御系に対し、分周器
8よりシーケンシャルに目標方向の変更がなされるわけ
である。ここで若し、分周器8よシの目標方向の変更(
カウンター7に加算される分周器8よりのパルス)が上
記閉ループ制御系の応答に比して十分遅ければ、衛星は
X軸まわシに#まtl一定速度で回転することになる。
Next, the operation of this device will be explained. In FIG. 1, when the acquisition stop switch 12 is closed, a pulse frequency-divided by the X-axis frequency divider 8 to a frequency division ratio Nx is applied to the X-axis angle integral counter 7. As a result, the action wheel 1 along the X axis is controlled by the X Il + complementer 9 so that the number of pulses accumulated in the counter 7 becomes zero. The reaction torque generated by the reaction wheel 1 [the star body rotates around the X axis, the rotation is detected by the
By being fed back to the X-axis frequency divider 8, the input from the X-axis frequency divider 8 is suppressed. In this way, the opening device f7.
4-Angle integral counter 7-Sleeve (A & 9-Reaction wheel 1) The target direction is sequentially changed by the frequency divider 8 for the closed loop control system composed of A & 9-Reaction wheel 1.Here, if the frequency divider 8 Change of target direction (
If the pulse from the frequency divider 8 which is added to the counter 7 is sufficiently slow compared to the response of the closed loop control system, the satellite will rotate around the X axis at a constant speed.

この速さωXは基準クロック発振器11の基準周波数を
f(H2)、Xll+ジャイロ装jI−4の角F1テ増
分パルスの庫みをρ(度/パルス)(各軸ジャイロ共通
)とすれば となる。同様にY軸、2軸もω9.ω2なる一定速度で
回転する。そのときの分周率けNy、Nzである。
This speed ωX is calculated by assuming that the reference frequency of the reference clock oscillator 11 is f (H2), and the storage of incremental pulses of the angle F1 of Become. Similarly, the Y axis and 2nd axis are also ω9. It rotates at a constant speed of ω2. These are the frequency division ratios Ny and Nz at that time.

一方、衛星姿勢の任意の回転シ[、オイラーの定理によ
ってオイラー囮1マわりにオイラー角だけ回転すること
によシ達成できることが証明されている。そこで、いま
最初の衛星姿勢と任溶時間後の衛星姿勢との間のオイラ
ー軸の方向余弦を(tm ” *n)、そのオイラー角
をαとすれば 一αitωx−1−rr+ br y 十n ωp。
On the other hand, it has been proven by Euler's theorem that any rotation of the satellite attitude can be achieved by rotating the Euler angle for each Euler decoy. Therefore, if the direction cosine of the Euler axis between the initial satellite attitude and the satellite attitude after the immersion time is (tm '' *n), and its Euler angle is α, then 1αitωx−1−rr+ br y 1n ωp.

t ・・・・・・・・・(2) の様な微分方程式が成立する。ここで、ωX、ωy、ω
2を一定とし、かっそノlらの比率が最初の顧星姿勢と
捕捉したい姿勢との間のオイラー軸の方向余弦に一致す
る様に下記(3)式の如く選べd゛、ωx=c++t 
、 61y:01m 、  ωy、=ωr+   ・旧
−−−−−(3)(2)式は容易に解り、t、m、n 
 は回虻中不変となる。(3)式を分周率の形で表わせ
ば(4)式の様になる。
t ・・・・・・・・・(2) A differential equation like the following holds true. Here, ωX, ωy, ω
2 is constant, and the ratio is selected as shown in the following equation (3) so that the ratio of the angles corresponds to the direction cosine of the Euler axis between the initial target attitude and the attitude to be captured.
, 61y:01m, ωy, = ωr+ ・Old---(3) Equation (2) is easily understood, and t, m, n
remains unchanged during rotation. If equation (3) is expressed in the form of a frequency division ratio, it becomes equation (4).

Nx==pf/rot 、Ny−−pf/6+m、P4
z=pf/a+n  ・・・(4)(2)式のαの式も
堡゛けて α=ωt            ・・・・・・・・・
・・・(5)(ここでtは回転をfA’;Jr)た1間
)で与えられる。ここで、ω=4’:”x−+a+”!
 A−c−’z  で(6)式を(5)式に代入j7で
、オイラー介α+−1と言1算できる。ここで、ft 
il、、nイラー角ffWカウンター】0((よりカラ
〉・トさ、tlているNαて千、ることを考慮す、11
ば、 の関係がある。そこでNαを と選べば、明らかに傳星は指定されたオイラー軸まわり
にオイラー角σだけ回転して停止する。
Nx==pf/rot, Ny--pf/6+m, P4
z=pf/a+n... (4) Also, by changing the equation for α in equation (2), we get α=ωt...
...(5) (where t is the rotation fA';Jr)). Here, ω=4': "x-+a+"!
By substituting equation (6) into equation (5) in A-c-'z, it can be calculated as Euler's intervening α+-1. Here, ft
il,, n error angle ffW counter] 0 ((more color), taking into account that tl is Nα
There is a relationship of . Therefore, if Nα is chosen, the star will obviously rotate by the Euler angle σ around the specified Euler axis and then stop.

この析に本願による術九の任意の廊勢J…折は、そのオ
イラー+111″!わjjのオイラー角αだけの回転に
よって達成され、これは各個目ゎりの分周率(Nx、N
y、Nz)及びNαの設定だけでそれが自動的に実行さ
れる。また各軸まわシの制御は常にシーケンシャルに変
更された微小角の捕捉を行うだけでよ、<、従来の方式
にみられる幾何学的非緋型性の問題もない。更に、実施
例にも見られる様に、実際の装置では全く複雑な計算も
特殊な装置も必要としない。それ故、計算機を搭載して
いない、三軸姿勢制御方式の衛星の姿勢制御に有効であ
る。
In this analysis, the arbitrary rotation of the direction J... of the technique 9 according to the present application is achieved by rotating the Euler angle α of its Euler + 111''!
y, Nz) and Nα, it is automatically executed. In addition, since the rotation of each axis is controlled by simply capturing minute angles that are changed sequentially, there is no problem of geometric irregularities seen in conventional systems. Furthermore, as can be seen in the examples, the actual device does not require any complicated calculations or special equipment. Therefore, it is effective for attitude control of a three-axis attitude control satellite that does not have a computer installed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロック図、第2図は第
1図中に示される各1傷器の衛星間1±の−F1゜置を
示す図である。 図において、j・・・・・・X軸方向にトルクを発生す
るリアクションホイール、4・・・・・・Xt曲力方向
入力φ)1jを持つジャイロ装置、11・−・・・・基
準クロック発振器、10・・・・・・オイラー角積シカ
ウンター、8・・・・・・X軸分周器、7・・・・・・
加減算カウンター、9・・・・・・X軸補償器、13・
・・・・・X軸制御系、14・・・・・・Y軸制御系、
15・・・・・・Z軸制御系、2・・・・・・Y軸すア
クションホイール、3・・・・・・Z軸すアクションホ
イール、5・・・・・・Y軸ジャイロ装置、6・・・・
・・Z ’Xジャイロ装置である。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing the -F1 degree position of 1± between the satellites for each wound device shown in FIG. In the figure, j: a reaction wheel that generates torque in the X-axis direction, 4: a gyro device with Xt bending force direction input φ) 1j, 11: a reference clock Oscillator, 10...Euler angle product counter, 8...X-axis frequency divider, 7...
Addition/subtraction counter, 9...X-axis compensator, 13.
...X-axis control system, 14...Y-axis control system,
15... Z-axis control system, 2... Y-axis action wheel, 3... Z-axis action wheel, 5... Y-axis gyro device, 6...
...Z'X gyro device.

Claims (1)

【特許請求の範囲】[Claims] 三軸姿勢制御される人工衛星の三軸方向の衛星勢変更の
だめの係号を発生ずる信号発生手段と、前記4e’分手
段の出力を茶にするように各軸まわりの回転角を制i1
iする制御手段とを含み、前記人工〒1JIμの姿勢を
任意に捕捉する三軸姿勢11il制御衛星の姿勢捕捉方
式。
A signal generating means for generating signals for changing the satellite orientation in the three axes directions of an artificial satellite whose attitude is controlled in three axes, and a rotation angle around each axis i1 so as to suppress the output of the 4e' component means.
and a control means for controlling a three-axis attitude 11il control satellite to arbitrarily capture the attitude of the artificial 〒1JIμ.
JP57161882A 1982-09-17 1982-09-17 Attitude acquisition system of triaxial attitude control satellite Granted JPS5950896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57161882A JPS5950896A (en) 1982-09-17 1982-09-17 Attitude acquisition system of triaxial attitude control satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57161882A JPS5950896A (en) 1982-09-17 1982-09-17 Attitude acquisition system of triaxial attitude control satellite

Publications (2)

Publication Number Publication Date
JPS5950896A true JPS5950896A (en) 1984-03-24
JPH0319840B2 JPH0319840B2 (en) 1991-03-18

Family

ID=15743777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57161882A Granted JPS5950896A (en) 1982-09-17 1982-09-17 Attitude acquisition system of triaxial attitude control satellite

Country Status (1)

Country Link
JP (1) JPS5950896A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615359A (en) * 1979-07-16 1981-02-14 Teruyoshi Ando Porcelain transcribing printer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615359A (en) * 1979-07-16 1981-02-14 Teruyoshi Ando Porcelain transcribing printer

Also Published As

Publication number Publication date
JPH0319840B2 (en) 1991-03-18

Similar Documents

Publication Publication Date Title
US4746085A (en) Method for determining the earth's magnetic field and a satellite's attitude for attitude control
CN107600464B (en) Utilize the flywheel control capture sun and Direct to the sun method of star sensor information
US4038527A (en) Simplified strapped down inertial navigation utilizing bang-bang gyro torquing
CA1122677A (en) Satellite guide and stabilization
US3924824A (en) Cross track strapdown inertial quidance system
JPH06510500A (en) Attitude control method and device for a spacecraft rotating around an axis fixed to the aircraft body
US4884771A (en) Method for calibrating the gyros of a 3-axis stabilized satellite
JPH03217398A (en) Method and device to make space flying object, especially geostationary satellite direct to reference direction
WO1989006779A1 (en) Stabilized pointing mirror
JP3960574B2 (en) Attitude angle detector
JPS5950896A (en) Attitude acquisition system of triaxial attitude control satellite
JP2913122B2 (en) Strap down gyro device
JPH11211480A (en) Attitude angle detecting device
US3705977A (en) Attitude control system
JP2756554B2 (en) Inertial device
JP3360089B2 (en) Inertial device
US2986943A (en) Gyroscope systems
JPH0131568B2 (en)
GB1394663A (en) Stable platform system
JPS6351245B2 (en)
Edwan et al. Angular motion and attitude estimation using fixed and rotating accelerometers configuration
JPH07329897A (en) Attitude decision device of spacecraft
JPH0714820Y2 (en) Inertial navigation system
JPH0612259B2 (en) Gyro compass device
JPH0127046Y2 (en)