JPS5950723B2 - How to operate a blast furnace using iron ore pellets - Google Patents
How to operate a blast furnace using iron ore pelletsInfo
- Publication number
- JPS5950723B2 JPS5950723B2 JP51004605A JP460576A JPS5950723B2 JP S5950723 B2 JPS5950723 B2 JP S5950723B2 JP 51004605 A JP51004605 A JP 51004605A JP 460576 A JP460576 A JP 460576A JP S5950723 B2 JPS5950723 B2 JP S5950723B2
- Authority
- JP
- Japan
- Prior art keywords
- blast furnace
- furnace
- pellets
- iron ore
- pellet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/008—Composition or distribution of the charge
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Iron (AREA)
Description
【発明の詳細な説明】
本発明は、特に鉄鉱石ペレットを使用する溶鉱炉の操業
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates in particular to a method for operating a blast furnace using iron ore pellets.
従来より高炉で代表される溶鉱炉に鉄原料として鉄鉱石
焼成ペレット (鉄鉱石の他にダスト等の粉状酸化鉄含
有物を出発原料としたものを含む)を装入して製錬する
ことは行なわれてきており、そして、このペレットは一
般に球状であるため、高炉内へ稠密充填ができ、ペレッ
ト装入量/炉容積が大きくとることができ、生産性の上
昇が期待されていたのであるが、他方焼結鉱に比べると
一般に軟化開始温度が低く、還元時期に厚い軟化融着層
が生成する等いわゆる高温還元性状に難点があり、この
ため炉内における送風圧の変動が大きく、溶鉄品位のバ
ラツキが起り、生産性が低くなり、コークス比も増大す
るという不利をも有していたのである。Conventionally, iron ore calcined pellets (including iron ore containing powdered iron oxide-containing materials such as dust, in addition to iron ore) are charged as the iron raw material into a blast furnace, typically a blast furnace, for smelting. Since the pellets are generally spherical, it is possible to densely pack them into the blast furnace, allowing for a large pellet charge/furnace volume, which is expected to increase productivity. However, compared to sintered ore, the softening start temperature is generally lower, and there are drawbacks to so-called high-temperature reduction properties, such as the formation of a thick softened cohesive layer during the reduction period.As a result, the blowing pressure in the furnace fluctuates greatly, and molten iron It also had disadvantages such as variations in quality, low productivity, and increased coke ratio.
本発明はかかるペレットが具備する難点となる性状を特
定のファクターによって厳密に管理することにより改善
せしめ、ペレット固有の利点を加えた相乗効果により溶
鉱炉の生産能率を安定して向上せしめることを目的とす
るもので゛ある。The purpose of the present invention is to improve the difficult properties of such pellets by strictly controlling them using specific factors, and to stably improve the production efficiency of blast furnaces through the synergistic effect of adding the unique advantages of pellets. There is something to do.
本発明者等は前記操業使用上の不利を解決するため種へ
研究、操業を重ねたところ、ペレット自体の熱間におけ
る収縮率を一定の範囲に調整、保持すれば、その高温還
元性状が有利に改善され、送風圧の変動が少なくかつ低
コークス比の生産性の高い溶鉱炉操業が確立されるとい
う知見を得て、本発明を完成するに至ったものである。In order to solve the above-mentioned disadvantages in operational use, the inventors of the present invention have repeatedly researched and operated seeds, and found that if the hot shrinkage rate of the pellet itself is adjusted and maintained within a certain range, its high-temperature reduction properties are advantageous. The present invention was completed based on the knowledge that a highly productive blast furnace operation with less fluctuation in blowing pressure and a low coke ratio can be established.
ここでいうペレットの収縮率とは第5図に示した装置を
用いて測定されるものであって、すなわち同図は荷重下
における還元装置で電気炉2内に試験すべきペレット1
を設置上、荷重3により加熱されているペレット1に2
kg/cm2の荷重をかけ、かつ、ペレット1の下部
より還元ガス4を送給する。The shrinkage rate of pellets referred to here is measured using the apparatus shown in Fig. 5, in which the pellets to be tested are placed in the electric furnace 2 in the reduction apparatus under load.
2 to pellet 1, which is heated by load 3.
A load of kg/cm2 is applied, and reducing gas 4 is fed from the bottom of the pellet 1.
この場合に、還元ガスとN2を用い、還元ガス温度の昇
温は800℃/lhrで、800℃から1100℃まで
は1時間に100℃の上昇を行ない、ガス量(N270
%、CO30%)は151/minテアル。In this case, reducing gas and N2 are used, the reducing gas temperature is increased at 800°C/lhr, and from 800°C to 1100°C, the increase is 100°C per hour, and the gas amount (N270
%, CO30%) is 151/min.
試験終了後はN2雰囲気で常温まで冷却する。After the test is completed, the specimen is cooled to room temperature in a N2 atmosphere.
試験ペレット1の最初の高さをAとし、加熱して荷重を
かけた時のペレットの高さをBとすると、収縮率は次式
で表わされる。Assuming that the initial height of the test pellet 1 is A, and the height of the pellet when heated and loaded is B, the shrinkage rate is expressed by the following formula.
そこで、本発明者等はこの収縮率に着目し、あらかじめ
これと強い相関を有するドロマイトをその添加量を変え
てペレット原料中に配分して造粒、焼成せしめ、収縮率
の異るペレットを多数製造し、これらを夫々使用した高
炉操業におけるコークス比(kg/l・銑鉄)、炉内圧
力損失、炉内圧力変動量(g /cm□、1分毎に測定
された炉内圧の変動値の1時間における平均値)及びペ
レットの荷重還元率(%)を調査したところ、第1〜4
図の結果が得られた。Therefore, the present inventors focused on this shrinkage rate, and distributed dolomite, which has a strong correlation with this, into the pellet raw material by changing the amount added, granulated and fired, and produced a large number of pellets with different shrinkage rates. The coke ratio (kg/l, pig iron), pressure loss in the furnace, amount of fluctuation in the furnace pressure (g/cm□, fluctuation value of the furnace pressure measured every minute) in the blast furnace operation using these products. When we investigated the average value over 1 hour) and the load reduction rate (%) of pellets, we found that
The results shown in the figure were obtained.
これから明らかな様に収縮率が20%を越えると、炉内
圧力損失が増大し炉内圧力変動量が大きくなるために、
スリップ、棚吊りが増加し順調な荷下りを確保できなく
なりその結果、炉内ガス還元が悪化し、図に示す如くガ
ス利用率が低下して、コークス比の上昇をまねく。As is clear from this, when the shrinkage rate exceeds 20%, the pressure loss in the furnace increases and the amount of pressure fluctuation in the furnace increases.
Slips and shelf hangings increase, making it impossible to ensure smooth unloading, resulting in poor gas return in the furnace, resulting in a decrease in gas utilization rate as shown in the figure, and an increase in coke ratio.
一方収縮率が5%未満ではペレットの荷重還元率が低下
し、ペレット自体の還元率低下のためにガス利用率が低
下し、その結果コークス比の上昇が顕著となり、さらに
、収縮率が5%未満の場合は、ペレット自体の還元率が
低下し、特に中心部の還元が不充分となり、未還元のF
eOが残留し、これがスラグ成分となってCaO9A1
203.SiO□と一諸になって内部の融点を下げその
結果ペレットの軟化溶融時期を早め、これらがペレット
の内部から表面にしみ出すという現象がおき、そのため
にペレット同士が付着凝集し炉内の原料の通気性を阻害
し、かつ、炉況を不安定にする。On the other hand, when the shrinkage rate is less than 5%, the load reduction rate of the pellets decreases, the reduction rate of the pellets themselves decreases, the gas utilization rate decreases, and as a result, the coke ratio increases significantly, and furthermore, the shrinkage rate decreases to 5%. If the reduction rate is less than
eO remains, which becomes a slag component and becomes CaO9A1
203. Together with SiO□, the internal melting point is lowered, and as a result, the softening and melting time of the pellet is accelerated, and a phenomenon occurs in which these particles seep from the inside of the pellet to the surface, causing the pellets to stick to each other and agglomerate, causing the raw materials in the furnace to melt. This obstructs the ventilation of the furnace and makes the furnace condition unstable.
即ち、第1図に示す燃料比の増加を来すのである。That is, the fuel ratio increases as shown in FIG.
以上の如くペレット収縮率が5〜20%範囲での操業が
最適であり、この範囲に限定して操業することとしたの
である。As mentioned above, it is optimal to operate the pellet shrinkage rate in the range of 5 to 20%, and it was decided to limit the operation to this range.
さて、収縮率を上記の範囲に保持、調整する手段として
はドロマイト、蛇紋岩等のMgO含有鉱物をペレット原
料中に添加する方法が非常に効果的で好しいが、他の手
段例えばペレット原料の粒度や焼成温度によって行なう
ことも差仕えない。Now, as a means to maintain and adjust the shrinkage rate within the above range, it is very effective and preferable to add MgO-containing minerals such as dolomite and serpentine to the pellet raw material, but other methods such as adding MgO-containing minerals such as dolomite and serpentine to the pellet raw material It also makes no difference whether it is carried out depending on the particle size or firing temperature.
特に発明者等が具体的に採用したドロマイト添加につい
ては第4図に収縮率とその添加量との関係を図示したよ
うに収縮率を5〜20%の範囲に保持するにはドロマイ
トの添加量を4〜11%の範囲で選択すれば良い。In particular, regarding the addition of dolomite, which was specifically adopted by the inventors, the amount of dolomite added is required to maintain the shrinkage rate within the range of 5 to 20%, as shown in Figure 4, which shows the relationship between the shrinkage rate and the amount added. may be selected within the range of 4 to 11%.
以上、述べた通り、本発明によれば一定範囲の収縮率を
有した改善された還元性状を具備するペレットを選択使
用することによって、低コークス比で炉況の安定した生
産性の高い溶鉱炉操業を継続できるという優れた効果が
提供される。As described above, according to the present invention, by selectively using pellets that have a shrinkage rate within a certain range and have improved reducing properties, blast furnace operation with a low coke ratio and stable furnace conditions and high productivity can be achieved. This provides the excellent effect of being able to continue.
第1図〜第3図は夫々コークス比、炉内圧力損失、高炉
圧力変動量、ペレット荷重還元率とペレット収縮率との
関係を示すグラフ、第4図はペレット原料に対するドロ
マイト添加量と収縮率の関係を示すグラフ第5図はペレ
ットの収縮率測定試験装置である。
1・・・・・・ペレット、2・・・・・・電気炉、3・
・・・・・荷重、4・・・・・・還元ガス、5・・・・
・・収縮検知器。Figures 1 to 3 are graphs showing the relationship between coke ratio, pressure loss in the furnace, blast furnace pressure fluctuation, pellet load reduction rate, and pellet shrinkage rate, respectively. Figure 4 is the amount of dolomite added to the pellet raw material and shrinkage rate. A graph showing the relationship in FIG. 5 is a test device for measuring the shrinkage rate of pellets. 1... Pellet, 2... Electric furnace, 3.
...Load, 4...Reducing gas, 5...
...Shrinkage detector.
Claims (1)
用いる溶鉱炉の操業法において、その鉄鉱石ペレットが
5〜20%の熱間収縮率を有することを特徴とする操業
法。1. A method of operating a blast furnace using iron ore pellets as the iron raw material charged into the blast furnace, characterized in that the iron ore pellets have a hot shrinkage rate of 5 to 20%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51004605A JPS5950723B2 (en) | 1976-01-20 | 1976-01-20 | How to operate a blast furnace using iron ore pellets |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51004605A JPS5950723B2 (en) | 1976-01-20 | 1976-01-20 | How to operate a blast furnace using iron ore pellets |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5288521A JPS5288521A (en) | 1977-07-25 |
JPS5950723B2 true JPS5950723B2 (en) | 1984-12-10 |
Family
ID=11588661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51004605A Expired JPS5950723B2 (en) | 1976-01-20 | 1976-01-20 | How to operate a blast furnace using iron ore pellets |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5950723B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5019615A (en) * | 1973-06-23 | 1975-03-01 |
-
1976
- 1976-01-20 JP JP51004605A patent/JPS5950723B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5019615A (en) * | 1973-06-23 | 1975-03-01 |
Also Published As
Publication number | Publication date |
---|---|
JPS5288521A (en) | 1977-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3009661B1 (en) | Method for producing reduced iron pellets | |
RU2240354C2 (en) | Method for producing of liquid metal iron | |
CN100441701C (en) | Method for producing reduced iron compact in rotary hearth reducing furnace | |
US11479832B2 (en) | Method for smelting oxide ore | |
JP2010189762A (en) | Process for manufacturing granular iron | |
JP6447429B2 (en) | Nickel oxide ore smelting method | |
JP3043325B2 (en) | Method for producing reduced iron pellets and reduced iron pellets produced by this method | |
JP6964692B2 (en) | Method of manufacturing metallic iron | |
RU2455371C2 (en) | Self-fluxing pellets for blast furnaces and method for their manufacture | |
JP6900699B2 (en) | Nickel oxide ore smelting method | |
WO2018194165A1 (en) | Method for smelting metal oxide | |
JP3732132B2 (en) | Operation method of rotary hearth reduction furnace | |
JPS5950723B2 (en) | How to operate a blast furnace using iron ore pellets | |
JP6455374B2 (en) | Nickel oxide ore smelting method | |
US3645717A (en) | Process of producing sponge iron pellets | |
JP6772526B2 (en) | Nickel oxide ore smelting method | |
JP7196461B2 (en) | Method for smelting oxide ore | |
JP2000034526A (en) | Production of reduced iron pellet | |
US3304168A (en) | System for producing carbonized and prereduced iron ore pellets | |
JPH0430442B2 (en) | ||
JPS63149336A (en) | Production of burnt agglomerated ore | |
JPS63137989A (en) | Production of ferrocoke | |
JP3678034B2 (en) | Method for producing partially reduced iron | |
JP2000119722A (en) | Production of reduced iron pellet | |
JPS6248749B2 (en) |