JPS5950093A - Diffusion furnace type vacuum vapor growth device - Google Patents

Diffusion furnace type vacuum vapor growth device

Info

Publication number
JPS5950093A
JPS5950093A JP15779182A JP15779182A JPS5950093A JP S5950093 A JPS5950093 A JP S5950093A JP 15779182 A JP15779182 A JP 15779182A JP 15779182 A JP15779182 A JP 15779182A JP S5950093 A JPS5950093 A JP S5950093A
Authority
JP
Japan
Prior art keywords
reaction vessel
inner tube
samples
diffusion furnace
reduced pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15779182A
Other languages
Japanese (ja)
Inventor
Taisan Goto
後藤 泰山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP15779182A priority Critical patent/JPS5950093A/en
Publication of JPS5950093A publication Critical patent/JPS5950093A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate

Abstract

PURPOSE:To enable the uniform heating of samples with good thermal efficiency by heating the samples, many of which are arranged by a susceptor, by the heat evolved with the inner tube enclosing the circumference of the samples in a reaction vessel. CONSTITUTION:A cover 2 is opened and a susceptor 5 arranged with samples 6 is set in an inner tube 4, then the cover 2 is closed and a purging gas is supplied to expel the air and high frequency electric power is supplied to a work coil 9. The tube 4 is induction-heated to evolve heat, thereby heating the samples 6. Since the tube 4 is tubular, the radiation heat repeats reflections and heats efficiently and uniformly the samples. Cooling water is made run in a cooling pipe 8 to suppress the temp. elevation around the reactor 1. When the samples 6 attain to a prescribed temp., a reacting gas is supplied from a nozzle 7 to grow an epitaxial layer on the surfaces of the samples 6. Since the samples 6 are uniformly heated, the epitaxial layer having a uniform thickness is formed without variance.

Description

【発明の詳細な説明】 本発明は、気相成長装置に係り、特に筒状の反応答器内
にこれと垂直に比較的小さな間隔を置いて多数の試料を
配置するいわゆる拡散炉型を採用した気相成長装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor phase growth apparatus, and particularly employs a so-called diffusion furnace type in which a large number of samples are placed vertically at relatively small intervals within a cylindrical reactor. The present invention relates to a vapor phase growth apparatus.

気相成長装置には、従来、縦型、横型、バレル型の3つ
の方式が一般的に採用されているが、これらは構造的に
一回の処理枚数が少なく、その増加も現在限界に達して
きており、新たに拡散炉型、インライン型装置の開発が
急務となってきている。
Conventionally, three types of vapor phase growth equipment have been generally used: vertical, horizontal, and barrel types, but these types are structurally capable of processing only a small number of wafers at a time, and the increase in the number of wafers that can be processed at one time has now reached its limit. As a result, there is an urgent need to develop new diffusion furnace type and in-line type equipment.

しかしながら、拡散炉型装置においては、コールドウオ
ールによる加熱方式として、ランプ加熱方式、誘導加熱
方式等が考えられるが、均熱および熱効率の点で十分な
ものが々かった。
However, in the case of a diffusion furnace type apparatus, lamp heating methods, induction heating methods, and the like are conceivable as heating methods using a cold wall, but most of them are insufficient in terms of heat uniformity and thermal efficiency.

本発明の目的は、反応容器内にこれと垂直に配置された
試料をより均等に加熱して1つの試料内におけるエピタ
キシャル層の均一性および各試料間の均一性をはかると
共に、熱効率をも向上させるようにした拡散炉型減圧気
相成長装置を提供するにある。
The purpose of the present invention is to more evenly heat the samples arranged perpendicularly to the reaction vessel in order to measure the uniformity of the epitaxial layer within one sample and between each sample, and also to improve thermal efficiency. An object of the present invention is to provide a diffusion furnace type reduced pressure vapor phase growth apparatus which allows

かかる目的を達成するための本発明は、筒状の反応容器
と、同反応容器内に設けられた発熱源となるインナーチ
ー−ブと、同インナーチーーブ内に配置され試料をイン
ナーチー−プの長手方向に対して垂直に位置させて保持
するようにしたサセプタと、前記反応容器の外周に設け
られ前記インナーチー−プを誘導加熱またはランプ加熱
などにより加熱する加熱源と、前記反応容器に対するガ
スの給排手段とからなり、前記サセプタにより比較的小
さな間隔を置いて多数配列されている試料を、反応容器
内にあって前記試料の周囲を囲んでいるインナーチュー
ブの発熱によって加熱することにより、前記試料を均一
にかつ熱効率よく加熱し得るようにしたものである。
To achieve this object, the present invention includes a cylindrical reaction vessel, an inner chive that serves as a heat source provided in the reaction vessel, and a sample placed in the inner chive along the longitudinal direction of the inner chive. a susceptor held perpendicular to the direction; a heat source provided on the outer periphery of the reaction vessel for heating the inner cheek by induction heating or lamp heating; and a susceptor for supplying gas to the reaction vessel. A supply/discharge means is provided, and a large number of samples arranged at relatively small intervals by the susceptor are heated by heat generated by an inner tube surrounding the samples in the reaction vessel. This allows the sample to be heated uniformly and thermally efficiently.

以下本発明の一実施例を示す第1図について説明する。FIG. 1 showing one embodiment of the present invention will be described below.

1は反応容器で、石英などの絶縁物で形成され、図にお
いて右端はフタ2にょシ開閉可能になされ、左端には排
気口3が設けられている。
Reference numeral 1 denotes a reaction vessel, which is made of an insulating material such as quartz, and has a lid 2 that can be opened and closed at the right end in the figure, and an exhaust port 3 at the left end.

反応容器1内には、はぼ同心的にインナーチー−ブ4が
設けられている。このインナーチューブ4は黒鉛等の導
電性物質で形成されている。インナーチューブ4内には
サセプタ5が設けられている。
Inside the reaction vessel 1, an inner tube 4 is provided almost concentrically. This inner tube 4 is made of a conductive material such as graphite. A susceptor 5 is provided within the inner tube 4.

このサセプタ5は、試料6をインナーチューブ4の長手
方向に対して垂直に位置させ、図示のように多数の試料
6を比較的小さな間隔を置いて拡散炉の場合と同様に配
列するようになっている。前記反応容器1の第1図にお
いて右端寄りにはノズル7が挿入されている。
This susceptor 5 positions the samples 6 perpendicularly to the longitudinal direction of the inner tube 4, and arranges a large number of samples 6 at relatively small intervals as shown in the figure, similar to a diffusion furnace. ing. A nozzle 7 is inserted near the right end of the reaction vessel 1 in FIG.

反応容器1の外周には冷却配管8が設けられると共に、
その外方に前記インナーチー−プ4を誘導加熱するため
の加熱源である高周波誘導加熱コイル(以下、ワークコ
イルという)9が巻回されている。また、反応容器1の
外表面(内表面でもよい)には、インナーチューブ4か
らの輻射熱を反応容器1の内部へ反射させるために、M
gOなどの赤外光反射率の良い絶縁性の反射膜10が設
けられている。
A cooling pipe 8 is provided on the outer periphery of the reaction vessel 1, and
A high frequency induction heating coil (hereinafter referred to as a work coil) 9, which is a heating source for inductively heating the inner cheek 4, is wound around the outside thereof. Further, on the outer surface (or the inner surface may be used) of the reaction vessel 1, an M
An insulating reflective film 10 having good infrared light reflectance, such as gO, is provided.

次いで本装置の作用について説明する。フタ2を開き、
図示のように試料6を配列したサセプタ5をインナーチ
ー−プ4内にセットし、フタ2を閉じる。次に、排気口
3から排気しつつノズル7からパージガスを供給して空
気を排出すると共にワークコイル9に高周波電力を供給
し、気相成長のための一連の作業を開始する。
Next, the operation of this device will be explained. Open the lid 2,
The susceptor 5 with the samples 6 arranged as shown in the figure is set in the inner chest 4, and the lid 2 is closed. Next, while exhausting from the exhaust port 3, purge gas is supplied from the nozzle 7 to exhaust the air, and high frequency power is supplied to the work coil 9, thereby starting a series of operations for vapor phase growth.

ワークコイル9への給電によりインナーチューブ4が誘
導加熱されて発熱する。このインナーチューブ40発熱
により試料6が加熱される。このとき、インナーチュー
ブ4はその名のとおりチューブ状をしているため、その
内部へ向かう輻射熱は該インナーチュープ4内で反射を
繰り返し、インナーチー−ブ4内を効率よく、かつ均一
に加熱すると共に試料6に対して有効に作用する。イン
ナーチー−プ4から外方へ向かう輻射熱は、反射膜10
によって反射され、反応容器i内へ戻されるので、外部
の昇温を防ぐと共に試料6に対してより有効に作用する
By supplying power to the work coil 9, the inner tube 4 is heated by induction and generates heat. The sample 6 is heated by the heat generated by the inner tube 40. At this time, since the inner tube 4 has a tube shape as its name suggests, the radiant heat directed to the inside is repeatedly reflected within the inner tube 4, heating the inside of the inner tube 4 efficiently and uniformly. It also acts effectively on the sample 6. The radiant heat directed outward from the inner chest 4 is transferred to the reflective film 10.
Since the light is reflected by the light and returned into the reaction vessel i, it prevents the outside temperature from rising and acts more effectively on the sample 6.

なお、前記ワークコイル9への給電と共に冷却配管8に
冷却水を流し、ワークコイル9および反応容器1の周囲
の昇温をより低く押える。
Note that cooling water is allowed to flow through the cooling pipe 8 at the same time as the power is supplied to the work coil 9, thereby suppressing the rise in temperature around the work coil 9 and the reaction vessel 1 to a lower level.

試料6が所定温度に達したならば、ノズル7から反応容
器1内へ反応ガスを供給し、試料6の表面にエピタキシ
ャル層を生成する。このとき、試料6は、前記のように
それぞれ均一に加熱されているため、それぞれの試料6
間でのバラツキや各試料6内での厚さむらを押えてより
均一な厚さのエピタキシャル層を形成することができる
。なお、反応後の排気ガスおよび未反応の反応ガスは排
気口3から排出される。
When the sample 6 reaches a predetermined temperature, a reaction gas is supplied from the nozzle 7 into the reaction vessel 1 to form an epitaxial layer on the surface of the sample 6. At this time, since each sample 6 is heated uniformly as described above, each sample 6
It is possible to suppress variations between samples 6 and thickness unevenness within each sample 6, thereby forming an epitaxial layer with a more uniform thickness. Note that the exhaust gas after the reaction and the unreacted reaction gas are exhausted from the exhaust port 3.

第2図は本発明の他の実施例を示すもので、インナーチ
ューブ4に多数の孔(スリットも含む)11を設け、こ
れらの孔11から反応ガスなどがインナーチー−プ4内
へ流入するようにし、各試料6の表面に対する反応ガス
の供給濃度をより均一にし得るようにしたものである。
FIG. 2 shows another embodiment of the present invention, in which a large number of holes (including slits) 11 are provided in the inner tube 4, and reaction gas and the like flow into the inner tube 4 through these holes 11. In this way, the concentration of the reactant gas supplied to the surface of each sample 6 can be made more uniform.

また、ノズル7は、反応容器1とインナーチー−プ4と
の間の空間内のほぼ全長にわたるように設けられ、その
長手方向に沿って設けられた適宜個数のノズル孔12か
ら前記空間の長手方向のほぼ全域に一様に反応ガスを供
給するようになっている。さらにまた、反応容器1とイ
ンナーチー−プ4との間の空間の排気口3側の端部には
、石英々どで形成されたバッファ13が設けられ、前記
空間内から排気口3へ反応ガスが直接流れてしまわない
ようになっている。
Further, the nozzle 7 is provided so as to span almost the entire length of the space between the reaction vessel 1 and the inner cheek 4, and an appropriate number of nozzle holes 12 provided along the longitudinal direction of the nozzle 7 are provided along the longitudinal direction of the space. The reactant gas is supplied uniformly over almost the entire direction. Furthermore, a buffer 13 made of quartz or the like is provided at the end of the space between the reaction vessel 1 and the inner cheek 4 on the exhaust port 3 side, and a buffer 13 made of quartz or the like is provided to direct the reaction from the inside of the space to the exhaust port 3. This prevents gas from flowing directly.

なお、このバッファ13は、ノズル7からパージガスを
供給したとき、前記空間内のガスをより完全にパージガ
スに置換するため、完全に閉塞せずに若干ガスが通過す
るように形成することが好ましい。
Note that this buffer 13 is preferably formed so that when purge gas is supplied from the nozzle 7, the gas in the space is more completely replaced with the purge gas, so that the buffer 13 is not completely blocked but allows some gas to pass through.

第3図は本発明のさらに他の実施例を示すもので、イン
ナーチューブ4の外側にガス流制御用チー−プ14を設
け、これら両者によってインナーチー−プ4の外周に適
宜な断面積を有する環状のガス流路15を形成し、ノズ
ル7によって反応ガスを該ガス流路15へ供給して番孔
11からより均一に反応ガスが流入し得るようにしたも
のであり、さらに加熱源としてワークコイル9の代りに
赤外光ランプ16を用いたものである。17は赤外光反
射板である。この場合、反応容器1およびガス流制御用
チー−プ14は石英などの赤外光を透過する物質で形成
し、インナーチー−ブ4は黒鉛などの赤外光を吸収して
発熱する物質で形成する必要があり、第1図および第2
図に示した反射膜10は無用で、この反射膜10の代り
は赤外光反射板17が行なう。
FIG. 3 shows still another embodiment of the present invention, in which a gas flow control cheep 14 is provided on the outside of the inner tube 4, and an appropriate cross-sectional area is formed on the outer circumference of the inner cheep 4 by both of them. An annular gas flow path 15 is formed, and a nozzle 7 supplies the reaction gas to the gas flow path 15 so that the reaction gas can more uniformly flow in from the hole 11. An infrared lamp 16 is used instead of the work coil 9. 17 is an infrared light reflecting plate. In this case, the reaction vessel 1 and the gas flow control cheep 14 are made of a material that transmits infrared light, such as quartz, and the inner chive 4 is made of a material that absorbs infrared light and generates heat, such as graphite. It is necessary to form, Figures 1 and 2
The reflective film 10 shown in the figure is unnecessary, and an infrared light reflecting plate 17 takes its place.

また、冷却配管8などの冷却手段は、図示のように、赤
外光反射板17の外側に設ければよい。
Further, the cooling means such as the cooling pipe 8 may be provided outside the infrared light reflecting plate 17 as shown in the figure.

以上述べたように本発明によれば、より多くの試料を均
一に加熱することができ、これにより多数の試料に対し
てより均一な気相成長を行なわせることができる。
As described above, according to the present invention, more samples can be heated uniformly, and thereby more uniform vapor phase growth can be performed on many samples.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明のそれぞれ異なる実施例を
示す概要縦断面図である。 1・・・反応容器、  2・・・フタ、3・・・排気口
、 4・・・インナーチューブ5・・・サセプタ、  
6・・・試料、  7・・・ノズル、10・・・反射膜
、II ・・・孔、12・・・ノズル孔、I3 ・ ・
・バッファ、14・ ・ ・ガス流制御用チー−プ、1
5・ ・ ・ガス流路、16 ・ ・ ・赤外光ランプ
(加熱源)、17・・・赤外光反射板。 出願人 東芝機械株式会社 9−
1 to 3 are schematic vertical sectional views showing different embodiments of the present invention. DESCRIPTION OF SYMBOLS 1... Reaction container, 2... Lid, 3... Exhaust port, 4... Inner tube 5... Susceptor,
6... Sample, 7... Nozzle, 10... Reflective film, II... Hole, 12... Nozzle hole, I3...
・Buffer, 14・ ・Cheap for gas flow control, 1
5. Gas flow path, 16. Infrared light lamp (heating source), 17. Infrared light reflection plate. Applicant: Toshiba Machine Co., Ltd.9-

Claims (1)

【特許請求の範囲】 1、 筒状の反応容器と、同反応容器内に設けられた発
熱源となるインナーチューブと、同インナーチーープ内
に配置され試料をインナーチー−プの長手方向に対して
垂直に位置させて保持するサセプタと、前記反応容器の
外周に設けられたインナーチューブ加熱源と、前記反応
容器に対するガスの給排手段とからなる拡散炉型減圧気
相成長装置。 26  反応容器が絶縁物製で′あり、インナーチュー
ブが導電性物質製であシ、インナーチー−ブ加熱源が高
周波誘導加熱コイルである特許請求の範囲第1項記載の
拡散炉型減圧気相成長装置。 3、 反応容器が赤外光を透過する物質で形成され、イ
ンナーチー−ブが赤外光を吸収する物質で形成され、イ
ンナーチューブ加熱源が赤外光ランプでちる特許請求の
範囲第1項記載の拡散炉型減圧気相成長装置。 4、 反応容器がその内部に向って赤外光反射率を良く
する処置を施こされている特許請求の範囲第1または2
項記載の拡散炉型減圧気相成長装置。 5、 反応容器がその外側に設けた冷却手段によって冷
却可能になされている特許請求の範囲第1.2または4
項記載の拡散炉型減圧気相成長装置。 6、 インナーチューブが多数の孔を有し、この孔から
インナーチューブ内へガスが流入するようになされてい
る特許請求の範囲第1ないし5項のいずれか1項に記載
の拡散炉型減圧気相成長装置。 7 反応容器とインナーチューブとの間のガス排出側が
ほぼ全面にわたって閉じられている特許請求の範囲第1
ないし6項のいずれか1項に記載の拡散炉型減圧気相成
長装置。 8、 インナーチー−プと反応容器との間にガス流制御
用チー−プが介在されている特許請求の範囲第1ないし
7項のいずれか1項に記載の拡散炉型減圧気相成長装置
[Claims] 1. A cylindrical reaction vessel, an inner tube that serves as a heat source provided in the reaction vessel, and a sample disposed within the inner chest and arranged perpendicularly to the longitudinal direction of the inner cheek. A diffusion furnace type reduced pressure vapor phase growth apparatus comprising: a susceptor positioned and held in the reaction vessel; an inner tube heating source provided on the outer periphery of the reaction vessel; and means for supplying and discharging gas to and from the reaction vessel. 26. The diffusion furnace type reduced pressure gas phase according to claim 1, wherein the reaction vessel is made of an insulating material, the inner tube is made of a conductive material, and the inner tube heating source is a high-frequency induction heating coil. growth equipment. 3. Claim 1, wherein the reaction vessel is made of a material that transmits infrared light, the inner tube is made of a material that absorbs infrared light, and the inner tube heating source is an infrared lamp. The diffusion furnace type reduced pressure vapor phase growth apparatus described above. 4. Claim 1 or 2 in which the reaction container is treated to improve infrared light reflectance toward the inside thereof.
Diffusion furnace type reduced pressure vapor phase growth apparatus as described in . 5. Claim 1.2 or 4, wherein the reaction vessel is coolable by a cooling means provided on the outside thereof.
Diffusion furnace type reduced pressure vapor phase growth apparatus as described in . 6. The diffusion furnace type reduced pressure gas according to any one of claims 1 to 5, wherein the inner tube has a large number of holes, and gas flows into the inner tube through the holes. Phase growth device. 7 Claim 1 in which the gas discharge side between the reaction vessel and the inner tube is closed almost entirely
7. The diffusion furnace type reduced pressure vapor phase growth apparatus according to any one of items 6 to 6. 8. The diffusion furnace-type reduced pressure vapor phase growth apparatus according to any one of claims 1 to 7, wherein a gas flow control Cheap is interposed between the inner Cheap and the reaction vessel. .
JP15779182A 1982-09-10 1982-09-10 Diffusion furnace type vacuum vapor growth device Pending JPS5950093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15779182A JPS5950093A (en) 1982-09-10 1982-09-10 Diffusion furnace type vacuum vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15779182A JPS5950093A (en) 1982-09-10 1982-09-10 Diffusion furnace type vacuum vapor growth device

Publications (1)

Publication Number Publication Date
JPS5950093A true JPS5950093A (en) 1984-03-22

Family

ID=15657364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15779182A Pending JPS5950093A (en) 1982-09-10 1982-09-10 Diffusion furnace type vacuum vapor growth device

Country Status (1)

Country Link
JP (1) JPS5950093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027419A (en) * 1988-06-24 1990-01-11 Toshiba Mach Co Ltd Vapor growth apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027419A (en) * 1988-06-24 1990-01-11 Toshiba Mach Co Ltd Vapor growth apparatus
JPH0532902B2 (en) * 1988-06-24 1993-05-18 Toshiba Machine Co Ltd

Similar Documents

Publication Publication Date Title
TWI497023B (en) Vertical heat treatment apparatus and method for cooling the apparatus
KR880000472B1 (en) Chemical vapor deposition apparatus
CN102077320B (en) Plasma processing device, plasma processing method, and mechanism for regulating temperature of dielectric window
NL2017558B1 (en) A chemical vapour deposition apparatus and use thereof
JPH0620053B2 (en) Method and apparatus for heating semiconductor substrate
US20090145890A1 (en) Treatment apparatus, treatment method, and storage medium
TW200405415A (en) Wafer batch processing system and method
JP2011204819A (en) Substrate processing apparatus and substrate processing method
JP2009295905A (en) Substrate treatment device
JPS5950093A (en) Diffusion furnace type vacuum vapor growth device
WO2013145932A1 (en) Heating mechanism, film-forming device, and film-forming method
JP2016009796A (en) Substrate heating apparatus, substrate supporting apparatus, substrate processing apparatus and substrate processing method
JP2697250B2 (en) Thermal CVD equipment
JPS60189927A (en) Vapor phase reactor
JPH01216522A (en) Heat treating method for semiconductor substrate and heat treating apparatus used for this method
JPS5950094A (en) Vapor growth method
JPH0338029A (en) Vapor growth equipment
KR20210022499A (en) Heat treatment method and heat treatment apparatus
JPH05166736A (en) Thin film vapor growth apparatus
JP2016145391A (en) Vaporization apparatus, and film deposition apparatus
JPH0532902B2 (en)
JPH0518452B2 (en)
JPS60253212A (en) Vapor growth device
US20020000200A1 (en) Chemical vapor deposition apparatus
WO2021039271A1 (en) Semiconductor device fabrication method and fabrication apparatus