JPS5950131A - Method and apparatus for melting metal - Google Patents

Method and apparatus for melting metal

Info

Publication number
JPS5950131A
JPS5950131A JP15919682A JP15919682A JPS5950131A JP S5950131 A JPS5950131 A JP S5950131A JP 15919682 A JP15919682 A JP 15919682A JP 15919682 A JP15919682 A JP 15919682A JP S5950131 A JPS5950131 A JP S5950131A
Authority
JP
Japan
Prior art keywords
burner
flame
melting
temperature
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15919682A
Other languages
Japanese (ja)
Inventor
Yasushi Sato
安司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYAMOTO KOGYOSHO KK
Original Assignee
MIYAMOTO KOGYOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYAMOTO KOGYOSHO KK filed Critical MIYAMOTO KOGYOSHO KK
Priority to JP15919682A priority Critical patent/JPS5950131A/en
Publication of JPS5950131A publication Critical patent/JPS5950131A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide conditions suitable for melting and to reduce the loss of metal and the consumption of energy by detecting the molten state of masses of metal piled in a heap, spouting flames on the low temp. parts, and changing the shape of each of the flames in accordance with the distance. CONSTITUTION:High temp. flames are spouted at a high speed on masses (m) of metal piled in a heap in a melting furnace 1, and the surface temp. distribution of the masses (m) and the distance from each burner 5 to a low temp. position of the masses (m) are detected. In accordance with the detected values, the burner 5 is swung vertically and horizontally to change gradually the direction of the flame from the molten high temp. part to other low temp. part. At the same time, the flame is made slender and long or short and wide in accordance with the distance from the burner 5 to the low temp. position. Thus, melting is carried out while providing conditions most suitable for melting.

Description

【発明の詳細な説明】 この発明は、山積みされたアルミニウムなどの金属塊に
高温高速流の火焔を直接投射して。
DETAILED DESCRIPTION OF THE INVENTION This invention directly projects a high-temperature, high-velocity flame onto a pile of metal blocks such as aluminum.

金属を溶解する方法とその装置に関する。This invention relates to a method and apparatus for melting metal.

この種の溶解は反射炉あるいは実公昭52−8723号
公報による急速溶解炉が知られており、急速溶解炉は排
気煙道の下部に第1次溶解室を設け、第1次溶解室より
側方に連続して第2次溶解室を設け、第1次溶解室の壁
に第2次溶解室へ向って投射する高速度バーナーを備え
だもので、排気煙道より第1次溶解室へ被溶解材を投入
し、バーナーから高温高速流の火焔を噴出し、これを被
溶解材に直接投射して衝撃加熱によシ溶断及び溶解する
ものである。この溶解炉は普通アルミニウム及びその合
金を溶解するのが目的で、アルミニウムは時間の経過と
共に酸化量が増え、メタルロスの割合が大きくなること
から、出来得る限シ減少するために開発されたものであ
る。
For this type of melting, a reverberatory furnace or a rapid melting furnace as disclosed in Japanese Utility Model Publication No. 52-8723 is known.A rapid melting furnace has a primary melting chamber at the bottom of the exhaust flue, and is located on the side of the primary melting chamber. A secondary melting chamber is installed continuously on the side, and the wall of the primary melting chamber is equipped with a high-speed burner that projects toward the secondary melting chamber. The material to be melted is put in, and a high-temperature, high-velocity flame is ejected from the burner, which is directly projected onto the material to be melted and cut and melted by impact heating. The purpose of this melting furnace is to melt aluminum and its alloys, and since the amount of oxidation of aluminum increases over time and the rate of metal loss increases, it was developed to reduce the amount of metal loss as much as possible. be.

しかし、前記考案のバーナー及び反射炉によるバーナー
は固定されたもので、火焔の投射方向が一定しているた
め、溶解しても尚かつ火焔が投射され酸化が激しくなる
ものであシ、また溶解が進むにつれ、未溶解材が火焔の
到達し得ない範囲に残り、炉内の反射熱に頼らざるを得
なくなり、溶解率が低下する欠点があった。
However, the burner of the above-mentioned invention and the burner of the reverberatory furnace are fixed and the direction of flame projection is constant. As the temperature progresses, unmelted material remains in an area that cannot be reached by the flame, making it necessary to rely on reflected heat within the furnace, which has the disadvantage of decreasing the melting rate.

この発明は以上の欠点を解決するために研究し開発した
もので、本発明の方法は、金属塊の溶解状況を看視して
、温度の低い位置へ順次火焔を噴射すると共に、火陥の
噴射口より低温度位置までの距離に応じて火焔を細く長
くするかあるいは短かく広く噴出させ、溶解に最も適し
た状況を常に与えて溶解することを特徴とするものであ
る。
This invention was researched and developed in order to solve the above-mentioned drawbacks.The method of the present invention monitors the melting state of the metal lump and sequentially injects flames to locations with lower temperatures, and prevents fire damage. This method is characterized by making the flame narrower and longer or ejecting it shorter and wider depending on the distance from the injection port to the low-temperature location, thereby always providing the most suitable conditions for melting.

以下、この発明による反射炉の実施例を図面によって説
明すると、第1図と第2図に示す如く、溶解炉(1)に
被溶解材の投入口(2)、溶解湯を流出する出湯口(3
)及び滓取出口(4)を設け、炉(1)の相対向する両
起立壁にそれぞれ2台のバーナー(5)を間隔をあけて
設け、炉(1)の天井壁に光学系センサ(6)を備えて
いる。
Hereinafter, an embodiment of a reverberatory furnace according to the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, a melting furnace (1) has an inlet (2) for injecting materials to be melted, and an outlet for outflowing molten metal. (3
) and a slag outlet (4), two burners (5) are installed at intervals on each of the opposing vertical walls of the furnace (1), and an optical sensor ( 6).

バーナー(5)は、第3図に示す如く、燃料油流入口(
7)と空気入口(8)とを備えた主筒(9)を内筒00
及び外筒Qυでそれぞれ間隔をあけて包被してあって、
外筒αυの基部に、内筒OIと外筒θηへ共通して空気
を流入する1次空気流入部Oつを設け、該流入部(6)
に内外筒01αηへの空気量を制御する内外流調節介α
葎を取付けて、主筒(9)の先端より火焔を噴射し、主
筒(9)と内筒α1間及び内筒01と外筒0】)間の各
先端よシ空気を噴出するもので。
The burner (5) has a fuel oil inlet (
7) and an air inlet (8) into the inner cylinder 00.
and an outer cylinder Qυ, each of which is covered with an interval,
At the base of the outer cylinder αυ, there are provided O primary air inflow parts that commonly inflow air into the inner cylinder OI and the outer cylinder θη, and the inflow part (6)
The internal and external flow adjustment mechanism α controls the amount of air to the internal and external cylinders 01αη.
With the cap attached, flame is injected from the tip of the main cylinder (9), and air is ejected from each tip between the main cylinder (9) and the inner cylinder α1 and between the inner cylinder 01 and the outer cylinder 0]). .

主筒(9)と内筒01間を向流と称し、内筒0Qと外筒
0υ間を斜流と称するが、前記調節弁Q3を左右へ回転
することによね、内外流の噴出圧が交互に強弱されるも
のである。更にバーナー(5)は溶解炉(1)に対し上
下及び左右へ揺動可能に設けられるもので、第4図に略
図的に示す如く、上下の固定板0700G間に枠体Q傍
を、該枠体QQの上下よシ垂直に突出した垂直軸α7)
a”hで軸支し、更にバーナー(5)の長さ方向の中間
部両側よシ突出した水平軸(ト)0榎を枠体αQの起立
壁に支承し、下側の固定板Qυと枠体OQの起立壁にそ
れぞれ垂直軸αη及び水平軸Q@と連結する回転駆動装
置Q侍11を設けたものである。駆動装置On翰は具体
的にはサーボモーターであるが、シリンダーで回転力を
与えても良い。
The flow between the main cylinder (9) and the inner cylinder 01 is called a counterflow, and the flow between the inner cylinder 0Q and the outer cylinder 0υ is called a diagonal flow. It is made stronger and weaker alternately. Furthermore, the burner (5) is provided so as to be able to swing vertically and horizontally with respect to the melting furnace (1), and as schematically shown in FIG. Vertical axis α7) that projects vertically from the top and bottom of the frame QQ
The horizontal shaft (T) 0 protruding from both sides of the middle part in the longitudinal direction of the burner (5) is supported on the upright wall of the frame αQ, and the lower fixed plate Qυ A rotary drive device Q Samurai 11 is provided on the upright wall of the frame OQ, which is connected to the vertical axis αη and the horizontal axis Q@.The drive device Onkan is specifically a servo motor, but it rotates with a cylinder. It's okay to give strength.

壕だ、溶解炉(1)のバーナー(5)取付口には、2次
空気流入部CI)が固着してあシ、該流入部Qυの中央
部分にバーナー(5)を突入し、2次空気はバーナー(
5)の周囲より噴出し、炉内のガスの火焔への捲き込み
を防止する。この2次空気流入部Q])よシバーナー(
5)を、保持する前記固定板αaαQを突設したもので
ある。
The secondary air inlet CI) is fixed to the burner (5) installation port of the melting furnace (1), and the burner (5) is inserted into the center of the inlet Qυ, The air is burner (
5) to prevent the gas inside the furnace from being drawn into the flame. This secondary air inflow part Q]) and Sibanar (
5), the fixing plate αaαQ for holding is provided in a protruding manner.

光学系センサ(6)は、所定範囲内の可視光線あるいは
赤外線を撮る撮像管よりなり、該センサ(6)に画像処
理装置(イ)が連結しである。画像処理装置(イ)は画
像処理部(ハ)と演算処理部(ハ)とで構成され、この
処理装置(イ)では、前述の溶解炉(1)には4台のバ
ーナー(5)が取付けられるので、炉(1)内の平面を
第6図図示の如く4分割して、各分割区画内での最大固
形物あるいは最低温度域を識別し、その識別された部分
の中央座標で位置を検出すると共に、各分割区画内にあ
るバーナー(5)の噴出口より前記座標位置までの距離
を検出し、それらの検出信号で第5図図示の如く。
The optical system sensor (6) consists of an image pickup tube that takes visible light or infrared light within a predetermined range, and an image processing device (a) is connected to the sensor (6). The image processing device (a) is composed of an image processing section (c) and an arithmetic processing section (c), and in this processing device (a), the aforementioned melting furnace (1) has four burners (5). Therefore, the plane inside the furnace (1) is divided into four as shown in Figure 6, the maximum solids or the lowest temperature area within each divided section is identified, and the position is determined using the central coordinates of the identified portion. At the same time, the distance from the ejection port of the burner (5) in each divided section to the coordinate position is detected, and these detection signals are used as shown in FIG.

バーナー(5)K備えた各駆動装置o■すび内外流調節
介03を駆動し、バーナー(5)を検出された座標位置
へ向け、距離に応じて内外流の調節によシ長焔あるいは
短焔に変化するものである。ただし検出される座標位置
は、被溶解材が幾つかに分散して残る場合、あるいは低
温度領域も幾つか分散して残存する場合には、それぞれ
の座標を識別することになるが、その場合にはバーナー
から最も近い位置の検出信号を優先するように形成しで
ある。図中(ハ)はモニターである。
Each drive device equipped with a burner (5) K drives the internal and external flow adjustment device 03, directs the burner (5) to the detected coordinate position, and adjusts the internal and external flow according to the distance to create a long flame or It changes into a short flame. However, if the material to be melted remains dispersed in several locations, or if low temperature regions also remain dispersed in several locations, the detected coordinate positions will be identified. The sensor is designed to give priority to the detection signal closest to the burner. In the figure (c) is a monitor.

また、光学系センサ(6)は溶解の操業中常時稼動する
ものでなく、間欠的に作動するものであって、センサの
稼動中はバーナーを休止するか火焔を絞って小さくする
もので、これらの制御は自動あるいは手動によられる。
In addition, the optical sensor (6) does not operate constantly during melting operations, but operates intermittently, and while the sensor is operating, the burner is stopped or the flame is reduced to a smaller size. Control can be automatic or manual.

尚、@述の最大固形物と最低温度域は撮像管の撮らえる
機能によって表現が異なるが、何れにしても山積みされ
た金属塊表面の温度分布を検出するものである。また、
実験に当たシ撮像管は東京芝浦電気株式会社の商標名「
カルニコン」(可視光線用)と「赤外線ビジコン」(赤
外線用)を採用し、ITVシステムを構成した。
Note that the maximum solid matter and minimum temperature ranges mentioned in @ are expressed differently depending on the imaging function of the imaging tube, but in any case, the temperature distribution on the surface of a pile of metal lumps is detected. Also,
The image pickup tube used in the experiment was a trademark of Tokyo Shibaura Electric Co., Ltd.
The ITV system was constructed by adopting the "Carnicon" (for visible light) and the "Infrared Vidicon" (for infrared light).

また、急速溶解炉に対しても前記装置を採用することが
出来る。
Further, the above-mentioned apparatus can also be employed in a rapid melting furnace.

この発明による実施例は以上の構造であって。The embodiment according to the present invention has the above structure.

溶解炉(1)内に山積みされた金属塊(m)の状態に応
じて、即ち第7図図示の如く、金属塊(m)が炉(1)
のはソ中央部に存在すれば、4台の各バーナー(5)は
はy同一の条件で火焔を中心に向けて投射するが、仮り
に第8図図示の如く、補属塊(m)が右側に片寄ってい
るとすると、右側の2台のバーナーは短焔に、左側2台
のバーナーは長焔にして噴出される。火焔の長短は内外
流調節介a3によって行なわれるが、外温を高圧、向流
を低圧にすることによシ長焔となシ、逆の場合には短焔
となるものである。また、溶解が進むにつれて第8図B
図のように片寄った位置に金属塊(m)が残っておれば
、これに最も近いバーナーのみを稼動する。因みに従来
の溶解方法による溶解過程は第9図図示の如く、バーナ
ーの指向が限定され、且つ火焔の長さも一定であるので
、火焔よシ離れた位置に金属塊(m)が残り、殆んど炉
の反射熱によって溶解されることになる。
Depending on the state of the metal lumps (m) piled up in the melting furnace (1), as shown in FIG.
If it is located in the center of the center, each of the four burners (5) will project flame toward the center under the same conditions, but if the auxiliary mass (m) If it is off to the right, the two burners on the right will emit short flames, and the two burners on the left will emit long flames. The length of the flame is controlled by the internal/external flow adjustment device a3, and by setting the external temperature to a high pressure and the counterflow to a low pressure, a long flame is obtained, and vice versa, a short flame is obtained. Also, as the dissolution progresses, Fig. 8B
If a metal lump (m) remains in a lopsided position as shown in the figure, only the burner closest to it is operated. Incidentally, in the melting process by the conventional melting method, as shown in Figure 9, the orientation of the burner is limited and the length of the flame is constant, so the metal lump (m) remains at a distance from the flame and is almost completely destroyed. It will be melted by the reflected heat from the furnace.

この発明による金属溶解方法は、溶解炉(1)内に山積
みされた金属塊←)に高温高速流の火焔を投射して溶解
する際に、金属塊の溶解状況を看視し、金属塊の残る状
況に応じてその存在する位置へ火焔を向けると共に、火
焔の噴射口より金属塊までの距離に応じて火焔を長短に
調節して、常に最上の条件で溶解するものであるから、
必要以上に加熱することが皆無となり、短時間で溶解さ
れ、酸化を防止してメタルロスを大巾に減少され、且つ
燃料の節減を図ることが出来るものである。
The metal melting method according to the present invention involves monitoring the melting status of the metal lumps when melting the metal lumps piled up in the melting furnace (1) by projecting a high-temperature, high-velocity flame to melt the metal lumps. Depending on the remaining situation, the flame is directed to the location where it exists, and the flame is adjusted to be long or short depending on the distance from the flame nozzle to the metal lump to always melt under the best conditions.
There is no need to heat the metal more than necessary, it is melted in a short time, oxidation is prevented, metal loss is greatly reduced, and fuel can be saved.

まだ、この発明による装置は、バーナーを水平軸と垂直
軸で支承して左右及び上下方向へ振るとと\、バーナー
よシ噴射する火焔を、火焔を包被する内外流の圧力差で
長くあるいは短かくする構成を可能にしたことによって
達成されるもので、しかも長短焔の調節は、一つの空気
流入口よりの空気量を内外流調節介で分けて向流及び外
温とするものであるから、長短焔の調節操作が容易にな
り、バーナーを揺動する構成と同様にモーターやシリン
ダーなどの駆動源で処理され、バーナーの構造が簡素化
されるものである。
However, in the device according to the present invention, when the burner is supported by a horizontal axis and a vertical axis and is swung horizontally and vertically, the flame ejected from the burner can be elongated or This is achieved by making it possible to shorten the flame, and in addition, the adjustment of the length and shortness of the flame is achieved by dividing the amount of air from one air inlet through the internal and external flow control to create counterflow and external temperature. This makes it easy to adjust the length of the flame, and the structure of the burner is simplified, as it is handled by a drive source such as a motor or cylinder, similar to the structure in which the burner is oscillated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による金属溶解装置に使用する溶解炉
を示す横断面図、第2図は同じく縦断面図、第3図はバ
ーナーを一部切欠して示す側面図、第4図はバーナーの
支持構造を示す斜視図、第5図は制御系を示すブロック
線図、第6図は画像処理の一例を示す平面図、第7図と
第8図の各A、B、C1D図は本発明による溶解状態を
示す平面図、第9図A、B、G、D図は従来の溶解状態
を示す平面図である。 (1)・・溶解炉、(5)・・バーナー、(6)・・光
学系センサ、(7)・・燃料油流入口、(9)・・主筒
、α0・・内筒、0υ・・外筒、α2・・1次空気流入
部、(ハ)・・内外流調節介、α4)(1G・・固定板
、OQ・・枠体、aη・・垂直軸。 α樽・・水平軸、αl)・・駆動装置、(イ)・・画像
処理装置、に)・・画像処理部、(財)・・演算処理部
、(ハ)・・モニター、(m)・・金属塊 一ヱ11 第1図 第2図 第7図 第8yJ  第9図 一1’75−
Fig. 1 is a cross-sectional view showing a melting furnace used in a metal melting apparatus according to the present invention, Fig. 2 is a longitudinal sectional view thereof, Fig. 3 is a side view showing a partially cut away burner, and Fig. 4 is a side view showing a burner. Figure 5 is a block diagram showing the control system, Figure 6 is a plan view showing an example of image processing, and Figures A, B, and C1D in Figures 7 and 8 are from this book. A plan view showing the melted state according to the invention, and FIGS. 9A, B, G, and D are plan views showing the conventional melted state. (1)... Melting furnace, (5)... Burner, (6)... Optical system sensor, (7)... Fuel oil inlet, (9)... Main cylinder, α0... Inner cylinder, 0υ.・Outer cylinder, α2・・Primary air inflow part, (c)・・Internal/internal flow adjustment, α4) (1G・・fixing plate, OQ・・frame body, aη・・vertical axis. α barrel・・horizontal axis , αl)...Drive device, (A)...Image processing device, (2)...Image processing unit, (Foundation)...Arithmetic processing unit, (C)...Monitor, (m)...Metal block 1 11 Figure 1 Figure 2 Figure 7 Figure 8yJ Figure 9-1'75-

Claims (1)

【特許請求の範囲】 l)山積みした金属塊を高温高速流の火焔で溶解する際
に、山積み金属塊表面の温度分布と火焔噴射口から低温
度部分までの距離を検出し、溶解した高温度部分よシ順
次低温度部分へ高温高速流の火焔を逐次調節して投射す
る工程を繰返して行なう金属溶解方法。 2)溶解炉に、バーナーを一対の駆動装置で上下及び左
右方向へ揺動可能に設けると共に、該バーナーは空気を
噴出する内筒と外筒で包被してあって、内外筒へ共通し
て吹込む流入口に内外筒への空気量を制御する内外流調
節弁が設けてあシ、且つ溶解炉に、山積みされた被溶解
物である金属塊表面の温度分布とその距離を検出し得る
光学系センサを備え、該センサにセンサの出力信号よシ
低温度部分の座標位置とバーナーよシ前記座標位置まで
の距離を演算して出力する画像処理装置を接続し、画像
処理装置の座標位置信号を駆動装置に、距離信号を内外
流調節弁に接続したことを特徴とする金属溶解装置。
[Claims] l) When a pile of metal lumps is melted with a high-temperature, high-speed flame, the temperature distribution on the surface of the pile of metal lumps and the distance from the flame injection port to the low-temperature part are detected, and the high temperature of the melt is detected. A metal melting method that involves repeating the process of sequentially controlling and projecting a high-temperature, high-velocity stream of flame to lower-temperature areas. 2) A burner is installed in the melting furnace so that it can be swung vertically and horizontally by a pair of drive devices, and the burner is covered with an inner cylinder and an outer cylinder that blow out air, and the burner is covered with an inner cylinder and an outer cylinder that blow out air. The internal and external flow control valves that control the amount of air flowing into the internal and external cylinders are installed at the inflow ports for blowing into the melting furnace. An image processing device is connected to the sensor that calculates and outputs the coordinate position of the low temperature part and the distance to the coordinate position of the burner based on the output signal of the sensor. A metal melting device characterized in that a position signal is connected to a drive device and a distance signal is connected to an internal/external flow control valve.
JP15919682A 1982-09-13 1982-09-13 Method and apparatus for melting metal Pending JPS5950131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15919682A JPS5950131A (en) 1982-09-13 1982-09-13 Method and apparatus for melting metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15919682A JPS5950131A (en) 1982-09-13 1982-09-13 Method and apparatus for melting metal

Publications (1)

Publication Number Publication Date
JPS5950131A true JPS5950131A (en) 1984-03-23

Family

ID=15688416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15919682A Pending JPS5950131A (en) 1982-09-13 1982-09-13 Method and apparatus for melting metal

Country Status (1)

Country Link
JP (1) JPS5950131A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568576A (en) * 1978-11-17 1980-05-23 Nissei Ltd Burner combustion device for quick metal melting furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568576A (en) * 1978-11-17 1980-05-23 Nissei Ltd Burner combustion device for quick metal melting furnace

Similar Documents

Publication Publication Date Title
EP0115863B1 (en) Process for melting glass
US5979191A (en) Method and apparatus for melting of glass batch materials
US5116399A (en) Glass melter with front-wall oxygen-fired burner process
ES2373360T3 (en) METHOD AND DEVICE FOR THE DETERMINATION WITHOUT CONTACT OF A TEMPERATURE T OF A Fused METAL BATH.
JP5221532B2 (en) Burner capable of changing flame direction and / or axial angle and method for implementing the same
JP3297693B2 (en) Method for producing purified material from raw materials
TWI681061B (en) Bottom stirring tuyere and method for a basic oxygen furnace
CN113582510B (en) Cooling system and melting furnace
KR20210010363A (en) Tuyere for a basic oxygen furnace
US4496315A (en) Port wall air jet for controlling combustion air
US4496316A (en) Target wall air jet for controlling combustion air
JP5420403B2 (en) How to heat the charge
RU2134389C1 (en) Melt treatment device
US4671752A (en) Air-pulverizing apparatus for high-temperature molten slag
JPS5950131A (en) Method and apparatus for melting metal
KR100354688B1 (en) Manufacturing apparatus for reduced iron
JP7112302B2 (en) melting holding furnace
JP3741883B2 (en) Oxyfuel combustion burner and combustion furnace having the burner
US4730813A (en) Oxygen nozzle for metal refining
JPH03243254A (en) Method for heating molten steel in tundish and tundish providing heating device
JP3891687B2 (en) Ash melting furnace
JP7112303B2 (en) melting holding furnace
JPH0248408Y2 (en)
US2661198A (en) Furnace end structure
JPH0754058A (en) Operation of flash smelting furnace and burner for concentrate used for the same