JPS5950315A - Electromagnetic flow meter - Google Patents

Electromagnetic flow meter

Info

Publication number
JPS5950315A
JPS5950315A JP16123582A JP16123582A JPS5950315A JP S5950315 A JPS5950315 A JP S5950315A JP 16123582 A JP16123582 A JP 16123582A JP 16123582 A JP16123582 A JP 16123582A JP S5950315 A JPS5950315 A JP S5950315A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic flux
coil
energizing coil
closed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16123582A
Other languages
Japanese (ja)
Inventor
Etsumi Suzuki
鈴木 悦美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP16123582A priority Critical patent/JPS5950315A/en
Publication of JPS5950315A publication Critical patent/JPS5950315A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/586Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters constructions of coils, magnetic circuits, accessories therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To suppress the generation of leaked magnetic flux of an energizing coil, and to reduce a rise time of an energizing current, by providing a leaked magnetic flux suppressing means of the energizing coil, which is provided between a magnetic pole and a feedback magnetic path body, and is constituted of a nonmagnetic conductive material for surrounding a part of the outside circumference of the energizing coil without forming a closed circuit for surrounding the whole outside circumference of the energizing coil. CONSTITUTION:A block 7 for suppressing a leaked magnetic flux phiL of an energizing coil 4 is provided between a magnetic pole 3 and a feedback magnetic path body 6. The block 7 is constituted of a nonmagnetic and conductive material and surrounds the greater part of the outside circumference of the energizing coil 4, but does not form a closed circuit for surrounding the whole outside circumference of the energizing coil because it has a cut part 8. The suppressing body 7 is cut by at least one piece so that the closed circuit running along the outside circumference of the energizing coil 4 is not constituted, therefore, it has no effect for reducing a main magnetic flux phiM. That is to say, since it can reduce an hourly variation of the main magnetic flux phiM in a sampling time ts, it can reduce an electromagnetic induced noise containing in a signal fetched from an electrode 5.

Description

【発明の詳細な説明】 この発明はファラデーの電磁訪導法則を利用した゛電磁
流量計にかかわシ、特に極性が周期的に変化する直流磁
界を流体に印加する電磁流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromagnetic flowmeter that utilizes Faraday's law of electromagnetic conduction, and more particularly to an electromagnetic flowmeter that applies a DC magnetic field whose polarity changes periodically to a fluid.

この種の電磁流量計は従来交流励磁方式によシ発生した
父流磁界を測定管内の流体に印加していた。周期的に値
が変化する直流励磁方式たとえば方形波励磁方式を電磁
流量計に採用することによシ交流励磁方式の場合に比較
して流体が流れない場合の零点の安定性を大幅に向上さ
せることかできる。この安定性の向上は、直流磁界を利
用することによシ、磁界の時間的変化に起因する′電磁
誘導雑音を理論上等とすることができるために達成され
る。しかしながら、実際には上記電磁誘導雑音を理論通
り零とすることは出来ない。この理由は、磁気回路を構
成する鉄心、外筐等にうず電流が誘起されるからである
。P第1図は横軸に時間、縦軸に励磁電6)コ。
This type of electromagnetic flowmeter has conventionally applied a father-flow magnetic field generated by an alternating current excitation method to the fluid in the measuring tube. By adopting a DC excitation method in which the value changes periodically, such as a square wave excitation method, in an electromagnetic flowmeter, the stability of the zero point when the fluid does not flow can be greatly improved compared to the case of an AC excitation method. I can do it. This improvement in stability is achieved because by using a DC magnetic field, electromagnetic induction noise caused by temporal changes in the magnetic field can be theoretically reduced. However, in reality, the electromagnetic induction noise cannot be reduced to zero as theoretically possible. The reason for this is that eddy currents are induced in the iron core, outer casing, etc. that constitute the magnetic circuit. In Figure 1, the horizontal axis is time and the vertical axis is excitation voltage.

磁束密度1をあられした電磁流量計の諸量の波形図であ
る。■は方形波励磁方式の励磁電流でる’)、Blは電
磁流量計を構成する流量測定管内の磁束であシ、B2は
第2図を参照して後述する磁束である。tμは励磁電流
Iの立上シまたは立下り時間であシ、tBFi、電磁流
量計の出力信号を得るためのサンプリング時間、Tは励
磁電流■の1周期である。方形波励磁方式においては、
測定管内磁束密度の時間的変化がある程度小さくなった
期間たとえばサンプリング時間tsに対応する電磁流量
計の出力信号を用いて流量を測定している。前記したよ
うにこのサンプリング時間tBに含まれる電磁誘導雑音
は零にならないが出来るだけ小さくすることがのぞまし
い。
FIG. 3 is a waveform chart of various quantities of an electromagnetic flowmeter with a magnetic flux density of 1. (3) is the excitation current of the square wave excitation method'), B1 is the magnetic flux in the flow rate measuring tube constituting the electromagnetic flowmeter, and B2 is the magnetic flux which will be described later with reference to FIG. tμ is the rise or fall time of the excitation current I, tBFi is the sampling time for obtaining the output signal of the electromagnetic flowmeter, and T is one cycle of the excitation current (2). In the square wave excitation method,
The flow rate is measured using the output signal of the electromagnetic flowmeter corresponding to a period during which the temporal change in the magnetic flux density in the measuring tube becomes small to a certain extent, for example, the sampling time ts. As mentioned above, the electromagnetic induction noise included in this sampling time tB does not become zero, but it is desirable to reduce it as much as possible.

この電磁誘導雑音を減少させるには次の三つの方法が考
えられる。
The following three methods can be considered to reduce this electromagnetic induction noise.

A、鉄心、外筐等に誘起されるうず電流を小とするよう
に、流量計の材料および構造を工夫する方法。
A. A method of devising the material and structure of the flowmeter to reduce eddy currents induced in the iron core, outer casing, etc.

B、励磁周波数を小とする。即ち第1図に示す励磁周期
Tを大にする方法。
B. Decrease the excitation frequency. That is, a method of increasing the excitation period T shown in FIG.

C2励磁亜流の立上り時間即ち第1図の時間tμを短か
くする方法。
A method of shortening the rise time of the C2 excitation subcurrent, that is, the time tμ in FIG.

Aの方法は、効果はある程度期待できるが製作上または
価額上の問題が起るー。Bの方法は誘導雑音を減少させ
るのには効果はあるが、一定時間内での測定回数が減少
するために応答性が悪くなる。Cの方法は誘導雑音の減
少についてはBの方法よシ僅かに劣るが応答性について
はBの方法よシすぐれている。Cの方法を具体的に実施
する手段として測定管内の磁束密度分布を信号取出電極
が設けられている部分で犬となるように設計し、測定管
を横ぎる磁界発生装置の起磁力を小さくする。このよう
にすれば、励磁コイルの巻数寸たけ励磁電流を小とする
ことができるので励磁電流Iの立上シ時間tltを小と
することができる。しかしながらこのようにすると測定
結果は偏流の影響をうけると云う新らたな問題が発生す
る。
Method A can be expected to be effective to some extent, but there are problems with production and cost. Although method B is effective in reducing induced noise, the number of measurements within a certain period of time is reduced, resulting in poor responsiveness. Method C is slightly inferior to method B in terms of reducing induced noise, but is superior to method B in terms of responsiveness. As a means of concretely implementing method C, the magnetic flux density distribution in the measurement tube is designed so that it becomes a dog in the area where the signal extraction electrode is installed, and the magnetomotive force of the magnetic field generator that crosses the measurement tube is reduced. . In this way, the excitation current can be made smaller by the number of turns of the excitation coil, so the rise time tlt of the excitation current I can be made smaller. However, if this is done, a new problem arises in that the measurement results are affected by drift.

したがって本発明の目的は、電磁流量計の測定管を横ぎ
る磁束の発生手段の励磁コイルの洩れ磁束の発生を抑制
して励磁電流の立上シ時間を減少させる手段を設けた電
磁流量計を提供することにある。
Therefore, an object of the present invention is to provide an electromagnetic flowmeter equipped with a means for suppressing the leakage magnetic flux of the excitation coil of the magnetic flux generation means that crosses the measurement tube of the electromagnetic flowmeter and reducing the rise time of the excitation current. It is about providing.

この発明の電磁流量計は、流量測定管の相対向する側に
、磁束がこの流量測定管を横ぎるように配置された1対
の磁極と、前記それぞれの磁極を励磁するための1対の
励磁コイルと、前記流量測定、管を横ぎった磁束の帰還
磁路体と、前記磁極と帰還磁路体との間に設−けられ前
記励磁コイルの全外周をかこむ閉路を形成することなし
にこの励磁コイルの外周の少なくとも1部をかこむ非磁
性専電性材料で構成された前記励磁コイルの洩れ磁束抑
制装置とを含んでいる。
The electromagnetic flowmeter of the present invention includes a pair of magnetic poles arranged on opposite sides of a flow rate measuring tube so that magnetic flux crosses the flow rate measuring tube, and a pair of magnetic poles for exciting the respective magnetic poles. An excitation coil, a return magnetic path body for the magnetic flux that has crossed the flow rate measurement tube, and a closed circuit that is provided between the magnetic pole and the return magnetic path body and surrounds the entire outer periphery of the excitation coil without forming a closed circuit. and a leakage magnetic flux suppressing device for the excitation coil, which is made of a non-magnetic proprietary material and surrounds at least a portion of the outer periphery of the excitation coil.

以下図面を参照してこの発明の一実施例を説明する。第
2図において、たとえば絶縁材料からなる流量測定管2
の相対向する外側に1対の磁極3が配置されておシ、そ
れぞれの磁極3は励磁コイル4によって励磁される。磁
極3が励磁されたとき発生する磁束φ、は主磁束として
測定管2を横ぎる。測定管2からは測定値をとシ出すだ
めの電極5が設けられている。測定管2内を流れる流体
の速度、主磁束φ□l ’j’fL極5からとシ出され
た起電力の相互関係を示す公知の式から流量°が決定さ
れる。6は磁束φつの帰路を形成する磁性体の帰還磁路
体であり、流量計内部の保睦および磁気遮蔽の役目も果
たしている。磁極3と帰還磁路体6との間に、励磁コイ
ル4の洩れ磁束φLを抑制するだめのブロック7が設け
られている。このブロック7は非磁性であって導電性の
材料から構成されておシ、たとえば第3A図に示す平面
形状を有している。即ち励磁コイル4の外周の大部分を
とりかこんではいるが、分断部8を有しているために励
磁コイルの全外周をかこむ閉路を形成していない。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 2, a flow rate measuring tube 2 made of, for example, an insulating material is shown.
A pair of magnetic poles 3 are disposed on opposite sides of the magnetic pole 3, and each magnetic pole 3 is excited by an excitation coil 4. The magnetic flux φ, generated when the magnetic pole 3 is excited, crosses the measuring tube 2 as a main magnetic flux. An electrode 5 is provided from the measuring tube 2 to output a measured value. The flow rate ° is determined from a known formula showing the correlation between the velocity of the fluid flowing in the measuring tube 2, the main magnetic flux φ□l 'j'fL pole 5, and the electromotive force emitted from the pole 5. Reference numeral 6 denotes a return magnetic path body made of a magnetic material that forms two return paths for the magnetic flux, and also serves as protection and magnetic shielding inside the flowmeter. A block 7 for suppressing leakage magnetic flux φL of the excitation coil 4 is provided between the magnetic pole 3 and the return magnetic path body 6. This block 7 is made of a non-magnetic and conductive material and has, for example, the planar shape shown in FIG. 3A. That is, although it surrounds most of the outer periphery of the exciting coil 4, it does not form a closed circuit that surrounds the entire outer periphery of the exciting coil because it has the dividing portion 8.

ブロック7の平面形状は第3B図およびMr a 0図
のようにすることも出来る。このブロック7は一般には
洩れ磁束抑制体とも云はれるべきもので、たとえば鋼薄
板、銅又はアルミの板又はこれらの材料のブロック体で
構成することができる。
The planar shape of the block 7 can also be as shown in FIG. 3B and Mr. a0. This block 7 is generally referred to as a leakage magnetic flux suppressor, and can be constructed of, for example, a thin steel plate, a copper or aluminum plate, or a block of these materials.

次に第2図に示す装置の作用効果について説明する。励
磁コイル4のインダクタンスLは次式であられされる。
Next, the effects of the device shown in FIG. 2 will be explained. The inductance L of the excitation coil 4 is expressed by the following equation.

L=φ/■        ・・・(1)ここでIは励
磁電流でらシ、φは発生した磁束の総オlであシ φ=φ1+φ1      ・・・(2)であられされ
る。φMは第2図に示す測定管2を横ぎる磁束であって
電&5からとシ出される電磁流徴計の出力信号に直接関
与する磁束である。
L=φ/■ (1) Here, I is the excitation current, and φ is the total amount of the generated magnetic flux.φ=φ1+φ1 (2). φM is a magnetic flux that crosses the measuring tube 2 shown in FIG. 2, and is a magnetic flux that is directly involved in the output signal of the electromagnetic flow meter output from the electric current & 5.

φ1は励磁コイル4の洩れ磁束であって、電極5からと
シ出される起電力の大きさには関係しない。1励磁“電
流Iの極性が第1図のように反転するときは、励磁コイ
ル4の洩れ磁束φ1は、もし洩れ磁束抑制体7が存在し
ないと仮足すれば主磁束φつの変化を示す測定管内Ω磁
束密度B1の波形と同じ波形で変化する。しかしながら
洩れ磁束抑制体7が存在すると、洩れ磁束φ、の変化に
応じて抑制体7にうず電流が誘起されるから、洩れ磁束
φ1は第1図B2に示すように変化する。
φ1 is the leakage magnetic flux of the excitation coil 4, and is not related to the magnitude of the electromotive force emitted from the electrode 5. 1 When the polarity of the excitation current I is reversed as shown in Fig. 1, the leakage magnetic flux φ1 of the excitation coil 4 is a measurement that shows a change in the main magnetic flux φ if it is assumed that the leakage flux suppressor 7 does not exist. It changes with the same waveform as the in-tube Ω magnetic flux density B1.However, if the leakage magnetic flux suppressor 7 exists, an eddy current is induced in the suppressor 7 according to the change in the leakage magnetic flux φ, so the leakage magnetic flux φ1 is It changes as shown in Figure 1B2.

詳述すれば、励磁電流の極性が変化してから十分な時間
が経過した時点での洩れ磁束九の大きさは抑制体7の存
在によって殆んど影響をうけないが、励磁電流が変化し
つつある時点でのφは抑制体の存在によって大幅に小と
なる。即ち励磁電流が変化しつつある時点での励(Mコ
イル4のインダクタンスしは小となる。コイルのインダ
クタンスLが小となれば励磁電流の立上シ時間t7が短
かぐなる。一方、抑制体7は励磁コイル4の外周にそう
閉路を構成しないように少なくとも1個で分断されてい
るため(第3A図参照)主磁束φMを減少させる効果を
有していない。即ち、第1図に示すサンプリング時間t
8間での主磁束φヶ′の時間的変化を減少させることが
できるので電極5からとシ出される信号に含まれる電磁
誘導雑音を小さくできる。
To be more specific, the magnitude of the leakage magnetic flux 9 after a sufficient period of time has passed after the polarity of the excitation current changes is hardly affected by the presence of the suppressor 7, but when the excitation current changes. The presence of the suppressor makes φ significantly smaller at the time of the increase. That is, at the time when the excitation current is changing, the inductance of the M coil 4 becomes small.If the inductance L of the coil becomes small, the rise time t7 of the excitation current becomes short.On the other hand, when the suppressor 7 is divided into at least one piece on the outer periphery of the excitation coil 4 so as not to form a closed circuit (see Fig. 3A), so it does not have the effect of reducing the main magnetic flux φM. That is, as shown in Fig. 1 sampling time t
Since the temporal change in the main magnetic flux φ between the electrodes 5 and 8 can be reduced, the electromagnetic induction noise contained in the signal output from the electrodes 5 can be reduced.

第4図に示す実施例は磁極3が測定管2に対向する部分
の断面積を励磁コイル4によってかこまれる磁極の断面
積よυ大とし、この断面積の犬なる磁極面と帰還磁路体
6との間に洩れ磁束抑制体7を設けたものである。第4
図に示す洩れ磁束抑制体2はブロック状であって磁極3
に1図秤されている。第5図に示されている洩れ磁束抑
制体7は板状体である帰還磁“路体6にとりつけられて
いる。
In the embodiment shown in FIG. 4, the cross-sectional area of the portion of the magnetic pole 3 facing the measuring tube 2 is set to be υ larger than the cross-sectional area of the magnetic pole surrounded by the excitation coil 4, and the magnetic pole surface, which is a dog of this cross-sectional area, and the return magnetic path body A leakage magnetic flux suppressor 7 is provided between the magnet 6 and the magnet 6. Fourth
The leakage magnetic flux suppressor 2 shown in the figure has a block shape, and the magnetic pole 3
It is weighed in Figure 1. The leakage magnetic flux suppressor 7 shown in FIG. 5 is attached to a return magnetic path body 6 which is a plate-shaped body.

第6図に示す実施例は洩れ磁束抑制体としてコイル体7
aを用いている。このコイル体7aは磁極3と帰還磁路
体6との間に設けられていてその形状Fi第6A図に示
されている。このコイル体7aは励磁コイル4の外周を
とシかこむ閉路を構成することがないように巻回されて
おυ、洩れ磁束を通過させるコイル面を形成するように
巻回されている。このコイルの端子間は、洩れ磁束によ
ってコイルに誘起される電流全減少させないように短絡
してもよいし、適当な負荷を介して接続してもよい。更
に又励磁コイル4の洩れ4iM束φLを打消すようにこ
の励磁コイル4と直列接続してもよい。第7図に示す実
施例は第6図に示す実施例と原理的に同一である。
The embodiment shown in FIG. 6 has a coil body 7 as a leakage magnetic flux suppressor.
a is used. This coil body 7a is provided between the magnetic pole 3 and the return magnetic path body 6, and its shape Fi is shown in FIG. 6A. The coil body 7a is wound so as not to form a closed circuit surrounding the outer periphery of the excitation coil 4, and is wound so as to form a coil surface through which leakage magnetic flux passes. The terminals of this coil may be short-circuited so as not to reduce the total current induced in the coil due to leakage magnetic flux, or may be connected through an appropriate load. Furthermore, it may be connected in series with the exciting coil 4 so as to cancel the leakage 4iM flux φL of the exciting coil 4. The embodiment shown in FIG. 7 is basically the same as the embodiment shown in FIG.

第6図と異なる点は、洩れ磁束抑制コイル体7aは第7
Aの斜視図に示す形状を有していて磁+6i3に固定さ
れていることである。第6図。
The difference from FIG. 6 is that the leakage flux suppressing coil body 7a is
It has the shape shown in the perspective view of A and is fixed to the magnet +6i3. Figure 6.

第7図に示す実施例は第2図に示す実施例と同一の効果
を有する。
The embodiment shown in FIG. 7 has the same effect as the embodiment shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1Nは本発明装置の原理を説明するだめの波形図、 第2図は本発明装置の1実施令Uの断面図、第3A図乃
至第3C図はそれぞれ第2図に示す洩れ磁束抑制体の平
面図、 第4図および第5図はそれぞれ本発明装置の他の実施例
の断面図ミ 第6図および第7図はそれぞれ本発明装置の更に他の実
施例の断面図、 第6A図および;4r7h図はそれぞれ第6図および第
7図の洩れ磁束抑制体の斜視図である。 2・・・流量測定管、3・・・磁極、4・・・励磁コイ
ル、5・・・誘起電圧取出電極、6・・・帰還磁路体、
7,2a・・・洩れ磁束抑制体。 出願人代理人  弁理士 鈴 江 武 彦第1図 第4図    第5図 第6A図
1N is a waveform diagram for explaining the principle of the device of the present invention, FIG. 2 is a sectional view of 1 implementation order U of the device of the present invention, and FIGS. 3A to 3C are leakage magnetic flux suppressors shown in FIG. 2. FIGS. 4 and 5 are respectively sectional views of other embodiments of the apparatus of the present invention; FIGS. 6 and 7 are sectional views of still other embodiments of the apparatus of the present invention, and FIG. 6A FIGS. 4r and 7h are perspective views of the leakage magnetic flux suppressor shown in FIGS. 6 and 7, respectively. 2...Flow rate measuring tube, 3...Magnetic pole, 4...Exciting coil, 5...Induced voltage extraction electrode, 6...Return magnetic path body,
7, 2a... Leakage magnetic flux suppressor. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 4 Figure 5 Figure 6A

Claims (3)

【特許請求の範囲】[Claims] (1)流量測定管の相対向する側に、磁束がこの流量測
定管を横ぎるように配置された1対の磁極と、前記それ
ぞれの磁極を励磁するための1対の励磁コイルと、前記
流量測定管を横ぎった磁束の帰還磁路体とを含む電磁流
量計において、前記磁極と前記帰還磁路体との間に設け
られ、前記励磁コイルの全外周をかこむ閉路を形成する
ことなしに前記励磁コイルの外周の少なくとも1部をか
こむ非磁性導−電性材料で構成された前記励磁コイルの
洩れ磁束抑制手段を有することを特徴とする電磁流量計
(1) A pair of magnetic poles arranged on opposite sides of the flow rate measuring tube so that magnetic flux crosses the flow rate measuring tube, and a pair of excitation coils for exciting each of the magnetic poles; In an electromagnetic flowmeter including a return magnetic path body for magnetic flux that traverses a flow rate measurement tube, the magnetic flow meter is provided between the magnetic pole and the return magnetic path body, without forming a closed circuit surrounding the entire outer periphery of the excitation coil. An electromagnetic flowmeter characterized by comprising means for suppressing leakage magnetic flux of the excitation coil, which is made of a non-magnetic conductive material surrounding at least a portion of the outer periphery of the excitation coil.
(2)前記洩れ磁束抑制手段は、前記磁極と前記帰還磁
路体との間において前記磁極表面又は前記帰還磁路体表
面に固定されて前記励磁コイルの外周を囲み、この外周
方向に少なくとも1つの分断点を有するブロック体又は
板状体を含むことを特徴とする特許請求範囲第1項記載
の電磁流量計。
(2) The leakage magnetic flux suppressing means is fixed to the magnetic pole surface or the return magnetic path body surface between the magnetic pole and the return magnetic path body, surrounds the outer periphery of the excitation coil, and has at least one The electromagnetic flowmeter according to claim 1, characterized in that the electromagnetic flowmeter includes a block body or a plate-like body having two dividing points.
(3)前記洩れ磁束抑制手段は、前記磁極と前記帰還磁
路体との間に設けられたコイルを含み、このコイルは前
記励磁コイルの全外周を囲む閉路を構成するように巻回
されることがなく、前記励磁コイルの洩れ磁束によって
横ぎられる閉路を構成するように巻回されていることを
特徴とする電磁流量計。
(3) The leakage magnetic flux suppressing means includes a coil provided between the magnetic pole and the return magnetic path body, and this coil is wound so as to form a closed circuit surrounding the entire outer periphery of the excitation coil. An electromagnetic flowmeter characterized in that the magnetic flowmeter is wound so as to form a closed circuit crossed by the leakage magnetic flux of the excitation coil.
JP16123582A 1982-09-16 1982-09-16 Electromagnetic flow meter Pending JPS5950315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16123582A JPS5950315A (en) 1982-09-16 1982-09-16 Electromagnetic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16123582A JPS5950315A (en) 1982-09-16 1982-09-16 Electromagnetic flow meter

Publications (1)

Publication Number Publication Date
JPS5950315A true JPS5950315A (en) 1984-03-23

Family

ID=15731201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16123582A Pending JPS5950315A (en) 1982-09-16 1982-09-16 Electromagnetic flow meter

Country Status (1)

Country Link
JP (1) JPS5950315A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150216U (en) * 1984-09-07 1986-04-04
JPS61228311A (en) * 1985-04-03 1986-10-11 Hitachi Ltd Detector of electromagnetic flowmeter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150216U (en) * 1984-09-07 1986-04-04
JPS61228311A (en) * 1985-04-03 1986-10-11 Hitachi Ltd Detector of electromagnetic flowmeter
JPH0541928B2 (en) * 1985-04-03 1993-06-25 Hitachi Ltd

Similar Documents

Publication Publication Date Title
EP1810046B1 (en) Sensor for measuring magnetic flux
US2583724A (en) Magnetic flowmeter
JPS60194379A (en) Magnetic field sensor and method of detecting magnetic field
JP3205399B2 (en) Magnet device
JPS63301507A (en) Apparatus for compensating field interference varied with time in magnetic field
JPS609269B2 (en) Toner concentration detection method in two-component developer
NO783364L (en) DEVICE FOR MEASURING LIQUID CURRENT
US20230184862A1 (en) Magnetic particle imaging device
JPS5950315A (en) Electromagnetic flow meter
EP0360574B1 (en) Current sensor having an element made of amorphous magnetic metal
Li et al. Eddy-current loss measurement of permanent magnetic material at different frequency
US2741121A (en) Means for minimizing electrostatic voltages in a flowmeter
JPH0580138A (en) Magnetism substance detector
RU2809738C1 (en) Method of bifactor excitation of fluxgates and modulator device for its implementation
SU1758546A1 (en) Electromagnetic-acoustic converter for non-destructive control
JP2004045233A (en) Electromagnetic flowmeter
JPS58127170A (en) Electric current measuring apparatus
SU1007052A1 (en) Induction sensor
JPS6015179Y2 (en) electromagnetic flow rate detector
SU995032A1 (en) Modulator for magnetic modulation pickup
SU313156A1 (en) ELECTROMAGNETIC SPEED SENSOR ELECTRICAL WIRING LIQUID
JPH06105263B2 (en) Current detector
SU1164604A1 (en) Meter of velocity of non-magnetic current-conducting bodies
JPH07243886A (en) Eddy current type electromagnetic flowmeter
SU1420508A1 (en) Induction transducer for registering barkhausen leaps