JPS5950343B2 - Ion wind focusing method using corona discharge - Google Patents

Ion wind focusing method using corona discharge

Info

Publication number
JPS5950343B2
JPS5950343B2 JP51016629A JP1662976A JPS5950343B2 JP S5950343 B2 JPS5950343 B2 JP S5950343B2 JP 51016629 A JP51016629 A JP 51016629A JP 1662976 A JP1662976 A JP 1662976A JP S5950343 B2 JPS5950343 B2 JP S5950343B2
Authority
JP
Japan
Prior art keywords
discharge
ion wind
electrode
opening
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51016629A
Other languages
Japanese (ja)
Other versions
JPS5299799A (en
Inventor
守男 慈道
和慶 福沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP51016629A priority Critical patent/JPS5950343B2/en
Publication of JPS5299799A publication Critical patent/JPS5299799A/en
Publication of JPS5950343B2 publication Critical patent/JPS5950343B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/003Details of machines, plants or systems, using electric or magnetic effects by using thermionic electron cooling effects

Landscapes

  • Electrotherapy Devices (AREA)
  • Electrostatic Separation (AREA)

Description

【発明の詳細な説明】 本発明は、コロナ放電を利用して物体に集束さ;れたイ
オン風を吹きつけるためのイオン風集束方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ion wind focusing method for blowing focused ion wind onto an object using corona discharge.

従来、イオン風を吹きつけようとする被風圧物体に対し
て放電電極を対向配置し、その両者間においてコロナ放
電を行わせることにより、上記物体の一部にイオン風を
吹きつける方法は、すでに提案されている。
Conventionally, there has already been a method of blowing ion wind onto a part of the object by arranging a discharge electrode to face the pressure object and causing corona discharge between the two. Proposed.

本発明は、この種方法によってイオン風を発生させるに
際し、放電電極と被風圧物体との間にイオン風制御電極
を配置することにより、そのイオン風を集束放出させ、
しかも両電極形状及び電極間距離の適切な選定により、
集束放出されるイオン風の吹出し流圧力を高め、あるい
はその吹出し流圧力分布を一様ならしめ、その吹きつけ
効果を一層高めるようにしたことを特徴とするものであ
る。
When generating ion wind by this type of method, the present invention focuses and releases the ion wind by arranging an ion wind control electrode between the discharge electrode and the object to be subjected to wind pressure,
Moreover, by appropriately selecting the shape of both electrodes and the distance between them,
This is characterized by increasing the blowing flow pressure of the focused and emitted ion wind or making the blowing flow pressure distribution uniform, thereby further enhancing the blowing effect.

図面を参照して本発明の方法をさらに詳細に説明すると
、第1図において、1は被風圧物体、2は物体1に対向
配置した放電電極で、上記被風圧物体1は電源3のプラ
ス端子に、また放電電極2はマイナス端子にそれぞれ接
続している。
To explain the method of the present invention in more detail with reference to the drawings, in FIG. Furthermore, the discharge electrodes 2 are connected to the negative terminals.

被風圧物体1と放電電極2との間に配置したイオン風制
御電極4は、放電電極2の先端に対向する開口5を中心
に備えると共に、その周囲に放電電極2の放電面2aと
対向する放電面4aを備え、抵抗Rを介してアースして
いる。
The ion wind control electrode 4 arranged between the wind pressure object 1 and the discharge electrode 2 has an opening 5 at the center facing the tip of the discharge electrode 2, and has an opening 5 around the opening 5 facing the discharge surface 2a of the discharge electrode 2. It has a discharge surface 4a and is grounded via a resistor R.

而して、上記放電電極2における放電面2aは頂角がほ
ぼ60°の円錐状に形成し、またイオン風制御電極4に
おける放電面4aは上記放電面2aに対して平行な開き
角60°の摺鉢状に形成している。
The discharge surface 2a of the discharge electrode 2 is formed into a conical shape with an apex angle of approximately 60 degrees, and the discharge surface 4a of the ion wind control electrode 4 has an opening angle of 60 degrees parallel to the discharge surface 2a. It is shaped like a mortar.

このような構成を有する放電電極2及びイオン風制御電
極4間に高電圧を印加することにより両電極間において
コロナ放電させると、そのコロナ放電に伴ってイオン風
制御電極4の開口5を通して被風圧物体1に向うイオン
風の吹出し流が発生し、被風圧物体1に吹きつけられる
When a high voltage is applied between the discharge electrode 2 and the ion wind control electrode 4 having such a configuration to cause a corona discharge between the two electrodes, the wind pressure increases through the opening 5 of the ion wind control electrode 4 due to the corona discharge. A blowout flow of ion wind toward the object 1 is generated and blown onto the object 1 subjected to wind pressure.

・このイオン風の風速、風量等の調節は、放電
電極2及びイオン風制御電極4の形状の選定、両電極間
距離の調節、両電極径比の選定、イオン風制御電極4に
接続した抵抗Rの調節等によって行うことができるが、
本発明者は、特に放電電極2及びイオン風制御電極4の
形状に関し、上述したように放電電極2における放電面
2aを頂角はぼ60°の円錐状に形成すると共に、イオ
ン風制御電極4の放電面4aを上記放電面2aと平行な
開き角はぼ60°の摺鉢状に形成することにより、強い
イオン風を発生できることを実験的に確かめた。
- Adjustment of the speed, volume, etc. of this ion wind involves selecting the shapes of the discharge electrode 2 and the ion wind control electrode 4, adjusting the distance between the two electrodes, selecting the diameter ratio of both electrodes, and resistors connected to the ion wind control electrode 4. This can be done by adjusting R, etc.
In particular, with regard to the shapes of the discharge electrode 2 and the ion wind control electrode 4, the present inventor formed the discharge surface 2a of the discharge electrode 2 into a conical shape with an apex angle of approximately 60° as described above, and the ion wind control electrode 4. It was experimentally confirmed that a strong ion wind could be generated by forming the discharge surface 4a parallel to the discharge surface 2a in a mortar shape with an opening angle of about 60 degrees.

また、このような両電極間のコロナ放電に伴ってイオン
風制御電極4の開口5から吹出すイオン風は、一般にそ
の吹出し流圧力が開口5の中心において高く、周辺にお
いて低くなる。
Further, the ion wind blown out from the opening 5 of the ion wind control electrode 4 due to such corona discharge between the two electrodes generally has a high blowout flow pressure at the center of the opening 5 and a low pressure at the periphery.

ところが、本発明者の実験において、上記両電極間距離
を適当に調整することにより、開口5の全体にわたって
イオン風の吹出し流圧力の分布が一様になることを見出
した。
However, in experiments conducted by the present inventor, it was found that by appropriately adjusting the distance between the two electrodes, the distribution of the pressure of the ion wind blowing out over the entire opening 5 could be made uniform.

この場合、放電電極2の径とイオン風制御電極4の開口
径とを略同−にすればより効果的である。
In this case, it is more effective to make the diameter of the discharge electrode 2 and the opening diameter of the ion wind control electrode 4 substantially the same.

放電電極2とイオン風制御電極4を上記の如く平行に配
置し、印加電圧及び放電電流を大きくして高い電界強度
を得ることにより強いイオン風を発生させることができ
、同時に電極間距離を適当に調整して電場を調整するこ
とにより、吹出し流圧力の分布が略一様な平行流のイオ
ン風を得ることができると考えられる。
By arranging the discharge electrode 2 and the ion wind control electrode 4 in parallel as described above and increasing the applied voltage and discharge current to obtain a high electric field strength, a strong ion wind can be generated, and at the same time, the distance between the electrodes can be set appropriately. It is considered that by adjusting the electric field to adjust the electric field, it is possible to obtain a parallel flow of ion wind with a substantially uniform distribution of blowout flow pressure.

第2図は、その図中に示した放電電極とイオン風制御電
極を用い、放電電極の頂角αとイオン風制御電極の開き
角βの相互の影響がイオン風の吹出し流圧力に及ぼす効
果を確かめた実験結果を示すものであり、これによって
α、βが共にほぼ60°の場合に強いイオン風が得られ
ることがわかる。
Figure 2 shows the effect of the mutual influence of the apex angle α of the discharge electrode and the opening angle β of the ion wind control electrode on the pressure of the ion wind blowing flow using the discharge electrode and ion wind control electrode shown in the figure. This shows the experimental results that confirmed this, and it can be seen that a strong ion wind can be obtained when both α and β are approximately 60°.

また、第3図はその図中に示す放電電極とイオン風制御
電極を用い、放電電極頂角αと電極間隔りの影響が電気
風吹出し流に与える効果を確かめた実験結果を示すもの
であり、これによっても放電電極の頂角がほぼ60°の
場合に強いイオン風が得られ、さらに電極間隔の適切な
設定がイオン風の強さを得るために有効であることがわ
かる。
In addition, Figure 3 shows the results of an experiment to confirm the effects of the discharge electrode apex angle α and the electrode spacing on the electric wind blowout flow using the discharge electrode and ion wind control electrode shown in the figure. This also shows that a strong ion wind can be obtained when the apex angle of the discharge electrode is approximately 60°, and that appropriate setting of the electrode spacing is effective in obtaining the strength of the ion wind.

なお、上記第2図及び第3図のグラフにおいては、理解
を容易にするため、各測定点間を直線的に結ぶことによ
り測定値の増減の傾向を示しているが、実際に多数点で
の測定を行った場合には、前記測定点間を滑らかな曲線
で結んだ線上にそれらの測定値が並ぶものと考えられる
In addition, in the graphs in Figures 2 and 3 above, in order to make it easier to understand, the trends in increase and decrease in measured values are shown by connecting each measurement point in a straight line. When measurements are performed, it is considered that the measured values are lined up on a line connecting the measurement points with a smooth curve.

而して、上記曲線は、例えば本発明者らの発明に係る特
公昭53−17176号公報に記載の実験結果なども参
酌すれば、大きいイオン風全圧を得るために電極頂角及
び制御電極開き角が少なくとも50° を下らず、また
電極頂角が70° をこえて不安定領域に近づかないこ
とが有効であり、即ちそれらの角度をほぼ60°前後の
角度範囲に保ったことにより、その範囲を逸脱する場合
に比して強いイオン風を得ることができる。
Therefore, if we also take into account the experimental results described in Japanese Patent Publication No. 17176/1987, which are related to the invention of the present inventors, the above curve can be determined by adjusting the electrode apex angle and the control electrode in order to obtain a large total pressure of ion wind. It is effective that the aperture angle does not fall below 50° and that the electrode apex angle does not exceed 70° and approach the unstable region, that is, by keeping these angles within an angular range of approximately 60°. , a stronger ion wind can be obtained than in the case outside this range.

第4図a−Cは、イオン風制御電極によってコロナ放電
に伴うイオン風を集束させ、そのイオン風を被風圧物体
の表面に放出させた場合の吹出し流圧力の分布に関する
実験結果を例示したもので、同図a、 l)及びCは
それぞれ電極間距離りを0.5.10mmとした場合を
示している。
Figures 4a-C illustrate experimental results regarding the distribution of blowout flow pressure when the ion wind associated with corona discharge is focused by the ion wind control electrode and the ion wind is released onto the surface of the object being subjected to wind pressure. Figures a, l) and C respectively show the case where the distance between the electrodes is 0.5.10 mm.

この実験例においては、電極間距離を5mmとした場合
にイオン風制御電極の開口からの吹出し流圧力の分布が
開口内の全体にわたって略一様になっており、電極間距
離がそれよりも小または大の場合には開口の中心におけ
る風圧が周辺のそれに比して高くなり、また電極間距離
が大きくなれば最大風圧が大きくなっている。
In this experimental example, when the distance between the electrodes is 5 mm, the distribution of the pressure of the blowing flow from the opening of the ion wind control electrode is approximately uniform throughout the opening, and when the distance between the electrodes is smaller than that, Or, in the case of large, the wind pressure at the center of the opening is higher than that at the periphery, and as the distance between the electrodes increases, the maximum wind pressure increases.

なお、イオン風の吹出し流圧力の分布が略一様になる場
合の電極間距離は、上記実験例の場合5mmであるが、
電極形状等の他の条件によって変化する。
Note that the distance between the electrodes when the distribution of the pressure of the ion wind blowing out is approximately uniform is 5 mm in the above experimental example.
It changes depending on other conditions such as electrode shape.

しかしながら、その圧力分布が略一様になる電極の位置
は、電極間距離を変化させながら圧力分布の測定を行う
ことにより簡単に見出すことができる。
However, the positions of the electrodes where the pressure distribution is approximately uniform can be easily found by measuring the pressure distribution while changing the distance between the electrodes.

以上に詳述したところから明らかなように、本発明の方
法によれば、放電電極とイオン風制御電極の形状及び電
極間距離の適切な選定により、集未放出するイオン風の
吹出し流圧力を高め、あるいはその圧力分布を一様なら
しめ、用途に応じてその吹きつけ効果を有効に活用する
ことができる。
As is clear from the detailed description above, according to the method of the present invention, by appropriately selecting the shapes of the discharge electrode and the ion wind control electrode and the distance between the electrodes, the blowout flow pressure of the ion wind that is not collected and released can be reduced. The spraying effect can be effectively utilized depending on the application by increasing the pressure or making the pressure distribution uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置の概要を示す断面
図、第2図、第3図及び第4図a−cは本発明に関連す
る実験結果を示す説明図である。 1・・・・・・被風圧物体、2・・・・・・放電電極、
3・・・・・・電源、4・・・・・・イオン紙制御電極
、2a、4a・・・・・・放電面、5・・・・・・開口
FIG. 1 is a sectional view showing an outline of an apparatus for carrying out the method of the present invention, and FIGS. 2, 3, and 4 a to 4 are explanatory diagrams showing experimental results related to the present invention. 1... Wind pressure object, 2... Discharge electrode,
3... Power supply, 4... Ion paper control electrode, 2a, 4a... Discharge surface, 5... Opening.

Claims (1)

【特許請求の範囲】 1 放電電極と、その先端に対向する開口を放電面の中
心に備えたイオン風制御電極との間に高電圧を印加して
、両電極間のコロナ放電に伴うイオン風を上記開口から
物体に吹きつけるに際し、上記放電電極における放電面
を頂角がほぼ60°の円錐状に形成すると共に、イオン
風制御電極における放電面を上記放電電極の放電面に対
して平行な開き角はぼ60°の摺鉢状に形成し、両電極
間におけるコロナ放電に伴って上記開口からイオン風の
強い吹出し流を得ることを特徴とするコロナ放電による
イオン風の収束方法。 2 放電電極と、その先端に対向する開口を放電面の中
心に備えたイオン風制御電極との間に高電圧を印加して
、両電極間のコロナ放電に伴うイオン風を上記開口から
物体に吹きつけるに際し、上記放電電極における放電面
を頂角がほぼ60°の円錐状に形成すると共に、イオン
風制御電極における放電面を上記放電電極の放電面に対
して平行な開き角はぼ60°の摺鉢状に形成し、両電極
間の距離の調整により、両電極間におけるコロナ放電に
伴って発生するイオン風の上記開口からの吹出し流圧力
の分布を、その開口の全体にわたって略一様にすること
を特徴とするコロナ放電によるイオン風の収束方法。
[Claims] 1. A high voltage is applied between a discharge electrode and an ion wind control electrode having an opening opposite to the tip at the center of the discharge surface to control the ion wind caused by corona discharge between the two electrodes. When spraying onto an object from the opening, the discharge surface of the discharge electrode is formed into a conical shape with an apex angle of approximately 60°, and the discharge surface of the ion wind control electrode is formed parallel to the discharge surface of the discharge electrode. A method for converging ion wind by corona discharge, characterized in that the opening angle is formed in a mortar shape with an opening angle of approximately 60°, and a strong flow of ion wind is obtained from the opening as corona discharge occurs between both electrodes. 2. A high voltage is applied between the discharge electrode and an ion wind control electrode that has an opening at the center of the discharge surface facing the tip of the discharge electrode, and the ionic wind caused by the corona discharge between the two electrodes is directed from the opening to the object. When spraying, the discharge surface of the discharge electrode is formed into a conical shape with an apex angle of approximately 60°, and the discharge surface of the ion wind control electrode is formed so that the opening angle parallel to the discharge surface of the discharge electrode is approximately 60°. By adjusting the distance between the two electrodes, the pressure distribution of the ion wind blown out from the aperture, which is generated due to the corona discharge between the two electrodes, can be made approximately uniform over the entire aperture. A method for converging ion winds using corona discharge, which is characterized by:
JP51016629A 1976-02-18 1976-02-18 Ion wind focusing method using corona discharge Expired JPS5950343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51016629A JPS5950343B2 (en) 1976-02-18 1976-02-18 Ion wind focusing method using corona discharge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51016629A JPS5950343B2 (en) 1976-02-18 1976-02-18 Ion wind focusing method using corona discharge

Publications (2)

Publication Number Publication Date
JPS5299799A JPS5299799A (en) 1977-08-22
JPS5950343B2 true JPS5950343B2 (en) 1984-12-07

Family

ID=11921642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51016629A Expired JPS5950343B2 (en) 1976-02-18 1976-02-18 Ion wind focusing method using corona discharge

Country Status (1)

Country Link
JP (1) JPS5950343B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773787A (en) * 1980-10-27 1982-05-08 Tokyo Shibaura Electric Co Video processing system
JPS60132661A (en) * 1983-12-20 1985-07-15 Nippon Soken Inc Air purifier

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846182A (en) * 1971-10-14 1973-07-02

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889686U (en) * 1972-01-31 1973-10-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846182A (en) * 1971-10-14 1973-07-02

Also Published As

Publication number Publication date
JPS5299799A (en) 1977-08-22

Similar Documents

Publication Publication Date Title
US5616257A (en) Wire bonding method and apparatus
JPS5950343B2 (en) Ion wind focusing method using corona discharge
EP0037455A2 (en) Ion source
US2252508A (en) Apparatus for the spectroscopic analysis of materials
EP1296536A2 (en) Electroacoustic transducer
JPS5546456A (en) Welding method between electrode or lead wire and conductive foil
US2468647A (en) Electrode tip construction for welding apparatus
JPS604791B2 (en) Electrode for latent image formation
JPS5480749A (en) Electrode device for forming electrostatic latent image
US1279990A (en) Method of controlling and apparatus for producing ionic discharges.
JPS6319135Y2 (en)
JPS5447472A (en) Picture display unit
JPS57134217A (en) Bead processing device for drum shell
SU1579436A1 (en) DEVICE FOR OBTAINING CYLINDRICAL PLASMA SHELL
JPS6129724Y2 (en)
JPS547265A (en) Electron gun with electrod for deflecting-defocus correction
RU1718471C (en) Method of projection resistance welding
JPH06103699B2 (en) Ball forming method and wire bonding apparatus in wire bonding
USRE25222E (en) eichenbaum
JPS55122342A (en) Lead-out electrode structure of ion source
JPS57113542A (en) Electrode structure for electron gun
JPH0518838Y2 (en)
SU677849A1 (en) Resistance welding method
JPS60227849A (en) Two-stage electrical dust collector
JPS5517549A (en) Electrostatic recording method by means of single side controlling electrostatic recording head