JPS5950364A - Reagent for determination of iron - Google Patents

Reagent for determination of iron

Info

Publication number
JPS5950364A
JPS5950364A JP16145882A JP16145882A JPS5950364A JP S5950364 A JPS5950364 A JP S5950364A JP 16145882 A JP16145882 A JP 16145882A JP 16145882 A JP16145882 A JP 16145882A JP S5950364 A JPS5950364 A JP S5950364A
Authority
JP
Japan
Prior art keywords
iron
reducing agent
acid
measured
coloring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16145882A
Other languages
Japanese (ja)
Other versions
JPH033911B2 (en
Inventor
Fujio Yamasato
山里 藤男
Toshihiko Oda
利彦 織田
Kuniaki Tokuda
徳田 邦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP16145882A priority Critical patent/JPS5950364A/en
Publication of JPS5950364A publication Critical patent/JPS5950364A/en
Publication of JPH033911B2 publication Critical patent/JPH033911B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/84Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving inorganic compounds or pH

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To obtain a reducing agent which is stable in a liquid state and adaptable to precision analysis, by using a specific compd. as a reducing agent for trivalent iron in colorimetric analysis of iron using a coloring reagent of bivalent iron. CONSTITUTION:Metabisulfic acid or salts thereof which can dissolve required amts. of alkali metal salt, ammonium salt and alkaline earth metal salt are used as a reducing agent. After 2.0ml buffer soln. is added to 0.5ml sample under mixing, the blind trial of the specimen is measure at the max. absorption wavelength of the coloring material used. A drop of a coloring reagent is added thereto with mixing, then the absorbancy at the max. absorption is again measured and the blind trial of the specimen is subtracted from the measured absorbancy and the iron value of the serum is calculated. The buffer soln. is prepd. by dissolving 5g sodium lauryl sulfate, 1g sodium metabisulfite, 4.15g sodium acetate in 90ml water, adjusting pH to 6.0 with hydrochloric acid and adding water to make 100ml in total. The reducing agent is stable for an extremely long period of time in a soln. state and has the substantial reducing power with which the measured values of L-ascorbic acid and thioglycolic acid coincide, while it has no malodor.

Description

【発明の詳細な説明】 本発明は鉄測定用試楽に関するものである。[Detailed description of the invention] The present invention relates to an iron measuring device.

鉄の測定法には種々あるが微:欧分析では原子吸光法、
比色分析法が主流であり、特に多数検体を処理する臨床
化学分析では比色分析法が有利である。生体内の鉄は約
273が赤血球内のヘモグロビンとして存在し、残りの
1/3はいわゆる貯蔵鉄として肝臓、牌j頻、骨髄その
他に存在し総電は約4gである。鉄は殆んど尿より排泄
されることなく1日1〜程度が腸粘膜の剥離。
There are various methods for measuring iron, but they are minute: European analysis uses atomic absorption method,
Colorimetric analysis is the mainstream, and is especially advantageous in clinical chemical analysis where a large number of samples are processed. Approximately 273 of iron in living bodies exists as hemoglobin in red blood cells, and the remaining 1/3 exists as so-called stored iron in the liver, kidneys, bone marrow, etc., and the total electrical charge is approximately 4 g. Almost no iron is excreted in the urine, and only about once a day is caused by detachment of the intestinal mucosa.

皮膚の脱落号で失なわれるにす詐ず毎日の″JT:物中
より約1■の妖を吸収することによりバランスを保って
いる。血清中の麩は生理的には全てクロプリンの一種で
あるトランスフェリント結合して移動している。このト
ランスフェリンは分子量約90000の蛋白で2原子の
鉄と結合する能力をもつ。通常血清中のトランスフェリ
ンはその1/3が鉄と結合した型で存在して血清鉄と呼
ばれ残り2/3は鉄と結合していないトランスフェリン
として存在しその量は不飽和鉄結合能と呼ばれている。
Although it is lost due to the shedding of the skin, it maintains its balance by absorbing about 1cm of energy from things.Physiologically speaking, all of the wheat in the serum is a type of clopurin. Transferrin is a protein with a molecular weight of approximately 90,000 and has the ability to bind two atoms of iron. Normally, one-third of transferrin in serum exists in the form bound to iron. The remaining two-thirds of the iron is called serum iron, and the remaining two-thirds exists as transferrin that does not bind iron, and the amount is called the unsaturated iron-binding capacity.

血清鉄を測足する場合はこのトランスフェリン七鉄のキ
レートをはずじ遊離の鉄とする必要がある。この手段と
しては(11塩酸を加えて加熱し除蛋白する、(2+ 
pH3,0以下でグロブリンとの結合をはずし低pHで
キレートを形成する発色剤で比色する。(3j蛋白斐性
剤のラウリル減酸ナトリウムや基盤グアニジンを使用し
てトランスフェリンを変質させ鉄を遊離させる、などが
ある。一方、不飽和鉄結合能の測定法としては、血清に
過剰の鉄を添加して全てのトランスフェリンと鉄を結合
させ過剰の鉄を炭酸マグネシウム等の吸着剤で沈殿させ
上清中の鉄濃度を測定して血清鉄埴を差し引いて求める
か、又は、既知址の鉄を血清に加え、I−ランスフェリ
ンと結合させた残りの鉄を測定して、鉄の減少量から不
飽和鉄結合能を求−める工法が主流でこれら血清鉄、及
び不飽和鉄結合能の測定値は鉄欠乏性貧血、再生不良性
貧血、悪性貧血、慢性出血性貧血、真性多血症、感染性
貧血などの各種貧血、急性肝炎、漫性肝炎、肝硬変プよ
との肝疾患の鑑別に重要な意味をもつものである。
When measuring serum iron, it is necessary to remove the chelate of transferrin heptaferron and obtain free iron. This method includes (11 adding hydrochloric acid and heating to remove protein, (2+
Color comparison is performed using a coloring agent that removes the bond with globulin at pH 3.0 or below and forms a chelate at low pH. (3j) Protein-pooring agents such as sodium lauryl deoxylate and basic guanidine are used to denature transferrin and release iron.On the other hand, as a method for measuring unsaturated iron binding capacity, excess iron is added to serum. Add the iron to bind all the transferrin and iron, precipitate the excess iron with an adsorbent such as magnesium carbonate, measure the iron concentration in the supernatant, and subtract the serum iron concentration, or use a known source of iron. The mainstream method is to measure the remaining iron combined with I-transferrin in addition to the serum, and determine the unsaturated iron binding capacity from the amount of decreased iron. Measured values can be used to differentiate various anemias such as iron deficiency anemia, aplastic anemia, pernicious anemia, chronic hemorrhagic anemia, polycythemia vera, and infectious anemia, as well as liver diseases such as acute hepatitis, diffuse hepatitis, and cirrhosis. It has important meaning.

現在、鉄の発色剤として一般に使われて+7)るものは
チオシアン酸塩、α、α″ ジピリジル、0−フェナン
スロリン、バソフエナンスロIJン(以下、B’PTと
略称する。)、2,4.6トリピリジルーS−トリアジ
ン(以下%TPTZと略称する。)、3−(2−ピリジ
ル)−5゜6ビス(4−スルホフェニル)−1,2,4
−トリアジン(以下、P’DT8と略称する。)及び近
年開発された2−ニトロソ−5−(N−)。
Currently, the commonly used iron coloring agents are thiocyanate, α, α'' dipyridyl, 0-phenanthroline, bathophenanthroline (hereinafter abbreviated as B'PT), 2,4 .6 tripyridyl-S-triazine (hereinafter abbreviated as %TPTZ), 3-(2-pyridyl)-5゜6bis(4-sulfophenyl)-1,2,4
-triazine (hereinafter abbreviated as P'DT8) and recently developed 2-nitroso-5-(N-).

ロピルーN−スルホプロピルアミノ)フェノールに代表
されるニトロソフェノール誘導体等である。
These include nitrosophenol derivatives represented by (ropyru-N-sulfopropylamino)phenol.

これらの発色剤の内三価の跣の発色剤はチオシアン酸塩
のみで他は全て二価の鉄の発色剤で。
Among these coloring agents, the trivalent coloring agent for the legs is only thiocyanate, and the others are all divalent iron coloring agents.

使用船こ当っては還元剤の併用を必要とする。三価の鉄
の還元剤として公知のものは下記(表1)7槙類である
If the vessel is used, it is necessary to use a reducing agent in combination. Known reducing agents for trivalent iron are the following 7 types (Table 1).

表■ 鉄測定用還元剤 これらの内、4=Wm分析用に充分その還元力を元押す
るものはL−アスコルビン酸とチオグリコール酸である
とされているが、この2つの還元剤にも英用±極めて重
大な欠陥がある。つまり、L−アスコルビン酸は粉末で
の安定性は比較的良好であるが溶液状態では安定性が極
めて悪く使用にあたっては1検体ずつ粉末を添加する会
費がありた。又、チオグリコール酸は酸性側では溶液状
態でも比較的安定で且つ還元力も充分であるが中性以上
では安定性及び還元力も劣り呈色安定化までかなりの時
間を要しヌ、メルカプト基特有の悪臭も使用上好ましか
らざるものである。
Table ■ Reducing agents for iron measurement Among these, L-ascorbic acid and thioglycolic acid are said to have sufficient reducing power for 4=Wm analysis, but these two reducing agents also For English use ± extremely serious flaws. In other words, L-ascorbic acid has relatively good stability in powder form, but extremely poor stability in solution form, and there is a fee to add powder to each sample when using it. In addition, thioglycolic acid is relatively stable even in a solution state in acidic conditions and has sufficient reducing power, but in neutral conditions or higher, its stability and reducing power are poor, and it takes a considerable amount of time to stabilize the color, which is unique to mercapto groups. The bad odor is also undesirable in use.

本発明者らはこれらの欠点に蔑み、溶液状態で安定で精
密分析に相応しい充分な還元力を有する還元剤につき鋭
意研究の結果、゛メタ軍亜硫酸又はその塩類がそれらの
条件を満たすものであ乞ことをつきとめ本発明を完成さ
せるに至った。
The present inventors despised these drawbacks, and as a result of intensive research into a reducing agent that is stable in solution state and has sufficient reducing power suitable for precise analysis, it was found that metasulfite or its salts satisfies these conditions. This led to the completion of the present invention.

本発明に使用出来るメタ軍亜硫酸又はその塩は、アルカ
リ金属塩、アンモニウム塙、アルカリ土類金属塩の内必
要量が溶解出来るものが通常であるがナトリウム塩、カ
リウム塩を匣用するのが常識的である。表1は、匠米使
用されてきた代表的還元剤と本発明の還元剤の溶液状態
での安定性を示したものである。従来使用の還元剤は特
にアルカリ側で安定性に欠け、L−アスコルビン酸は数
分、チオグリコール酸で3日、力島酸ヒドロキシルアミ
ンで3ケ月が使用に耐えうる最大期間であるのに対し、
メク重亜硫酸塩は1ケ年を経過しても3%の含量低下に
すぎず、実用上の有効期間は室温保存で有に2年を越え
るものである。さらに酸性ψ11では安定性はさらに向
上する。
The metasulfurous acid or its salt that can be used in the present invention is usually one that can dissolve the necessary amount among alkali metal salts, ammonium salts, and alkaline earth metal salts, but it is common sense to use sodium salts and potassium salts. It is true. Table 1 shows the stability of typical reducing agents that have been used in Takumai and the reducing agent of the present invention in a solution state. Conventionally used reducing agents lack stability, especially on the alkaline side, and the maximum period of use that can be used is a few minutes for L-ascorbic acid, 3 days for thioglycolic acid, and 3 months for hydroxylamine hydroxylamine. ,
Even after one year, the content of mekubisulfite decreases by only 3%, and its practical shelf life is well over two years when stored at room temperature. Furthermore, the stability is further improved at acidity ψ11.

表Illは、現在使用されている代表的4榎類の発色剤
をp、 Hを変えて各還元剤を1吏用して発色させた結
果を示したものである。各発色剤に共通に広いp H範
囲で発色するものは、■7−アスコルビン酸、チオグリ
コール酸、及び本発明の還元剤の3棟類である。メク車
亜睡酸又はその塩の至適歇は使用p I−7、使用発色
剤によって異なりpHの上昇に伴ってその必要量も増加
するが通常0.01%〜5.0%の範囲の1吏用が望ま
し次に実施例を示す。
Table Ill shows the results of color development using four representative coloring agents currently in use, varying the pH and H, and using one amount of each reducing agent. The three coloring agents that commonly develop color in a wide pH range are 7-ascorbic acid, thioglycolic acid, and the reducing agent of the present invention. The optimum concentration of mekumarnaceous acid or its salt varies depending on the used pI-7 and the coloring agent used, and the required amount increases as the pH increases, but it is usually in the range of 0.01% to 5.0%. It is preferable to use one serving, and an example will be shown next.

実施例 1.(血清鉄の測定) 緩衝液 ラウリル硫酸ナトリウム   5g メタ重亜硫酸ナトリウム   1g 酢酸ナトリウム        4.15g上記のもの
を水90mtに溶解し塩酸でpHを6.0として水で全
fL1001M’とする。
Example 1. (Measurement of serum iron) Buffer Sodium lauryl sulfate 5g Sodium metabisulfite 1g Sodium acetate 4.15g Dissolve the above in 90mt of water, adjust the pH to 6.0 with hydrochloric acid, and make a total fL of 1001M' with water.

発色試液 A  (BP’T) バソフエナンスロリンスルホン酸ナトリウム0.1gを
水’;1(JTIIlに溶解する。
Color development test solution A (BP'T) Dissolve 0.1 g of sodium bathophenanthrolin sulfonate in 1:1 (JTIIl) of water.

発色試液 B  (、PDTS) PDTSO,1gを水20#IA’に溶解する。Coloring test solution B (PDTS) Dissolve 1 g of PDTSO in 20 #IA' of water.

発色試液 0  (NO−PSAP) N O−P’S A P O,1gを水2(I+/に溶
解する。
Color reagent solution 0 (NO-PSAP) Dissolve 1 g of NO-P'S A PO in 2 parts of water (I+/).

使用法 試料Q、 5 mlに上記緩衝W 2. Oml加え混
和後、使用する発色剤の極太吸収波長に於て検体盲検を
測定し、発色試液A−0のいずれかを1滴加え混和後、
10分放置して再度極大吸収波長に於る吸光度を測定し
検体盲検を差し引いて血清鉄イ直を算出する。
Usage Sample Q, 5 ml of the above buffer W 2. After adding Oml and mixing, measure the sample blind at the thickest absorption wavelength of the coloring agent used, add 1 drop of coloring test solution A-0, and then mix.
After standing for 10 minutes, the absorbance at the maximum absorption wavelength is measured again, and the serum iron concentration is calculated by subtracting the sample blindness.

拳法の測定値を従来使用されてきた還元剤り一アスコル
ビン、チオグリコール酸を使用したときの値と比較した
ものが表Ivである。従来使用の還元剤との間に有意の
差を与えていない。
Table Iv compares the measured values of Kenpo with the values obtained when using conventionally used reducing agents such as ascorbic acid and thioglycolic acid. There is no significant difference between this and conventional reducing agents.

実施例 2.(不飽和鉄結合能測定) 鉄含有緩衝液 トリスヒドロキシルアミン  1.21gクエン酸  
        0.221gメタ重亜硫酸カリウム 
   1.0g硫酸第一鉄アンモニウム (F”eとし
て100μg/dz) を水90帽こ一溶解し塩酸でp H8,5〜8.7に調
羞した抜水で全量100m/とする。
Example 2. (Measurement of unsaturated iron binding ability) Iron-containing buffer trishydroxylamine 1.21g citric acid
0.221g potassium metabisulfite
Dissolve 1.0 g of ferrous ammonium sulfate (100 μg/dz as F''e) in 90 cups of water, adjust the pH to 8.5 to 8.7 with hydrochloric acid, and drain to make a total volume of 100 m/dz.

血清200μtに上記鉄含有の緩衝液2. ’0 、r
nlを加え室温龜15分間放置した後750・への吸光
度を測定する。次に発色試液0(実施例1に記載。)1
制を加え混和後、室温に15分放置して再び750nm
の吸光度を測定し検体゛薯検を差し引いて鉄の減少量を
求め、不飽和鉄結合能を求める。
Add 200 μt of serum to the above iron-containing buffer 2. '0, r
After adding nl and leaving it at room temperature for 15 minutes, the absorbance at 750° was measured. Next, coloring test solution 0 (described in Example 1) 1
After mixing, leave it at room temperature for 15 minutes and then test again at 750 nm.
Measure the absorbance of the sample and subtract the absorbance of the sample to determine the amount of iron reduction, and determine the unsaturated iron binding capacity.

拳法での測定値、従来の炭酸マグネジラム沈謔法及び実
施例2に従って還元剤のみL−アスコルビン酸を使用1
.た場合の測定値を表■に示359− 合′能測定値 炭酸マグネシウム沈d法 1me・・・・・5分放置・・・・炭酸マクネシウム0
.15g・・・・・混合・・・・蒸留水Q、 5 ml
・・30分放置・・・・遠沈後上清Q、 5 ml+緩
衝液(5%ラウリル硫酸ナトリウム0.IM酢酸塩as
液p I−16,0)2.Qm/−1−L−アスコルビ
ン酸15■・・・・混合・・・・No−PSAPo、5
%浴液1滴室温5分放置後750■の吸光度測定により
総鉄結合能を求め別に血清鉄値を測定して差し引き不飽
和鉄結合能を求める。
Measured values in Kempo, conventional magnesium carbonate precipitation method, and using L-ascorbic acid as the reducing agent only according to Example 2 1
.. Table 3 shows the measured values when
.. 15g...Mixing...Distilled water Q, 5 ml
...Leave for 30 minutes...After centrifugation, supernatant Q, 5 ml + buffer solution (5% sodium lauryl sulfate 0.IM acetate as
Liquid p I-16,0)2. Qm/-1-L-ascorbic acid 15 ■...Mixture...No-PSAPo, 5
After leaving one drop of the % bath solution at room temperature for 5 minutes, the total iron binding capacity is determined by measuring the absorbance at 750 cm, and the serum iron value is separately measured and subtracted to determine the unsaturated iron binding capacity.

N o−p S A p直接法(L−アスコルビン酸)
実施例2に従う但し還元剤メタ重亜硫酸カリウムの代り
にL−アスコルビン酸約lO〜を試験管にIM接粉末の
まま添加する。
N op S A p direct method (L-ascorbic acid)
Example 2 is followed except that in place of the reducing agent potassium metabisulfite, about 10 L-ascorbic acid is added to the test tube as an IM powder.

炭酸マグネジラム沈瞳法、L−アスコルヒ゛ン酸還元法
及び不法の間に測定値に有意の差を認めない。
No significant difference was observed in the measured values between the magnesium carbonate dilation method, the L-ascorbic acid reduction method, and the illegal method.

このように、本発明の還元剤は液性に関わらす溶液状態
で極めて長期間安定であり従来使用のL−アスコルビン
酸、チオクリコール酸と測定値が一致する充分な還元力
を持つ一方悪臭もなく又環境衛生上の問題もない極めて
優れたもので所業に貢献するところ極めて大なるものが
ある。
As described above, the reducing agent of the present invention is stable for an extremely long period of time in a solution state regardless of liquid properties, and has sufficient reducing power with measured values matching those of conventionally used L-ascorbic acid and thiochlorocholic acid, while also having no odor. Moreover, it is an extremely excellent product that does not cause any environmental health problems, and it makes a huge contribution to the business.

特許出願人 和光純薬工業株式会社Patent applicant: Wako Pure Chemical Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 二価の鉄の発色試薬を用いて鉄の比色分析を行なうに当
り三価の鉄の還元剤としてメタ型皿硫酸又はその塩類を
使用することを特徴とする鉄測定用試楽。
A sample for measuring iron, characterized in that meta-type dish sulfuric acid or its salts are used as a reducing agent for trivalent iron in colorimetric analysis of iron using a coloring reagent for divalent iron.
JP16145882A 1982-09-16 1982-09-16 Reagent for determination of iron Granted JPS5950364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16145882A JPS5950364A (en) 1982-09-16 1982-09-16 Reagent for determination of iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16145882A JPS5950364A (en) 1982-09-16 1982-09-16 Reagent for determination of iron

Publications (2)

Publication Number Publication Date
JPS5950364A true JPS5950364A (en) 1984-03-23
JPH033911B2 JPH033911B2 (en) 1991-01-21

Family

ID=15735487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16145882A Granted JPS5950364A (en) 1982-09-16 1982-09-16 Reagent for determination of iron

Country Status (1)

Country Link
JP (1) JPS5950364A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102866124A (en) * 2012-09-14 2013-01-09 天津力神电池股份有限公司 Method for testing Fe<3+> content of lithium iron phosphate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102866124A (en) * 2012-09-14 2013-01-09 天津力神电池股份有限公司 Method for testing Fe<3+> content of lithium iron phosphate

Also Published As

Publication number Publication date
JPH033911B2 (en) 1991-01-21

Similar Documents

Publication Publication Date Title
Worwood et al. Serum ferritin
Goldstein et al. The urine anion gap: a clinically useful index of ammonium excretion
Six et al. The influence of iron deficiency on tissue content and toxicity of ingested lead in the rat
Fishbane et al. Iron management in end-stage renal disease
Burch et al. Improved method for measurement of delta-aminolevulinic acid dehydratase activity of human erythrocytes
Robertson et al. Calcium measurements in serum and plasma—total and ionized
Esposito et al. Labile iron in parenteral iron formulations and its potential for generating plasma nontransferrin‐bound iron in dialysis patients
Bell et al. Serum ferritin assay and bone-marrow iron stores in patients on maintenance hemodialysis
Morgan Cadmium and zinc abnormalities in bronchogenic carcinoma
Vittori et al. Morphologic and functional alterations of erythroid cells induced by long-term ingestion of aluminium
Hamstra et al. Erythropoiesis in response to blood loss in man.
Cavill et al. Diagnostic methods for iron status
Larsen et al. Normal iron absorption determined by means of whole body counting and red cell incorporation of 59Fe
Yuzbasiyan‐Gurkan et al. Net renal tubular reabsorption of zinc in healthy man and impaired handling in sickle cell anemia
Paller Free radical scavengers in mercuric chloride-induced acute renal failure in the rat
EP0137400B1 (en) Determination of unsaturated iron-binding capacity
Feinstein et al. Erythropoietin deficiency causes anemia in nephrotic children with normal kidney function
Przybylowski et al. Prevalence of iron deficiency in heart and kidney allograft recipients
Rossi et al. Estimation of ifosfamide/cisplatinum-induced renal toxicity by urinary protein analysis
JPS5950364A (en) Reagent for determination of iron
McGregor et al. Effect of pH and citrate on binding of iron and gallium by transferrin in serum
CN105334326A (en) Ceruloplasmin detection kit
JP2632989B2 (en) Method for measuring unsaturated iron binding ability
EP0143805A4 (en) Improved reagent composition and assay for the determination of creatinine.
JPH0453265B2 (en)