JPS5950072A - Oxide magnetic material and manufacture - Google Patents

Oxide magnetic material and manufacture

Info

Publication number
JPS5950072A
JPS5950072A JP57159216A JP15921682A JPS5950072A JP S5950072 A JPS5950072 A JP S5950072A JP 57159216 A JP57159216 A JP 57159216A JP 15921682 A JP15921682 A JP 15921682A JP S5950072 A JPS5950072 A JP S5950072A
Authority
JP
Japan
Prior art keywords
oxide
mol
oxygen concentration
magnetic
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57159216A
Other languages
Japanese (ja)
Other versions
JPS6143291B2 (en
Inventor
茂 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP57159216A priority Critical patent/JPS5950072A/en
Publication of JPS5950072A publication Critical patent/JPS5950072A/en
Publication of JPS6143291B2 publication Critical patent/JPS6143291B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、マンガン亜鉛フェライトの透磁率及び磁気
損失の温度係数を改善した酸化物磁性材斜とその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxide magnetic material having improved magnetic permeability and temperature coefficient of magnetic loss of manganese zinc ferrite, and a method for manufacturing the same.

マンガン亜鉛フェライトは、磁気ヘッド、通信機の磁性
材料として広い用途を持ち、各々の用途に応じて特性の
改善が行なわれ、すぐれた特性の材料が得られており、
現在も日進月歩の状態にある。
Manganese zinc ferrite has a wide range of uses as a magnetic material for magnetic heads and communication equipment, and its properties have been improved to suit each application, resulting in materials with excellent properties.
It is still in a state of rapid progress.

かかる材料は特にテープレコーダーの消去ヘッドに多用
されており、消去ヘッド用の特性としては高密度、低磁
気損失で、透磁率、磁気損失の温度特性変化が小さいこ
とが重要であり、さらには透磁率ができる限り高いほう
がよい。
Such materials are often used especially in erasing heads of tape recorders, and important characteristics for erasing heads include high density, low magnetic loss, and small changes in temperature characteristics of magnetic permeability and magnetic loss. It is better that the magnetic rate is as high as possible.

低磁気損失な材料を得る方法として、CaOと5in2
の複合添加により、電気抵抗を大きくする方法がよく知
られている(特公昭36−2283 )。この方法はた
しかに有効な方法であるが、材料の密度をあげるために
、焼結温度を高くすると、異常な焼結反応が起り、焼結
組織が小さな結晶と大ぎな結晶とが混在したものになり
、磁気損失特性の劣化を招来しやすいという問題があっ
た。
As a method to obtain a material with low magnetic loss, CaO and 5in2
A method of increasing electrical resistance by adding a combination of is well known (Japanese Patent Publication No. 36-2283). This method is certainly effective, but when the sintering temperature is raised to increase the density of the material, an abnormal sintering reaction occurs, and the sintered structure becomes a mixture of small and large crystals. Therefore, there was a problem in that magnetic loss characteristics tend to deteriorate.

次に透磁率の温度特性変化を小さくする方法として、C
oo又はCo2O3を添加づ−る方法がある。しかしな
がら、磁気損失の温度特性変化を小さくするには、公知
の技術では十分に満足できるものがなかった。
Next, as a method to reduce the temperature characteristic change of magnetic permeability, C
There is a method of adding oo or Co2O3. However, none of the known techniques has been able to sufficiently reduce the change in temperature characteristics of magnetic loss.

この発明は、上述の現状に鑑み、高い焼結温度でも異常
な焼結組織とならず、磁気損失が小さく、かつ透磁率、
磁気損失の温度特性変化が小さな酸化物磁性材料を目的
とし、種々の実験の結果、肯−ZTI系フェライトの基
本成分に、CaO、Coo 。
In view of the above-mentioned current situation, this invention has been developed to prevent abnormal sintered structure even at high sintering temperatures, to reduce magnetic loss, and to reduce magnetic permeability.
With the aim of creating an oxide magnetic material with small temperature characteristic changes in magnetic loss, various experiments have shown that CaO and Coo are the basic components of ZTI-based ferrite.

7、r OH又はCaO,Coo、VzOsを複合添加
し、焼結後の冷却雰囲気の酸素濃度を制御するか、さら
に熱間静水圧成型することにより、極めて特性のよい酸
化物磁性材料が得られることを知見した。
7. An oxide magnetic material with extremely good properties can be obtained by adding rOH or a combination of CaO, Coo, and VzOs and controlling the oxygen concentration in the cooling atmosphere after sintering, or by hot isostatic pressing. I found out that.

すなわち、この発明は、酸化鉄50〜56モル%、酸化
マンガン21〜38モル%、酸化亜鉛6〜25モル%か
らなる基本組成に、酸化カルシウムo、oi〜0.1w
t%、酸化コバルト0.05〜0.15wt%と酸化ジ
ルコニウム0.02〜0.1wt%又は酸化バナジウム
0.02〜0.1wt%を含有することを特徴とする低
磁気損失でかつ透磁率及び磁気損失の温度時3− 性のすぐれた酸化物磁性材料であり、かかる酸化物を焼
結後、第1図の如く下記式を満足する酸素濃度P%で冷
却するか、あるいはさらに、熱間静水圧成型することを
要旨とする酸化物磁性材料の製造方法である。
That is, this invention has a basic composition consisting of 50 to 56 mol% of iron oxide, 21 to 38 mol% of manganese oxide, and 6 to 25 mol% of zinc oxide, and calcium oxide o, oi to 0.1w.
t%, cobalt oxide 0.05 to 0.15 wt%, zirconium oxide 0.02 to 0.1 wt%, or vanadium oxide 0.02 to 0.1 wt%, with low magnetic loss and magnetic permeability. It is an oxide magnetic material with excellent properties at the temperature of magnetic loss and magnetic loss. This is a method for producing an oxide magnetic material, the gist of which is hydrostatic molding.

一6800/ T+b I < 100 P < −4
300/ T+b まただし、T;温度(℃)、P:酸
素濃度(%)、bl、bl :焼結時の酸素濃度に一致
するように設定された定数。
-6800/ T+b I < 100 P < -4
300/T+b Also, T: temperature (°C), P: oxygen concentration (%), bl, bl: constant set to match the oxygen concentration during sintering.

t’tn−Zη系フェライトの基本成分に、CaO、C
o。
The basic components of t'tn-Zη ferrite include CaO and C.
o.

の外に5LOeを添加すると、高密度材料にした場合、
異常結晶組織となりやすいが、si、oeの代りに7.
r02あるいはv205を添加すると高密度な材料にし
た場合でも均一な結晶組織で、電気抵抗が大きく、磁気
損失の小さい磁性材料が得られる。さらに、従来の焼結
法ではt’tn −zη系フェライトの基本成分に、C
aO、CoOの外にZroeあるいは■205を複合添
加すると、透磁率の温度特性は小さいが、磁気損失の温
度変化は大きくなる。これに対し、焼結後の冷却雰囲気
を平衡酸素圧よりも酸化性にす4− ると磁気損失の温度変化が小さくなる。また、さらに熱
間静水圧成形することにより、透磁率、磁気損失のII
I特性をそこなうことなく高密度化することができるの
である。
When 5LOe is added in addition to the above, when it is made into a high density material,
Although it tends to become an abnormal crystal structure, 7. instead of si and oe.
When r02 or v205 is added, a magnetic material with a uniform crystal structure, high electrical resistance, and low magnetic loss can be obtained even when it is made into a high-density material. Furthermore, in the conventional sintering method, C is added to the basic component of t'tn-zη ferrite.
When Zroe or 205 is added in combination in addition to aO and CoO, the temperature characteristic of magnetic permeability is small, but the temperature change in magnetic loss becomes large. On the other hand, if the cooling atmosphere after sintering is made more oxidizing than the equilibrium oxygen pressure, the temperature change in magnetic loss becomes smaller. In addition, by further hot isostatic pressing, magnetic permeability and magnetic loss can be
It is possible to increase the density without damaging the I characteristics.

次にこの発明による酸化物磁性材料の組成を限定した理
由を説明する。
Next, the reason for limiting the composition of the oxide magnetic material according to the present invention will be explained.

酸化鉄50〜56モル%、酸化マンガン21〜38モル
%、酸化亜鉛6〜25モル%とした理由は、これ以外の
組成の場合、透磁率が極めて小さく、軟磁性材料として
実用的でないからである。
The reason for using 50 to 56 mol% of iron oxide, 21 to 38 mol% of manganese oxide, and 6 to 25 mol% of zinc oxide is because other compositions have extremely low magnetic permeability and are not practical as soft magnetic materials. be.

酸化カルシウムは、0,01wt%未渦の含有では電気
抵抗が10Ω−α以下となり、低磁気損失特性が維持で
きなく、o、iwt%を越えると異常結晶組織となりや
すく、やはり低磁気損失特性が得られないため、0.0
1〜0.1wt%の含有とする。
Calcium oxide has an electrical resistance of 10 Ω-α or less when it is contained in an unvortexed state, making it impossible to maintain low magnetic loss characteristics, and when it exceeds 0.01 wt%, it tends to form an abnormal crystal structure, which again results in low magnetic loss characteristics. Since it cannot be obtained, 0.0
The content is 1 to 0.1 wt%.

酸化コバルトは、o、oswt%未満の含有では透磁率
の温度係数を小さくする効果が少なく、0.15wt%
を越えると透磁率そのものが小さくなるため、0.05
〜0.15wt%の含有とする。
Cobalt oxide is less effective in reducing the temperature coefficient of magnetic permeability if it is contained less than 0.15 wt%.
If it exceeds 0.05, the magnetic permeability itself decreases.
The content is 0.15 wt%.

酸化ジルコニウムまたは酸化バナジウムは、上述した如
く、電気抵抗を大ぎくし、低磁気損失とづ“るために添
加するもので、ともに0.0’2wt%未渦の添加では
電気抵抗を大きくする効果が少なく、また、0,1wt
%を越える添加では、酸化ジルコニウムの場合透磁率が
小さくなり、酸化バナジウムの場合異常結晶組織となり
やすいため、0.02〜0.1wt%の添加とする。
As mentioned above, zirconium oxide or vanadium oxide is added to greatly increase electrical resistance and reduce magnetic loss, and when both are added at 0.0'2wt% without vortex, they have the effect of increasing electrical resistance. is small, and 0.1wt
If the addition exceeds 0.02 to 0.1 wt%, the magnetic permeability decreases in the case of zirconium oxide, and an abnormal crystal structure tends to occur in the case of vanadium oxide.

次に、上記組成の酸化物を焼結したのち、冷却時の酸素
濃度(P%)を下記式を満足する濃度とする理由を説明
する。
Next, the reason why the oxygen concentration (P%) at the time of cooling after sintering the oxide having the above composition is set to a concentration that satisfies the following formula will be explained.

一6800/ T+b I < log P < −4
300/ T+b まただし、T;温度(”C)、P:
酸素濃度(%)、b+、b2  :焼結時の酸素濃度に
一致するJ:うに設定された定数。
-6800/ T+b I < log P < -4
300/ T+b Soup stock, T; Temperature ("C), P:
Oxygen concentration (%), b+, b2: Constant set to J: which corresponds to the oxygen concentration during sintering.

log p≦−6800/ T 十b +では磁気損失
の温度係数が従来法で得られる結果と変らず、log 
p≧−4300/ T + b 2では透磁率の劣化が
大きくなるため、上記式を満足する酸素濃度P%とする
When log p≦−6800/T b +, the temperature coefficient of magnetic loss is the same as the result obtained by the conventional method;
When p≧−4300/T + b 2, the deterioration of magnetic permeability increases, so the oxygen concentration P% is set to satisfy the above formula.

ちなみに、焼結条件と上記定数との関係を説明すると、
焼結温度が1250℃で1%酸素を含む窒素中で焼結し
た場合、b I= 3.44 、b 2 = 5.44
であり、焼結温度が1250℃で2%酸素を含む窒素中
で焼結した場合、b 1= 3.74 、b 2 = 
5.74であり、焼結温度が1200℃で0.5%酸素
を含む窒素中で焼結した場合、b、−=3.14、b2
−5.14である。
By the way, to explain the relationship between the sintering conditions and the above constants,
When sintering is carried out in nitrogen containing 1% oxygen at a sintering temperature of 1250°C, b I = 3.44, b 2 = 5.44
, and when sintering is performed in nitrogen containing 2% oxygen at a sintering temperature of 1250°C, b 1 = 3.74, b 2 =
5.74, and when sintering is carried out in nitrogen containing 0.5% oxygen at a sintering temperature of 1200°C, b, -=3.14, b2
-5.14.

また、この発明において、熱間静水圧成形する場合、−
次焼結後の冷却時の酸素濃度は、第1図の冷却温度と酸
素濃度との関係を示ずグラフにおける曲線Bと同りとに
囲まれる領域内でlogp−−4300/T+3.44
の曲線D (T=1250°C)に沿って冷却するとよ
い。これは熱間静水圧成形時に焼結体が多少還元される
からである。なお、第1図において、Aは平衡酸素濃度
曲線であり、Bは10(] P =−6800/T+5
.44  (T=1250℃)、Cは実施例2,3にお
ける冷却条件である。
Further, in this invention, when performing hot isostatic pressing, -
The oxygen concentration during cooling after the next sintering is logp--4300/T+3.44 within the area surrounded by curve B in the graph, which shows no relationship between the cooling temperature and oxygen concentration in Figure 1.
It is preferable to cool along the curve D (T=1250°C). This is because the sintered body is reduced to some extent during hot isostatic pressing. In addition, in FIG. 1, A is the equilibrium oxygen concentration curve, and B is 10(] P = -6800/T+5
.. 44 (T=1250°C), C is the cooling condition in Examples 2 and 3.

以下に、この発明による実施例を説明する。Examples according to the present invention will be described below.

[実施例1] Fe2O353,5モル%、MnC0a 32.5モル
%、Zn014モル%となるように秤量し、ボールミル
で純水を7− 分散媒体とする湿式混合を行ない、乾燥後850℃。
[Example 1] Fe2O353.5 mol%, MnC0a 32.5 mol%, and Zn014 mol% were weighed, wet mixed using a ball mill using pure water as a dispersion medium, and dried at 850°C.

3時間の予備焼結を行なった。ついで、これに第1表に
示す所定量の添加物を添加し、再びボールミルで微粉砕
した。
Preliminary sintering was performed for 3 hours. Next, predetermined amounts of additives shown in Table 1 were added to this, and the mixture was again pulverized using a ball mill.

粉砕後にバインダーを添加して9mmφX 5mmφX
 3mmt寸法のリング試料に成形し、1%酸素の窒素
中で1250℃、 3時間の焼結を行ない、第1図A線
の平衡酸素濃度で炉中冷却した。
After crushing, add binder to 9mmφX 5mmφX
A ring sample with a size of 3 mm was formed, sintered in nitrogen containing 1% oxygen at 1250°C for 3 hours, and cooled in a furnace at the equilibrium oxygen concentration shown by line A in Figure 1.

得られた各試料の透磁率、相対磁気損失係数、電気抵抗
を第1表に示し、透磁率の温度特性を第2図に示す。な
お、透磁率の2次ピーク温度が各試料でほぼ一致するよ
うに、微粉砕時に主成分の補正添加を行なっている。
The magnetic permeability, relative magnetic loss coefficient, and electrical resistance of each sample obtained are shown in Table 1, and the temperature characteristics of magnetic permeability are shown in FIG. In addition, correction addition of the main component was performed at the time of pulverization so that the secondary peak temperature of magnetic permeability was almost the same for each sample.

第1表と第2図より明らかなように、試料aとす、 c
を比較すると、Cooの添加により透磁率の温度係数が
改善されていることが分るが、S=O,を添加した試料
す、  cは、1250℃の比較的高い焼結温度では異
常結晶組織化しており、磁気損失が劣化している。
As is clear from Table 1 and Figure 2, samples a and c
Comparing the above, it can be seen that the temperature coefficient of magnetic permeability is improved by the addition of Coo, but the sample with S=O, c, has an abnormal crystal structure at a relatively high sintering temperature of 1250 °C. , and the magnetic loss is deteriorating.

これに対してZy Opを添加した試1’11.2.3
の8− 場合は、Sl、、添加の場合と同様に電気抵抗が高くな
っており、しかも異常結晶組織化することなく、磁気損
失が小さくなっている。しかし、磁気損失の湯度係数特
性は、焼結後の冷却を平衡酸素濃度で行なっているため
、あまりよくない。なお、図中の符号と試料番号とは一
致している。
In contrast, trial 1'11.2.3 in which Zy Op was added
In the case of 8-, the electrical resistance is high as in the case of adding Sl, and moreover, the magnetic loss is small without forming an abnormal crystal structure. However, the hot water coefficient characteristics of magnetic loss are not very good because cooling after sintering is performed at equilibrium oxygen concentration. Note that the symbols in the figure and the sample numbers match.

[実施例2] 実施例1で得た試料aと試料2の焼結体を、第1図に示
すこの発明の範囲内であるC線の酸素濃度で冷却処理し
、また、従来の平衡酸素81度でも冷却処理した。各試
料の磁気損失の温度特性を第3図の温度と相対損失係数
との関係を示寸グラフに表わす。なお、図中の符号と試
料番号とは一致しており、実線が平衡酸素濃度処理であ
り、鎖線が本発明処理の場合である。結果からあぎらか
なように、この発明方法による試料はその磁気損失の温
度特性が従来法のものに比較していちじるしく向上して
いることが分る。
[Example 2] The sintered bodies of Sample a and Sample 2 obtained in Example 1 were cooled at an oxygen concentration of line C, which is within the range of the present invention, as shown in FIG. Cooling treatment was also performed at 81 degrees. The temperature characteristics of the magnetic loss of each sample are shown in the dimensional graph of the relationship between temperature and relative loss coefficient in FIG. Note that the symbols and sample numbers in the figure match, the solid line is for the equilibrium oxygen concentration treatment, and the chain line is for the treatment of the present invention. As is clear from the results, it can be seen that the temperature characteristics of magnetic loss of the samples produced by the method of this invention are significantly improved compared to those produced by the conventional method.

[実施例3] Fe2O354,5モル%、11nO37,3モル%、
ZTIO8,2モル%となるように秤量し、ボールミル
で純水を分散媒体とする湿式混合を行ない、乾燥後85
0℃。
[Example 3] Fe2O354.5 mol%, 11nO37.3 mol%,
ZTIO was weighed to be 8.2 mol%, wet mixed using a ball mill using pure water as a dispersion medium, and after drying,
0℃.

3時間の予備焼結を行なった。ついで、これに第2表に
示す所定量の添加物を添加し、再びボールミルで微粉砕
した。
Preliminary sintering was performed for 3 hours. Then, predetermined amounts of additives shown in Table 2 were added to this, and the mixture was again pulverized using a ball mill.

粉砕後にバインダーを添加して9mmφX 5mmφX
 3mmj寸法のリング試料に成形し、1%酸素の窒素
中で1250℃、3時間の焼結を行ない、第1図に示す
この発明の範囲内であるC線の酸素mWで冷却処理し、
また、従来の平衡酸素濃度でも冷却処理した。
After crushing, add binder to 9mmφX 5mmφX
It was molded into a ring sample with a size of 3 mmj, sintered in nitrogen containing 1% oxygen at 1250°C for 3 hours, and cooled with oxygen mW at line C, which is within the range of this invention as shown in FIG.
Cooling treatment was also performed at the conventional equilibrium oxygen concentration.

得られた各試料の透磁率、相対磁気損失係数、電気抵抗
を第2表に示し、透磁率の温度特性を第4図に、磁気損
失の温度特性を第5図に示す。なお、透磁率の2次ピー
ク温度が各試料でほぼ一致するように、微粉砕時に主成
分の補正添加を行なっている。なお、図中の符号と試料
番号とは一致しており、実線が平衡酸素濃度処理であり
、鎖線11− が本発明処理の場合である。
The magnetic permeability, relative magnetic loss coefficient, and electrical resistance of each sample obtained are shown in Table 2, the temperature characteristics of magnetic permeability are shown in FIG. 4, and the temperature characteristics of magnetic loss are shown in FIG. In addition, correction addition of the main component was performed at the time of pulverization so that the secondary peak temperature of magnetic permeability was almost the same for each sample. Note that the reference numerals and sample numbers in the figure match, the solid line is for the equilibrium oxygen concentration treatment, and the chain line 11- is for the treatment of the present invention.

結果から明らかなように、V2O50,1%添加するこ
とにより、電気抵抗が150Ω−■となり、しかも異常
結晶組織が全く発生していない。また、Cooの透磁率
の温度特性に対する効果は明らかであり、冷却時の酸素
濃度制御が磁気損失の温度特性の向上に重要な役割を果
していることが分る。
As is clear from the results, by adding 50.1% of V2O, the electrical resistance becomes 150Ω-■, and no abnormal crystal structure occurs at all. In addition, the effect of Coo's magnetic permeability on the temperature characteristics is clear, and it can be seen that oxygen concentration control during cooling plays an important role in improving the temperature characteristics of magnetic loss.

以下余白 12− [実施例4] Fe2O354,0モル%、Mn036.0モル%、Z
nO10,0モル%となるように秤量し、ボールミルで
純水を分散媒体とする湿式混合を行ない、乾燥後850
℃。
Margin below 12- [Example 4] Fe2O354.0 mol%, Mn0 36.0 mol%, Z
Weighed so that nO was 10.0 mol%, wet mixed using a ball mill using pure water as a dispersion medium, and after drying,
℃.

3時間の予備焼結を行なった。ついで、これに第3表に
示す所定量の添加物を添加し、再びボールミルで微粉砕
した。
Preliminary sintering was performed for 3 hours. Next, predetermined amounts of additives shown in Table 3 were added thereto, and the mixture was again pulverized using a ball mill.

粉砕後にバインダーを添加して9mmφX 5mmφX
 3mmt寸法のリング試料に成形し、0.8%酸素含
有の窒素中で1200℃、3時間の焼結を行ない、この
発明の範囲内であるlog P−−4300/T十3.
5線の酸素濃度で冷却処理し、また、伯の試料は1%酸
素含有の窒素中で1250℃、3時間の焼結を行ない、
従来の平衡酸素濃度でも冷却処理した。
After crushing, add binder to 9mmφX 5mmφX
A ring sample with a size of 3 mmt was formed and sintered at 1200°C for 3 hours in nitrogen containing 0.8% oxygen to obtain a log P--4300/T13.
The sample was cooled at 5-line oxygen concentration, and the sample was sintered at 1250°C for 3 hours in nitrogen containing 1% oxygen.
Cooling treatment was also performed at the conventional equilibrium oxygen concentration.

さらに、得られた焼結体を、1100℃、  900k
q4゜アルゴン雰囲気の条件で熱間静水圧成形を実施し
た。
Furthermore, the obtained sintered body was heated at 1100°C and 900k.
Hot isostatic pressing was carried out under the condition of q4° argon atmosphere.

得られた各試料の磁気損失の温度特性を第6図に示す。FIG. 6 shows the temperature characteristics of magnetic loss of each sample obtained.

なお、透磁率の2次ピーク温度が各試料でほぼ一致する
ように、微粉砕時に主成分の補正添加を行なっている。
In addition, correction addition of the main component was performed at the time of pulverization so that the secondary peak temperature of magnetic permeability was almost the same for each sample.

なお、図中の符号と試お1番号とは一致しており、実線
が平衡酸素濃度処理であり、鎖線が本発明処理の場合で
ある。
Note that the symbols in the figure and trial number 1 match, the solid line is for the equilibrium oxygen concentration treatment, and the chain line is for the treatment of the present invention.

この発明方法によって磁性材料が高密度化され、磁気損
失の温度特性が改善されることが、第6図から明らかで
ある。
It is clear from FIG. 6 that the method of this invention densifies the magnetic material and improves the temperature characteristics of magnetic loss.

第3表 15−Table 3 15-

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷却温度と酸素濃度との関係を示すグラフであ
る。 第2図、第4図は、透磁率の温度特性を示すグラフであ
り、それぞれ実施例1.実施例3.実施例4で得られた
試料の特性を示す。 第3図、第5図、第6図は、磁気損失の温度特性を示す
グラフであり、それぞれ実施例2.実施例3.実施例4
で得られた試料の特性を示す。 出願人  住友特殊金属株式会社 16− 、−01X −” trlt−、、−、vゾj、ml VMレロ?ff1−
1/L /rtIJ”4141擾n?’g4−4’4日
子376− ±)了羽
FIG. 1 is a graph showing the relationship between cooling temperature and oxygen concentration. FIG. 2 and FIG. 4 are graphs showing the temperature characteristics of magnetic permeability, respectively. Example 3. The characteristics of the sample obtained in Example 4 are shown. FIG. 3, FIG. 5, and FIG. 6 are graphs showing the temperature characteristics of magnetic loss, respectively. Example 3. Example 4
The characteristics of the sample obtained are shown below. Applicant: Sumitomo Special Metals Co., Ltd.
1/L /rtIJ"4141澾n?'g4-4'4日子376-±)Ryoha

Claims (1)

【特許請求の範囲】 1 酸化鉄50〜56モル%、酸化マンガン21〜38
モル%、酸化亜鉛6〜25モル%からなる基本組成に、
酸化カルシウム0.01〜0.1wt%、酸化コバルト
0.05〜0.15wt%と酸化ジルコニウム0.02
〜o、iwt%又は酸化バナジウム0.02〜0.1w
t%を含有することを特徴とする低磁気損失でかつ透磁
率及び磁気損失の温度特性のすぐれた酸化物磁性材料。 2 酸化鉄50〜56モル%、酸化マンガン21〜38
モル%、酸化亜鉛6〜25モル%からなる基本組成に、
酸化カルシウム0.01〜0.1wt%、酸化コバルト
0.05〜0.15wt%と酸化ジルコニウム0.02
〜0.1wt%又は酸化バナジウム0.02〜0.1w
t%を含有する酸化物を焼結後、下記式を満足する酸素
濃度P%で冷却することを特徴とする酸化物磁性材料の
製造方法。 一6800/T+b l <log P< −4300
/T+b まただし、■;湿温度℃)、P;酸素濃度(
%)、b+、t+z:焼結時の酸素濃度に一致するよう
に設定された定数。 3 酸化鉄50〜56モル%、酸化マンガン21〜38
モル%、酸化亜鉛6〜25モル%からなる基本組成に、
酸化カルシウム0.01〜0.1wt%、酸化コバルト
0.05〜0.15wt%と酸化ジルコニウム0.02
〜0,1wt%又は酸化バナジウム0.02〜0.1w
t%を含有する酸化物を焼結後、下記式を満足する酸素
濃度P%で冷却し、さらに熱間静水圧成形することを特
徴とする酸化物磁性材料の製造 :方法。 一6800/ T+b I < log P < −4
300/ ’r十b まただし、T;温度(℃)、P;
酸素濃度(%)、b、、b、、;焼結時の酸素濃度に一
致するように設定された定数。
[Claims] 1. Iron oxide 50-56 mol%, manganese oxide 21-38 mol%
mol%, basic composition consisting of 6 to 25 mol% zinc oxide,
Calcium oxide 0.01-0.1 wt%, cobalt oxide 0.05-0.15 wt% and zirconium oxide 0.02
~o, iwt% or vanadium oxide 0.02-0.1w
An oxide magnetic material with low magnetic loss and excellent temperature characteristics of magnetic permeability and magnetic loss, characterized by containing t%. 2 Iron oxide 50-56 mol%, manganese oxide 21-38
mol%, basic composition consisting of 6 to 25 mol% zinc oxide,
Calcium oxide 0.01-0.1 wt%, cobalt oxide 0.05-0.15 wt% and zirconium oxide 0.02
~0.1wt% or vanadium oxide 0.02~0.1w
A method for producing an oxide magnetic material, which comprises sintering an oxide containing t% and then cooling it to an oxygen concentration P% that satisfies the following formula. -6800/T+b l <log P< -4300
/T+b dashi stock, ■; humidity temperature ℃), P; oxygen concentration (
%), b+, t+z: Constants set to match the oxygen concentration during sintering. 3 Iron oxide 50-56 mol%, manganese oxide 21-38
mol%, basic composition consisting of 6 to 25 mol% zinc oxide,
Calcium oxide 0.01-0.1 wt%, cobalt oxide 0.05-0.15 wt% and zirconium oxide 0.02
~0.1wt% or vanadium oxide 0.02~0.1w
A method for producing an oxide magnetic material, characterized in that after sintering an oxide containing t%, the oxide is cooled to an oxygen concentration P% that satisfies the following formula, and further subjected to hot isostatic pressing. -6800/ T+b I < log P < -4
300/'r1b Soup stock, T; Temperature (℃), P;
Oxygen concentration (%), b, , b, ; Constant set to match the oxygen concentration during sintering.
JP57159216A 1982-09-11 1982-09-11 Oxide magnetic material and manufacture Granted JPS5950072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57159216A JPS5950072A (en) 1982-09-11 1982-09-11 Oxide magnetic material and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57159216A JPS5950072A (en) 1982-09-11 1982-09-11 Oxide magnetic material and manufacture

Publications (2)

Publication Number Publication Date
JPS5950072A true JPS5950072A (en) 1984-03-22
JPS6143291B2 JPS6143291B2 (en) 1986-09-26

Family

ID=15688864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57159216A Granted JPS5950072A (en) 1982-09-11 1982-09-11 Oxide magnetic material and manufacture

Country Status (1)

Country Link
JP (1) JPS5950072A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256967A (en) * 1985-05-08 1986-11-14 住友特殊金属株式会社 Manufacture of mn-zn ferrite
JPS6370365A (en) * 1986-09-11 1988-03-30 Rohm Co Ltd Microcomputer
EP1083158A3 (en) * 1999-09-09 2001-10-10 TDK Corporation Magnetic ferrit material
US6940381B2 (en) 2002-12-20 2005-09-06 Tdk Corporation Mn-Zn based ferrite, magnetic core for transformer and transformer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6905629B2 (en) 2002-09-02 2005-06-14 Tdk Corporation Mn-Zn ferrite, transformer magnetic core and transformer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231555A (en) * 1973-03-02 1977-03-10 Sanyo Electric Co Ltd Air conditioner
JPS565046A (en) * 1979-06-19 1981-01-20 Aaru Raaman Abudaru Production of dried and compressed uncooked cabbage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231555A (en) * 1973-03-02 1977-03-10 Sanyo Electric Co Ltd Air conditioner
JPS565046A (en) * 1979-06-19 1981-01-20 Aaru Raaman Abudaru Production of dried and compressed uncooked cabbage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256967A (en) * 1985-05-08 1986-11-14 住友特殊金属株式会社 Manufacture of mn-zn ferrite
JPH0238537B2 (en) * 1985-05-08 1990-08-30 Sumitomo Spec Metals
JPS6370365A (en) * 1986-09-11 1988-03-30 Rohm Co Ltd Microcomputer
EP1083158A3 (en) * 1999-09-09 2001-10-10 TDK Corporation Magnetic ferrit material
US6940381B2 (en) 2002-12-20 2005-09-06 Tdk Corporation Mn-Zn based ferrite, magnetic core for transformer and transformer

Also Published As

Publication number Publication date
JPS6143291B2 (en) 1986-09-26

Similar Documents

Publication Publication Date Title
JP3968188B2 (en) Ferrite
US6547984B2 (en) Mn-Zn ferrite and production process thereof
EP1138648B1 (en) Mn-Zn ferrite and production process thereof
JPS5950072A (en) Oxide magnetic material and manufacture
EP0239688B1 (en) Annealing separator used in the finishing annealing step for producing a grain-oriented electrical steel sheet
JPS61256967A (en) Manufacture of mn-zn ferrite
US20020171064A1 (en) Mn-zn ferrite and production process thereof
KR910009974B1 (en) High saturated magnetic flux density alloy
JPS6111892B2 (en)
JPH0521859B2 (en)
US6461531B2 (en) Mn-Zn ferrite and production process thereof
JPH0430727B2 (en)
US5073214A (en) Magnetic material for a magnetic head
JP3248936B2 (en) Method for producing low loss manganese zinc ferrite
JPH06333725A (en) High-density ferrite
JP3245206B2 (en) Manganese-zinc ferrite
JP2775740B2 (en) High frequency high permeability magnetic material
KR0143068B1 (en) A method of oxide magnetized material
JPH0878220A (en) Manufacture of hexagonal crystal system ferrite
JP3499283B2 (en) High permeability oxide magnetic material
CA1277894C (en) Annealing separator used in the finishing annealing step for producing a grain-oriented electrical steel sheet
JPS61101458A (en) Manganese base ferrite composition
JPH0353270B2 (en)
JPH03141611A (en) Fineparticle organization mn-zn ferrite material and its manufacture
JPH04193797A (en) Single crystal ferrite