JPS5950304A - Displacement measuring device - Google Patents

Displacement measuring device

Info

Publication number
JPS5950304A
JPS5950304A JP16125582A JP16125582A JPS5950304A JP S5950304 A JPS5950304 A JP S5950304A JP 16125582 A JP16125582 A JP 16125582A JP 16125582 A JP16125582 A JP 16125582A JP S5950304 A JPS5950304 A JP S5950304A
Authority
JP
Japan
Prior art keywords
signal
displacement
rotating body
sensitivity
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16125582A
Other languages
Japanese (ja)
Inventor
Toshio Imaizumi
今泉 利緒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP16125582A priority Critical patent/JPS5950304A/en
Publication of JPS5950304A publication Critical patent/JPS5950304A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate influence of a sensitivity drop portion of a detecting coil, and to measure exactly and with high accuracy the displacement in the axial direction of a rotating body, by correcting the sensitivity drop portion of the detecting coil, which is contained in a measuring signal, by correcting operation part. CONSTITUTION:A synchronizing rectifying part 20 rectifies a detecting signal by a synchronizing signal 4a synchronizing with electric power source frequency of an AC power source 4, and sends it out to a proportional operation part 30. The proportional operation part 30 converts a detecting signal from the synchronizing rectifying part 20, to a signal being proportional to displacement (x), and outputs it as a measuring signal E2. A drop portion of sensitivity of detecting coils 2, 3 is contained in the measuring signal E2. f(N) is a ratio in which the sensitivity of the detecting coils 2, 3 drops in accordance with an increase of a revolving speed, its range is 0<f(N)<=1, and f(N)=1 is sensitivity in a state that a rotating body 1 does not rate. As soon as the displacement (x) is detected, a revolving speed detecting part 50 detects a revolving speed N of the rotating body 1 and sends a revolving speed signal to a correcting operation part 40. The correcting operation part 40 executes a correction of a sensitivity drop portion of the detecting coils 2, 3 contained in the measuring signal E2 in accordance with the revolving speed signal.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は回転体の軸方向における移動すなわち変位を測
定する変位測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a displacement measuring device that measures the movement or displacement of a rotating body in the axial direction.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第1図は回転運動している回転体の軸方向の変位を測定
する従来の変位測定装置の構成を示す図である。この装
置において回転体1に設けた被測定ターグット1aの端
部両側には同ターj” ツ) 1 a表面からそれぞれ
空隙aを有して一対の検出コイル2,3が配置されてい
る。々お、この検出コイル2,3は第2図に示すように
回転体1の中心より距離rの位置に設置される。
FIG. 1 is a diagram showing the configuration of a conventional displacement measuring device that measures the axial displacement of a rotating body that is rotating. In this device, a pair of detection coils 2 and 3 are arranged on both ends of a target to be measured 1a provided on a rotating body 1, with a gap a from the surface of the target 1a. The detection coils 2 and 3 are installed at a distance r from the center of the rotating body 1, as shown in FIG.

10は検出部であって、これは検出コイル2゜3と予め
設定されたインピーダンス値を持つインピーダンス素子
Zl、Z2とでブリッジ回路を構成し、空隙aの変化に
よって検出コイル2゜3のインダクタンス(リアクタン
ス)Lが変化すると、インダクタンスLの変化に対応し
た交流信号を検出信号として出力し、後続の同期整流部
20に供給する。この同期整流部2θは検出部10へ電
力を供給する交流電源4の電源周波数と同期した同期信
号4aにより検出信号を整流して直流信号とする。この
直流信号は、変位Xの変化量に比例した信号ではないの
で(例えば逆S字形)、比例演算部30により変位Xの
変化量に比例しだ直流信号に変換し、測定信号E(= 
kx )として出力する。ここで、kは検出コイル2.
3の感度である。これによシ変位Xが測定される、 しかし、以上のような変位測定装置では、回転体1が高
速で回転する場合、回転数Nの増大に従って変位Xに対
する測定信号Eの感度kが低下し、大きな測定誤差を発
生するという不具合がある。つまシ検出コイル2,3は
第3図に示す如く磁路Mをもった磁気回路を形成してい
るが、これらの検出コイル2.3の鉄心2IL。
Reference numeral 10 denotes a detection unit, which constitutes a bridge circuit with the detection coil 2゜3 and impedance elements Zl and Z2 having preset impedance values, and changes the inductance of the detection coil 2゜3 ( When reactance) L changes, an AC signal corresponding to the change in inductance L is output as a detection signal and supplied to the subsequent synchronous rectifier 20. This synchronous rectifier 2θ rectifies the detection signal into a DC signal using a synchronization signal 4a synchronized with the power frequency of the AC power supply 4 that supplies power to the detection unit 10. Since this DC signal is not a signal proportional to the amount of change in displacement X (for example, an inverted S-shape), it is converted into a DC signal proportional to the amount of change in displacement
kx). Here, k is the detection coil 2.
It has a sensitivity of 3. This measures the displacement , there is a problem that a large measurement error occurs. The pick-up detection coils 2 and 3 form a magnetic circuit having a magnetic path M as shown in FIG. 3, and the iron core 2IL of these detection coils 2.3.

3aのインダクタンスしは次式のように表わされる。The inductance of 3a is expressed as follows.

ここで、RAは空隙aの磁気抵抗、RTは被測定ターケ
9ット1aの磁気抵抗、RCはコイル鉄心2a、Jaの
磁気抵抗、nはコイルの巻線である。そして、被測定タ
ーダッ)Jaの磁気抵抗RTおよびコイル鉄心’!a、
、9aの磁気抵抗RCO値は常に一定である。よってイ
ンダクタンスLは空隙aの磁気抵抗RAの変化により変
化する。ところが、第2図に示す如く回転体1が回転角
速度ωで回転し始めると、検出コイル2.3と対向する
被測定ターダット1 *”は、矢印イに示す接線方向に
θ=にω2r2の引張応力が働く。また、第3図に示す
口が磁径方向、ハが被測定ターデッド1aの回転移動方
向である。
Here, RA is the magnetic resistance of the air gap a, RT is the magnetic resistance of the target 9t 1a to be measured, RC is the magnetic resistance of the coil core 2a and Ja, and n is the winding of the coil. And the magnetic resistance RT and coil iron core of the measured Tada) Ja! a,
, 9a are always constant. Therefore, the inductance L changes depending on the change in the magnetic resistance RA of the air gap a. However, as shown in FIG. 2, when the rotating body 1 starts to rotate at the rotational angular velocity ω, the measured target 1*'' facing the detection coil 2.3 is pulled by ω2r2 to θ= in the tangential direction shown by the arrow A. In addition, the opening shown in FIG. 3 is the magnetic radial direction, and C is the rotational movement direction of the tarded 1a to be measured.

この引張応力によって、被測定ターグツ)Iaにおける
イ方向の透磁率μが減少し、被測定ターグツ)Jaの検
出コイル2,3との対向面における磁気抵抗RAが増大
する。これによシインダクタンスLを表わす前記式の全
磁気抵抗ΣR4が増大する。しだがって、空隙aの磁気
抵抗の変化分ΔRAとインダクタンスLの変化分ΔLと
の比(ΔL/ΔRA) は減少する。よって第4図に示す如く、変位Xに対する
測定信号Eの出力は1回転数Nが上昇するのに従って低
くなる。
Due to this tensile stress, the magnetic permeability μ in the direction A of the target to be measured Ia decreases, and the magnetic resistance RA of the target to be measured Ja on the surface facing the detection coils 2 and 3 increases. As a result, the total magnetic resistance ΣR4 in the above equation representing the inductance L increases. Therefore, the ratio (ΔL/ΔRA) between the variation ΔRA in the magnetic resistance of the air gap a and the variation ΔL in the inductance L decreases. Therefore, as shown in FIG. 4, the output of the measurement signal E with respect to the displacement X becomes lower as the number of rotations N increases.

〔発明の目的〕[Purpose of the invention]

本発明は上詰事情に鑑みてなされたもので、回転数に対
応して発生する検出コイルの感度の低下の影響をなくし
、正確に回転軸方向の変位を測定できる精度の高い変位
測定装置を提供することを目的とする。
The present invention was made in view of the current situation, and provides a highly accurate displacement measuring device that can eliminate the influence of the decrease in sensitivity of the detection coil that occurs depending on the rotation speed and accurately measure displacement in the direction of the rotation axis. The purpose is to provide.

〔発明の概要〕[Summary of the invention]

本発明は、回転体の軸方向における変位を検出コイルに
より検出したのち、この検出信号を整流しさらに前記変
位に比例した測定信号として出力する変位測定装置にお
いて、前記測定信号に含まれる前記回転体の回転数の増
大に従って低下する前記検出コイルの感度低下分を、前
記回転数の大きさに対して逆比例の前記検出コイルの感
度の関係を有する補正演算手段によシ補正し、上記目的
を達成せんとする変位測定装置である。
The present invention provides a displacement measuring device that detects the displacement of a rotating body in the axial direction by a detection coil, rectifies this detection signal, and outputs the detected signal as a measurement signal proportional to the displacement. The decrease in sensitivity of the detection coil that decreases as the number of rotations increases is corrected by a correction calculation means having a relationship of sensitivity of the detection coil in inverse proportion to the number of rotations, and the above object is achieved. This is a displacement measurement device that aims to achieve this goal.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について第5図を参照して説明
する。外お、従来の装置と同−細分には同一符号を付し
、詳しい説明は省略する。
An embodiment of the present invention will be described below with reference to FIG. In addition, the same subdivisions as in the conventional device are given the same reference numerals, and detailed description thereof will be omitted.

即ち、本装置は、第5図に示す如く比例演算部30の測
定信号Eを受ける補正演算部40を設けたことにある。
That is, this device is provided with a correction calculation section 40 which receives the measurement signal E from the proportional calculation section 30, as shown in FIG.

この補正演算部40は、回転数検出部50により検出さ
れた回転体3の回転数の回転数信号に基づいて、検出コ
イル2.3の感度を回転体30回転数の大きさに対して
逆比例となる信号を出力する機能を有し、測定信号Eに
含まれる回転数の増大に従って低下する検出コイル2,
3の感度の感度低下分を補正するものである。
The correction calculation section 40 inverts the sensitivity of the detection coil 2.3 to the magnitude of the rotation speed of the rotation body 30 based on the rotation speed signal of the rotation speed of the rotation body 3 detected by the rotation speed detection section 50. a detection coil 2 which has a function of outputting a proportional signal and which decreases as the rotational speed included in the measurement signal E increases;
This is to correct the decrease in sensitivity of No. 3.

次に上記のように構成された装置の動作について説明す
る。まず、回転体1の中心軸から所定距離rをおいた位
]4の両面に対向させて検出コイル2,3が配置される
。ここで、交流電源4が投入され、検出コイル2.3へ
電流が流れる。
Next, the operation of the apparatus configured as described above will be explained. First, the detection coils 2 and 3 are placed facing each other on both sides of the rotating body 1 at a predetermined distance r from the central axis thereof. At this point, the AC power supply 4 is turned on, and current flows to the detection coil 2.3.

回転体1が回転していない状態での比例演算部30から
の測定信号E1は、第6図(、)に示す如(E 1 =
 kxとなる。ここで、上記したと同様にkは検出コイ
イレ2,3の感度、Xは変位である。
The measurement signal E1 from the proportional calculation unit 30 when the rotating body 1 is not rotating is as shown in FIG. 6 (,) (E 1 =
It becomes kx. Here, as described above, k is the sensitivity of the detection coil coils 2 and 3, and X is the displacement.

次に回転体1が回転を始め゛た状態について説明する。Next, a state in which the rotating body 1 starts rotating will be explained.

検出コイル2,3は回転体10回転により移動した回転
軸方向の変位Xに対応して9身のインダクタンスLが変
化する。また、回転体1の回転数Nが増大するに従って
第2図に示すイ方向に引張応力θ=にω2r2が発生す
る。そして、このイ方向の透磁率μが減少し、被測定タ
ーグツ)Jaの磁気抵抗RTが増大する。したがって、
検出コイル2・、3の感度が低下する。
The inductance L of each of the detection coils 2 and 3 changes in response to the displacement X in the direction of the rotational axis caused by the rotation of the rotary body 10 times. Further, as the rotational speed N of the rotating body 1 increases, a tensile stress θ=ω2r2 is generated in the direction A shown in FIG. Then, the magnetic permeability μ in the direction A decreases, and the magnetic resistance RT of the target to be measured increases. therefore,
The sensitivity of the detection coils 2 and 3 decreases.

この検出コイル2,3の感度は、回転数Nが増大するの
に従って低下していく。
The sensitivity of the detection coils 2 and 3 decreases as the rotational speed N increases.

検出コイル2,3のインダクタンスLの変化により、検
出部10は、検出コイル2.3およびインピーダンス素
子Zi、Z2から構成されるブリッジ回路から変位Xに
対応した検出信号を同期整流部20に送る。同期整流部
20は、交流電源4の電源層゛波数と同期した同期信号
4aにより検出信号を整流して比例演算部30に送出す
る。この直流の送出信号は、変位Xの変化量に対し比例
した信号ではない。よって比例演算部30は同・期整流
部20からの検出信号を変位Xに比例した信号に変換し
、測定信号E2として出力する。この測定信号E2には
、第6図(b)に示す如く、検出コイル2,3の感度の
低下分が含捷れている。とこでf (N)は、回転数の
増大に従って検出コイル2,3・の感度が低下する割合
である。そして、その範囲は0〈f(ロ)≦1であり、
f(へ))=1は回転体1が回転していない状態の一感
度である。
Due to the change in the inductance L of the detection coils 2 and 3, the detection section 10 sends a detection signal corresponding to the displacement X to the synchronous rectification section 20 from a bridge circuit composed of the detection coil 2.3 and impedance elements Zi and Z2. The synchronous rectifier 20 rectifies the detection signal using a synchronous signal 4 a synchronized with the power layer wave number of the AC power source 4 and sends it to the proportional calculation section 30 . This direct current sending signal is not a signal proportional to the amount of change in the displacement X. Therefore, the proportional calculation section 30 converts the detection signal from the synchronous rectification section 20 into a signal proportional to the displacement X, and outputs it as a measurement signal E2. This measurement signal E2 includes a reduction in sensitivity of the detection coils 2 and 3, as shown in FIG. 6(b). Here, f (N) is the rate at which the sensitivity of the detection coils 2, 3 decreases as the rotational speed increases. And the range is 0<f(b)≦1,
f(f)=1 is one sensitivity when the rotating body 1 is not rotating.

変位Xの検出と同時に、回転数検出部50は、回転体1
0回転数Nを検出して補正演算部40へ回転数信号を送
る。この補正演算部40は、回転数信号に基づき測定信
号E2に含まれる検出コイル2,3の感度低下分の補正
を行なう。
Simultaneously with detecting the displacement
The 0 rotation speed N is detected and a rotation speed signal is sent to the correction calculation section 40. The correction calculation unit 40 corrects the decrease in sensitivity of the detection coils 2 and 3 included in the measurement signal E2 based on the rotational speed signal.

すなわち、補正演算部40は、回転数Nの増大に従って
低下する感度の割合f輛の逆関数〔1/f□□□〕とし
た機能を有し、測定信号E2に含まれる感度低下分を補
正する。第5図において測定信号E2は、E2=に−f
(ト)となる。そして補正演算部40によシ測定信号E
2は、第6図(b)に示す如く となり、回転数Nの大きさに影響されない信号となる。
In other words, the correction calculation unit 40 has a function that is an inverse function [1/f□□□] of the ratio f of sensitivity that decreases as the rotational speed N increases, and corrects the decrease in sensitivity included in the measurement signal E2. do. In FIG. 5, the measurement signal E2 is equal to -f
(g) becomes. Then, the correction calculation unit 40 receives the measurement signal E.
2 is as shown in FIG. 6(b), and is a signal that is not affected by the magnitude of the rotational speed N.

したがって、測定信号E2に含まれる検出コイル2,3
の感度低下分を、回転数の増大に従って逆比例の検出コ
イル2,3の感度の関係による補正演算部40によシ補
正するので、回転体1がいかなる回転数で回転しても、
検出コイル2.3の感度の低下の影響を受け々い止゛確
な変位Xを測定できる。また、検出コイル2.3を被測
定ターグツ)Jmのどの位置に対向して配置しても、変
位Xの測定が正確に行なえる。
Therefore, the detection coils 2 and 3 included in the measurement signal E2
Since the decrease in sensitivity is corrected by the correction calculation unit 40 based on the relationship between the sensitivities of the detection coils 2 and 3, which are inversely proportional as the rotational speed increases, no matter what rotational speed the rotating body 1 rotates,
Displacement X can be measured more accurately without being affected by the decrease in sensitivity of the detection coil 2.3. Further, the displacement X can be accurately measured no matter where the detection coil 2.3 is placed facing the object to be measured (Jm).

〔発明の効果〕〔Effect of the invention〕

本発明は、補正演算部により測定信号に含まれる検出コ
イルの感度低下分を補正するので、検出コイルの感度低
下分の影響をなくし得、正確に回転体の軸方高の変位を
測定できる精度の高い変位測定装置を提供することがで
きる。
Since the present invention corrects the reduced sensitivity of the detection coil included in the measurement signal using the correction calculation section, the influence of the reduced sensitivity of the detection coil can be eliminated, and the axial displacement of the rotating body can be accurately measured with accuracy. It is possible to provide a high displacement measuring device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の変位測定装置を示す構成図、第2図(、
) (b)は検出コイルの配置を示す外観図、第3図は
検出コイルが配置された部分の拡大図、第4図は回転数
の違いによる測定信号の出力を表わすグラフ、第5図は
本発−明に係る変位測定装置の構成図、第6図(、) 
(b)は本装置における動作を説明するためのブロック
図を示す。 1・・・回転体、1a・・・被測定ターグット、2゜3
・・・検出コイル、4・・・交流電源、Z 1 、Z 
2・・・インピーダンス素子、20・・・同期整流部、
30・・・比例演算部、40・・・補正演算部、50・
・・回転数検出部。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図
Figure 1 is a configuration diagram showing a conventional displacement measuring device, Figure 2 (
) (b) is an external view showing the arrangement of the detection coil, Fig. 3 is an enlarged view of the part where the detection coil is arranged, Fig. 4 is a graph showing the output of the measurement signal depending on the rotation speed, and Fig. 5 is a graph showing the output of the measurement signal depending on the rotation speed. A configuration diagram of a displacement measuring device according to the present invention, FIG. 6 (,)
(b) shows a block diagram for explaining the operation of this device. 1...Rotating body, 1a...Targut to be measured, 2゜3
...Detection coil, 4...AC power supply, Z 1, Z
2... impedance element, 20... synchronous rectifier,
30... Proportional calculation section, 40... Correction calculation section, 50.
...Rotation speed detection section. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 回転体のi!1方向における変位を測定する変位測定装
置にfいて、交流電源が供給された検出コイルを回転体
の被測定ターグットに所要の空隙を有して配置し、この
回転体の軸方向の変位による検出コイルのインダクタン
スの変化から変位検出信号を出力する変位検出部と、こ
の変位検出部の出力を前記交流電源の周波数で同期整流
し、この同期整流によって得た直流信号を前記軸方向の
変位に比例した測定信号に変換する手段と、前記回転体
の回転数を検出して回転数信号を出力する回転数検出部
と、前記測定信号に含まれる前記回転体の回転数に対応
して生ずる誤差分を前記回転数信号に基づいて予め定め
だ前記回転体の回転数と前記変位検出部の検出感度との
補正関係とKより補正する補正演算部とを具備したこと
を特徴とする変位測定装置。
Rotating body i! In a displacement measuring device that measures displacement in one direction, a detection coil to which AC power is supplied is placed at a target of a rotating body to be measured with a required gap, and detection is performed based on displacement in the axial direction of this rotating body. A displacement detection section that outputs a displacement detection signal from a change in the inductance of the coil; the output of this displacement detection section is synchronously rectified at the frequency of the AC power supply; and the DC signal obtained by this synchronous rectification is proportional to the displacement in the axial direction. means for converting into a measured signal, a rotation speed detection unit that detects the rotation speed of the rotating body and outputs a rotation speed signal, and an error component included in the measurement signal that occurs in response to the rotation speed of the rotating body. A displacement measuring device comprising: a correction calculation section that corrects K based on a correction relationship between the rotation speed of the rotating body and the detection sensitivity of the displacement detection section, which is predetermined based on the rotation speed signal.
JP16125582A 1982-09-16 1982-09-16 Displacement measuring device Pending JPS5950304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16125582A JPS5950304A (en) 1982-09-16 1982-09-16 Displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16125582A JPS5950304A (en) 1982-09-16 1982-09-16 Displacement measuring device

Publications (1)

Publication Number Publication Date
JPS5950304A true JPS5950304A (en) 1984-03-23

Family

ID=15731608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16125582A Pending JPS5950304A (en) 1982-09-16 1982-09-16 Displacement measuring device

Country Status (1)

Country Link
JP (1) JPS5950304A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254165A (en) * 1985-08-02 1986-11-11 Kurita Seibi Kk Apparatus for purifying citrus fruit juice
JPH01118303U (en) * 1988-01-29 1989-08-10
US5336996A (en) * 1992-08-21 1994-08-09 The Duriron Company, Inc. Hall effect monitoring of wear of bearing supporting a rotor within a stationary housing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254165A (en) * 1985-08-02 1986-11-11 Kurita Seibi Kk Apparatus for purifying citrus fruit juice
JPH01118303U (en) * 1988-01-29 1989-08-10
US5336996A (en) * 1992-08-21 1994-08-09 The Duriron Company, Inc. Hall effect monitoring of wear of bearing supporting a rotor within a stationary housing

Similar Documents

Publication Publication Date Title
US4785242A (en) Position detecting apparatus using multiple magnetic sensors for determining relative and absolute angular position
KR850000327B1 (en) Method for error correction in position sensing cirsuit
EP0217640A2 (en) A torque sensor of the non-contact type
US4762007A (en) Torque measuring apparatus
JP3414893B2 (en) Rotational position detector
JPH01187408A (en) Device and method of measuring wheel alignment characteristic
JP2529979Y2 (en) Sensor processing circuit
CN107202966A (en) The measuring method and system of a kind of alternate stray field of Transformer Winding
EP2082193B1 (en) Angular position measurement device
JPS5950304A (en) Displacement measuring device
JPS5950460B2 (en) Workpiece material positioning method and device for boring machine
US3000208A (en) Strain gauge
JPH0477678A (en) Photosensitive surface potential measuring device and electrostatic recorder using it
JPH01140018A (en) Position and speed detector
JPS6023738Y2 (en) magnetic field detector
JP3503375B2 (en) Magnetic pole position detector
JPH0843216A (en) Multifunctional torque sensor device
JPS6193925A (en) Torque detector by application of resolver
JP2003042805A (en) Magnetic induction type rotary position detector
JPH06117948A (en) Method and equipment for measuring tension
JP2514211B2 (en) Method and apparatus for measuring turns ratio of transformer
JP2001178095A (en) Rotary transformer
JP2716818B2 (en) Vibration detector
JPS59109833A (en) Measuring device of temperature of metal surface
JPS58191504U (en) thickness gauge