JPS5950398A - Emergency gas processing device - Google Patents

Emergency gas processing device

Info

Publication number
JPS5950398A
JPS5950398A JP16139282A JP16139282A JPS5950398A JP S5950398 A JPS5950398 A JP S5950398A JP 16139282 A JP16139282 A JP 16139282A JP 16139282 A JP16139282 A JP 16139282A JP S5950398 A JPS5950398 A JP S5950398A
Authority
JP
Japan
Prior art keywords
flow path
building
air
exhaust
reactor building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16139282A
Other languages
Japanese (ja)
Inventor
垂石 嘉昭
進 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Engineering Corp
Nippon Genshiryoku Jigyo KK
Tokyo Shibaura Electric Co Ltd
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Nippon Genshiryoku Jigyo KK, Tokyo Shibaura Electric Co Ltd, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Engineering Corp
Priority to JP16139282A priority Critical patent/JPS5950398A/en
Publication of JPS5950398A publication Critical patent/JPS5950398A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は原子力発電所などの原子炉を有する原子力設備
の原子炉建屋内の汚染空気を外部に排出する非常用ガス
処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an emergency gas treatment device for discharging contaminated air from inside a reactor building of a nuclear facility having a nuclear reactor such as a nuclear power plant.

〔発明の技術的背景〕[Technical background of the invention]

原子力発電所の運転中に原子炉の配管が破断する等の4
■故が発生すると、放射性物質によって原子炉建屋内が
汚染するおそれがある。このため従来にあっては、かか
る事故があった場合、原子炉建屋内を外界から隔離する
とともに、非常用ガス処理装置によって建屋内を負圧に
保ち、直接空気が屋外へ漏洩しないようにしながら、建
屋内の汚染空気をフィルタ処理し屋外へ希釈放出するよ
うにしている。
4. Reactor piping ruptures during operation of a nuclear power plant, etc.
■If an accident occurs, there is a risk that the inside of the reactor building will be contaminated by radioactive materials. For this reason, in the past, in the event of such an accident, the reactor building was isolated from the outside world, and an emergency gas treatment system was used to maintain negative pressure inside the building to prevent air from directly leaking outside. The contaminated air inside the building is filtered and then diluted and released outdoors.

このような装置の具体例は第1図の系統図に示すように
、原子炉建屋1内の通常の換気空調系は事故発生と同時
に隔離信号によって停止し、原子・炉建屋1内を貫通し
ている空調ダクトは弁によって閉鎖され原子炉建屋は外
部と隔弗される。
As shown in the system diagram in Figure 1, a specific example of such equipment is such that the normal ventilation air conditioning system in the reactor building 1 is stopped by an isolation signal at the same time as an accident occurs, and the system penetrates the inside of the reactor building 1. The air conditioning ducts inside the reactor building are closed off by valves and the reactor building is separated from the outside.

次いで排気流路2の隔離弁3を通ってフィルタ列4に流
入した汚染空気は、フィルタ列4を構成するデミメス4
a、相対湿度制御用の加熱コイル4b 、フィルタ4c
1高性能粒子用フィルタ4d。
Then, the contaminated air flowing into the filter row 4 through the isolation valve 3 of the exhaust flow path 2 is transferred to the demi-mess 4 constituting the filter row 4.
a, heating coil 4b for relative humidity control, filter 4c
1 High performance particle filter 4d.

ヨウ素除去用チャコーシレフィルタ4e 、高性能粒子
用フィルタ4fによって放射性汚染物質をできるだけ除
去された後、排気ファン5によって最終排気糸6へ排出
される。また非常用ガス処理装置への空気流量は流量制
御系7により流量調整弁8を開閉することで設定流量を
保つようにしている。
After the radioactive contaminants are removed as much as possible by the iodine removal charcoal filter 4e and the high-performance particle filter 4f, the air is discharged to the final exhaust line 6 by the exhaust fan 5. Further, the flow rate of air to the emergency gas processing device is maintained at a set flow rate by opening and closing a flow rate regulating valve 8 by a flow rate control system 7.

〔背景技術の問題点〕[Problems with background technology]

以上のul+き、従来の非常用ガス処理装置は以下の如
き欠点を有している。
However, the conventional emergency gas treatment equipment has the following drawbacks.

即し、原子炉建屋は非常時を想定して、建屋内の負圧が
数ミリ水柱程度の場合の時間当り空気漏洩量が建屋内自
由窒間体積のl/24以下に抑え得るように気密に設計
されているが、現実には空気漏洩量は建屋内外の差圧を
一定とした場合でも、建設初期の気密性の良い状態から
経年変化により漸次気密性が低下し、最終的には最大漏
洩許容量まで達する1工能性がある。
Therefore, in anticipation of an emergency, the reactor building should be airtight so that the amount of air leakage per hour can be kept to less than 1/24 of the free nitrogen interstitial volume in the building when the negative pressure inside the building is about a few millimeters of water. However, in reality, even if the differential pressure between the inside and outside of the building is constant, the air leakage rate starts from a good airtight state at the beginning of construction, but gradually deteriorates over time, and eventually reaches the maximum level. There is 1 workability to reach the leakage tolerance.

このため、汚染空気を一定流量制御方式で処理する従来
装置にあっては気密シール状態から判断して適量と思わ
れる流量に設定する必、要があるが、極めて困難である
。そして、設定流量が過小であれば必要な差圧が得られ
ず建屋内の汚染空気が建屋から直接外部へ漏洩する危険
があり、逆に設定流量がi(4大であれば建屋内の汚染
e気を必要以上に処理して排気することとなるのでこれ
もまた屋外への放射性物質の放出量の増加を免れない。
For this reason, in conventional devices that treat contaminated air using a constant flow rate control method, it is necessary to set the flow rate to an appropriate amount based on the airtight seal condition, but this is extremely difficult. If the set flow rate is too low, there is a risk that the necessary differential pressure will not be obtained and the contaminated air inside the building will leak directly from the building to the outside.On the other hand, if the set flow rate is Since e-air is processed and exhausted more than necessary, this also inevitably increases the amount of radioactive materials released outdoors.

しかも、差圧を適正に保つための適正流量は風速その他
の外界条件によって左右され、気密シールの経年変化に
加えてこれらの要因をも含めて適正流量を設定するのは
不可能に近い。
Moreover, the appropriate flow rate to maintain the differential pressure appropriately is influenced by wind speed and other external conditions, and it is nearly impossible to set the appropriate flow rate while taking into account these factors in addition to the aging of the airtight seal.

また、非常用ガス処理装置゛の排気ファンの設計流量は
、一般に建屋の最大漏洩許容量:に合せて設計されるの
が普通であるが、建設初期の気密性の良い状態では設定
流量が非常に小さいものとなり。
In addition, the design flow rate of the exhaust fan of the emergency gas treatment equipment is generally designed according to the maximum allowable leakage capacity of the building, but in the early stage of construction when the airtightness is good, the set flow rate is extremely low. It becomes a small one.

排気の安定した運転状態を得にくいという問題がある。There is a problem in that it is difficult to obtain stable operating conditions for the exhaust.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来装置の問題点を解決すべくなされたも
のであり、原子炉建屋の経時的変化にかかわらず、建屋
外へ放出される放射性物質及び建屋内の放射性物質の低
減を可能とした非常用ガス処理装置を提供することを目
的としている。
The present invention was made in order to solve the above-mentioned problems of the conventional equipment, and makes it possible to reduce the amount of radioactive substances released outside the reactor building and the radioactive substances inside the building, regardless of changes in the reactor building over time. The purpose is to provide emergency gas treatment equipment.

〔発明の概要〕[Summary of the invention]

上記目的を達成すべく本発明に係る非常用ガス処理装置
は、原子炉建屋内の汚染空気をフィルタ列と排気ファン
を備えた排気流路によって浄化して外部へ排出するとと
もに、該排気ファンの下流の排気流路に還気流路をつな
げて浄化空気の一部を原子P建屋内に戻すようにし、史
に葭8気vIL路に流量調整弁を設けて原子炉建屋内外
の走圧を一定に保つようにしたことをその概要としてい
る。
In order to achieve the above object, an emergency gas treatment device according to the present invention purifies contaminated air inside a nuclear reactor building using an exhaust flow path equipped with a filter row and an exhaust fan, and discharges the purified air to the outside. A return air flow path is connected to the downstream exhaust flow path to return some of the purified air to the reactor P building, and a flow rate adjustment valve is installed in the 8-air VIL path to maintain a constant running pressure inside and outside the reactor building. The outline of this is to maintain the following.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の実旅の一例を第2図に基いて詳述する。 An example of the actual journey of the present invention will be explained in detail below based on FIG. 2.

尚、従来装dと同一部材については同一番号を付してい
る。
Incidentally, the same numbers are given to the same members as in the conventional equipment d.

原子炉建屋1から導出された排気流路2の上流部には隔
離弁3,3を設け、この隔離弁3,3に続いてフィルタ
列4を設けている。このフィルタ列4はデミスタ4a 
、相対温度制御用の加熱コイル4b 、フィルタ4c 
、高性能粒子用フィノトタ4dヨウ素除去用チャコール
フィルタ4e 、高性能粒      ”子用フィルタ
4fから構成され、原子炉建屋1からの汚染空気の放射
性汚染物質を除去するようにしている。そして、フィル
タ列4に続いて排気ファン5を設け、この排気ファン5
によって浄化されな空気を最終排気系6へ排出するよう
にしている。
Isolation valves 3, 3 are provided upstream of the exhaust flow path 2 led out from the reactor building 1, and a filter row 4 is provided following the isolation valves 3, 3. This filter array 4 is a demister 4a
, heating coil 4b for relative temperature control, filter 4c
, a Finotota 4d for high-performance particles, a charcoal filter for removing iodine 4e, and a filter for high-performance particles 4f, which removes radioactive contaminants from contaminated air from the reactor building 1. 4, an exhaust fan 5 is provided, and this exhaust fan 5
The purified air is discharged to the final exhaust system 6.

また、上記排気ファン5よりも下流で最終排気系6より
も上流の排気流路2には還気流路9の一端を接続し、こ
の還気流路9の他端を原子炉建屋■に接続し、フィルタ
列4によって浄化された空気の一部を原子炉建屋内に戻
すようにしている。
Further, one end of the return air flow path 9 is connected to the exhaust flow path 2 downstream of the exhaust fan 5 and upstream of the final exhaust system 6, and the other end of this return air flow path 9 is connected to the reactor building (■). , a part of the air purified by the filter rows 4 is returned to the reactor building.

そして、還気流路9の中間には流量調整弁10を設け、
この流量調整弁10を建屋内外の差圧の測定側。
A flow rate regulating valve 10 is provided in the middle of the return air passage 9,
This flow rate adjustment valve 10 is used to measure the differential pressure inside and outside the building.

御系11からの信号で開度調整し、還気流量を制御する
ようにしている。更に還気流路9には冷却装置12を設
け、相対湿度制御用の加熱コイル4bによって加熱され
た浄化空気が直接原子炉建屋1内に還気されることによ
る建屋内界囲気の温度上昇を防止している。
The opening degree is adjusted based on a signal from the control system 11, and the return air flow rate is controlled. Furthermore, a cooling device 12 is provided in the return air flow path 9 to prevent the temperature rise of the surrounding air inside the reactor building 1 due to the purified air heated by the heating coil 4b for relative humidity control being returned directly into the reactor building 1. are doing.

また、排気ファン5とI′ij終排気系6との間には流
−緻調整弁13を設は制御の信頼性の向上を図るように
している。更に、上記還気流路9、還気流路9に設けた
流量調整弁10、冷却装置12の容量は排気ファン5の
吐出流列の全量が通過し得る程度としている。
Further, a flow fine adjustment valve 13 is provided between the exhaust fan 5 and the I'ij final exhaust system 6 in order to improve the reliability of control. Further, the capacities of the return air flow path 9, the flow rate regulating valve 10 provided in the return air flow path 9, and the cooling device 12 are set to such an extent that the entire amount of the discharge flow train of the exhaust fan 5 can pass therethrough.

また、第3図は建屋内放射能娘度過嫂変化を示したグラ
フであり、計算は建屋内への時間当り空気漏洩、41′
を建屋気密設計値の%であるよう]こ建屋内自由空間体
積の1/48として、従来装置のように建屋内への還気
を行なわない場合と、本発明により排気ファン吐出流量
のシざを建屋内へ還気する場合とを比較したものである
。この図から明らかな如く、本発明袋トによる場合には
従来に比べ建屋内の放射能濃度はほぼ半減する。更に、
建屋内の放射性物質の低減に伴ない屋外へ放出される放
射性物質も同様に半減することとなる。
In addition, Figure 3 is a graph showing the change in radioactivity concentration inside the building, and the calculation is based on the air leakage per hour into the building, 41'
% of the building airtightness design value] Assuming that this is 1/48 of the free space volume inside the building, the exhaust fan discharge flow rate pattern is different between the case where air is not returned into the building as in the conventional device and the case where air is not returned into the building as in the conventional device. This is a comparison with the case where air is returned to the building. As is clear from this figure, when using the bag according to the present invention, the radioactivity concentration inside the building is reduced by almost half compared to the conventional method. Furthermore,
As the amount of radioactive material inside the building is reduced, the amount of radioactive material released outdoors will also be halved.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかな如く本発明によれば、原子炉建屋
内外の差圧によって直接排気′量を制御するようにした
ので、従来の一定流量rlflJ御系のように適正な差
圧を得るために建屋の気密シールの状態によって設定流
量を変更・醐整する必要がなく、また、従来のように排
気ファンの吐出流罐を絞り込まず、吐出流量自体はほぼ
一定とし、排′気流量の調整を行ない、一部を建屋内へ
還気するようにしたので、排気ファンの運転状態は安定
化し、しかもフィルタ列の浄化効果も最大に生かせる。
As is clear from the above explanation, according to the present invention, the exhaust volume is directly controlled by the pressure difference between the inside and outside of the reactor building. There is no need to change or adjust the set flow rate depending on the condition of the building's airtight seal, and the discharge flow rate itself is kept almost constant without narrowing down the discharge flow can of the exhaust fan like in the past, and the exhaust flow rate can be adjusted. By doing so, a portion of the air was returned to the building, which stabilized the operating conditions of the exhaust fan and maximized the purification effect of the filter array.

そして、フィルタ列にて浄化された空気を建屋内に還気
することによって<iSM内の放射性物質の低減を図れ
且つ建屋外に放出される放射性物質の低減も図れる。
By returning the air purified by the filter array into the building, it is possible to reduce the amount of radioactive material inside the iSM and also to reduce the amount of radioactive material released outside the building.

また、還気流路に冷却装置dを設けることにすれば、建
屋内空気の温度上昇を抑えることができ、機器設計温度
条件を緩和し得る等の多くの利点を有する。
Further, by providing the cooling device d in the return air flow path, there are many advantages such as being able to suppress the temperature rise of the air inside the building and relaxing the equipment design temperature conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の非常用ガス処理装置の系統図、第2図は
本発明に係る非常用ガス処理装置の系統図、第3図は事
故発生時の建屋内の放射能濃度過渡変化を示すグラフで
ある。 1・・・原子炉建屋、2・・・排気流路、4・・・フィ
ルタ列、5・・・排気ファン、9・・・還気流路、10
・・・流量調整弁、12・・・?や却装貿。 出願人代理人   猪  股     清545
Fig. 1 is a system diagram of a conventional emergency gas processing equipment, Fig. 2 is a system diagram of an emergency gas processing equipment according to the present invention, and Fig. 3 shows transient changes in radioactivity concentration inside the building at the time of an accident. It is a graph. DESCRIPTION OF SYMBOLS 1... Reactor building, 2... Exhaust flow path, 4... Filter row, 5... Exhaust fan, 9... Return air flow path, 10
...Flow rate adjustment valve, 12...? Yayoso trade. Applicant's agent Kiyoshi Inomata 545

Claims (1)

【特許請求の範囲】 1、原子炉建屋内の汚染空気をフィルタ列を介して沙化
し排気ファンによって外部へ排出する排気流路と、こ、
の排気流路において浄化された空気を原子炉建屋内に戻
すべく上記排気ファンよりも下流位置にて”排気流路ζ
こ接続する環気流路を、この環気流路内の空気流路を制
御して原子炉建屋内外の差圧を一定とすべく還気流路に
設けた流殺調整弁とからなることを特徴とする非常用ガ
ス処理装置。 2、前記還気流路は冷却装置を備えていることを特徴と
する特許請求の範囲第1項記載の非常用ガス処理装置。
[Scope of Claims] 1. An exhaust flow path that atomizes contaminated air inside the reactor building through a filter row and discharges it to the outside by an exhaust fan;
In order to return the air purified in the exhaust flow path into the reactor building, an "exhaust flow path ζ" is installed downstream of the exhaust fan.
The connecting return air flow path is characterized by comprising a flush control valve provided in the return air flow path in order to control the air flow path in the return air flow path and keep the differential pressure between the inside and outside of the reactor building constant. emergency gas treatment equipment. 2. The emergency gas processing device according to claim 1, wherein the return air passage is equipped with a cooling device.
JP16139282A 1982-09-16 1982-09-16 Emergency gas processing device Pending JPS5950398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16139282A JPS5950398A (en) 1982-09-16 1982-09-16 Emergency gas processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16139282A JPS5950398A (en) 1982-09-16 1982-09-16 Emergency gas processing device

Publications (1)

Publication Number Publication Date
JPS5950398A true JPS5950398A (en) 1984-03-23

Family

ID=15734215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16139282A Pending JPS5950398A (en) 1982-09-16 1982-09-16 Emergency gas processing device

Country Status (1)

Country Link
JP (1) JPS5950398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109405152A (en) * 2018-09-18 2019-03-01 中广核研究院有限公司 A kind of nuclear power station exhaust system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109405152A (en) * 2018-09-18 2019-03-01 中广核研究院有限公司 A kind of nuclear power station exhaust system

Similar Documents

Publication Publication Date Title
JPS5827480B2 (en) Dehumidification tower regeneration method for rare gas hold-up equipment
JPS6184588A (en) Underground type nuclear power plant
JPS5950398A (en) Emergency gas processing device
PT84185B (en) CONTROL PROCESS OF A COMBUSTION INSTALLATION IN PRESSURIZED FLUIDIZED COW IN CASE OF PERTURBATION OF OPERATION OF THE GAS TURBINE AND COMBUSTION INSTALLATION IN FLUIDIZED COURT PRESSURIZED WITH EQUIPMENT TO PERFORM THIS CONTROL
JPH08304592A (en) Emergency gas processor
JPS59157599A (en) Emergency gas processing device
JPS6055038B2 (en) Emergency gas processing method
CN115346703B (en) Testing device and method for negative pressure exhaust system of high-temperature gas cooled reactor inclusion body
JPH09197085A (en) Method and device for ventilating nuclea reactor containment vessel
CN112037948B (en) AP1000 containment overall leakage rate test pressure relief system and method
JPS5774868A (en) Magnetic disk device
JPS61148395A (en) Emergency gas treater
JPH03244948A (en) Negative pressure, air volume adjusting method for glove box
JPS6171399A (en) Emergency gas treater
JPS60107599A (en) Treating facility for emergency gas of nuclear power plant
JPS5970999A (en) Bypass device of condensed water processing device and its control method
JPH0261597A (en) Waste gas processing facility
JPS5855800A (en) Filter constitution of emergency gas processing system
JPS5918496A (en) Method of dehumidifying gaseous waste processing circuit
JPH0550716B2 (en)
JPH0521519B2 (en)
JPS61140898A (en) Treater for radioactive gas waste
JPS61155796A (en) Nuclear power plant
JPS5872098A (en) Radioactive gaseous waste processing device
JPS5844399A (en) Device for removing iodine in main condenser vacuum pump and turbine axis seal steam system exthaust gas