JPS5950007A - Precursor for sintered silicon nitride body and manufacture of sintered silicon nitride body using it - Google Patents

Precursor for sintered silicon nitride body and manufacture of sintered silicon nitride body using it

Info

Publication number
JPS5950007A
JPS5950007A JP57159354A JP15935482A JPS5950007A JP S5950007 A JPS5950007 A JP S5950007A JP 57159354 A JP57159354 A JP 57159354A JP 15935482 A JP15935482 A JP 15935482A JP S5950007 A JPS5950007 A JP S5950007A
Authority
JP
Japan
Prior art keywords
silicon nitride
silicon
nitrogen
sintered body
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57159354A
Other languages
Japanese (ja)
Inventor
Mitsuo Matsumura
松村 光雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP57159354A priority Critical patent/JPS5950007A/en
Publication of JPS5950007A publication Critical patent/JPS5950007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain easily a sintered silicon nitride body of high quality by reacting a silicon compound with a hydrogen compound of nitrogen in a plasma atmosphere, press-molding the resulting fine-grained powder, and sintering it. CONSTITUTION:Silicon hydride, silicon halide or a mixture thereof is reacted with a hydrogen compound of nitrogen in a plasma atmosphere to form fine- grained powder as a precursor for a sintered silicon nitride body. Each particle of the powder contains hydrogen, and nitrogen and silicon are contained as a whole in a nonstoichiometric ratio represented by Si3N(4-x) (x>0). The precursor is press-molded and sintered in a nitrogen atmosphere. Hyperfine-grained silicon nitride powder having about 100-5,000Angstrom grain size is formed by reacting the silicon compound with the hydrogen compound of nitrogen in the plasma atmosphere.

Description

【発明の詳細な説明】 本発明は窒化珪素焼結体に関する。更に詳しくは、本発
明は窒化珪素焼結体を製造するに適した窒化珪素焼結体
のための前駆物質及び、それを用いた窒化珪素焼結体の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a silicon nitride sintered body. More specifically, the present invention relates to a precursor material for a silicon nitride sintered body suitable for manufacturing a silicon nitride sintered body, and a method for manufacturing a silicon nitride sintered body using the same.

窒化珪素焼結体は、高温強度、耐熱衝撃性、耐酸化性に
優れているため、ガスタービン、ディーゼルエンジン等
の高温構造材料として、或いは切削用バイト等、省カネ
ルギー、省資源に多大の寄与をし得る高性能材料の一つ
として重要である。
Silicon nitride sintered bodies have excellent high-temperature strength, thermal shock resistance, and oxidation resistance, so they can be used as high-temperature structural materials for gas turbines, diesel engines, etc., or as cutting tools, contributing greatly to energy and resource savings. It is important as one of the high-performance materials that can perform

従来、窒化珪素焼結体は、反応焼結法又は、高温焼結法
により製造されていた。
Conventionally, silicon nitride sintered bodies have been manufactured by a reaction sintering method or a high temperature sintering method.

反応焼結法としては、例えば、珪素又はシリカ粉末と炭
素粉末との混合物を、窒素気流中で、約1300〜17
00℃で加熱し、窒化させる方法(例えば、特開昭47
−7211号、同52−5700号、同53−1023
00号明細書)或いは、シランガスと窒素の水素化合物
を800〜1900℃の温度範囲で、気相反応させて得
る方法(例えば特開昭53−130300号明細書)等
が提案されている。
As a reaction sintering method, for example, a mixture of silicon or silica powder and carbon powder is heated to about 1300 to 17
A method of heating at 00°C and nitriding (for example, Japanese Patent Application Laid-open No. 47
-7211, 52-5700, 53-1023
Alternatively, a method has been proposed in which a hydrogen compound of silane gas and nitrogen is reacted in a gas phase in a temperature range of 800 to 1900° C. (for example, Japanese Patent Application Laid-open No. 130300/1982).

しがしながら、例えば、シリカ粉末を使用する場合には
、微粉シリカ粒子を作ることが容易ではなく、粒子内部
まで完全に窒化することが極めて困難であるために、焼
結体中に珪素が残存することが多く、従って、生じた窒
化珪素焼結体の強度はあまり高くならない等の欠点を有
するのみならず、いずれの方法によっても極めて長い加
熱時間を要する等の欠点をも有していた。
However, when using silica powder, for example, it is not easy to make fine silica particles, and it is extremely difficult to completely nitride the inside of the particles, so silicon may not be present in the sintered body. Therefore, the strength of the resulting silicon nitride sintered body is not very high, and both methods also have drawbacks such as requiring an extremely long heating time. .

一方、窒化珪素微粉末を合成し、それを焼結させる高温
焼結法においては、窒化珪素が共有結合性の強い物質で
あるために、焼結性が非常に悪く、高温でのホットプレ
スもSi3N4の解離のために困難で、適当な結合剤を
加える必要がある。
On the other hand, in the high-temperature sintering method in which fine silicon nitride powder is synthesized and sintered, silicon nitride is a substance with strong covalent bonds, so the sinterability is very poor, and hot pressing at high temperatures is difficult. Due to the dissociation of Si3N4 it is difficult and it is necessary to add a suitable binder.

又、複雑な形状の焼結体を得るには、常圧下で焼結する
方法が有利であり、このためにはAl2O2、Mg O
,M期率表第1[Ia族元素の酸化物等の焼結助剤を添
加して、焼成しなければならない。
In addition, in order to obtain a sintered body with a complicated shape, a method of sintering under normal pressure is advantageous, and for this purpose, Al2O2, MgO
, M Periodicity Table 1 [Sintering aids such as oxides of group Ia elements must be added and fired.

しかしながらこれらの添加剤は、低融点粒界相を形成す
るので、焼結体の高温強度は、著しく低下するという欠
点があった。
However, since these additives form a low melting point grain boundary phase, there is a drawback that the high temperature strength of the sintered body is significantly reduced.

これらの欠点を改善するための技術として、窒素プラズ
マ流に珪素化合物を吹き込み、窒化珪素の微粉末を製造
する方法(例えば特開昭55−116604号明細書)
が提案されているが、この技術によっても、尚、高温焼
結法の困難性については、何等改善されるものではない
As a technique to improve these drawbacks, there is a method of producing fine powder of silicon nitride by blowing a silicon compound into a nitrogen plasma flow (for example, Japanese Patent Application Laid-Open No. 116604/1982).
has been proposed, but even this technique does not improve the difficulty of high-temperature sintering.

本発明者等は、従来のかかる欠点を解決すべく鋭意研究
の結果、水素を含有し、窒素と珪素がSi3N (4−
x )で示される組成比を有する物質が存在すること、
及びこの物質から容易に良質の窒化珪素焼結体かえられ
ることを見いだし、本発明に到達したものである。
As a result of intensive research in order to solve this conventional drawback, the present inventors discovered that Si3N (4-
The existence of a substance having a composition ratio represented by
The inventors have also discovered that a high-quality silicon nitride sintered body can be easily converted from this substance, and have arrived at the present invention.

従って、本発明の第1の目的は、容易に良質の窒化珪素
焼結体を与えることの出来る窒化珪素の前駆物質を提供
することにある。
Therefore, a first object of the present invention is to provide a silicon nitride precursor that can easily produce a high-quality silicon nitride sintered body.

本発明の第2の目的は、該窒化珪素の前駆物質から容易
に窒化珪素の焼結体を製造する方法を提供することにあ
る。
A second object of the present invention is to provide a method for easily producing a sintered body of silicon nitride from the silicon nitride precursor.

即ち本発明は、水素化珪素又はハロゲン化珪素から選ば
れた珪素化合物、又はこれらの混合物と窒素の水素化合
物とを、プラズマ雰囲気下で反応させることにより生じ
た微粉末であって、該微粉末の各粒子が水素を含み、全
体として窒素と珪素の組成比がSi3N (4−X )
 、  (X>O)で表される非化学量論的な割合とな
っていることを特徴とする窒化珪素焼結体のための前駆
物質、及びその前駆物質を用いて窒化珪素焼結体を製造
する方法である。
That is, the present invention provides a fine powder produced by reacting a silicon compound selected from silicon hydride or silicon halide, or a mixture thereof, with a hydrogen compound of nitrogen in a plasma atmosphere, the fine powder Each particle contains hydrogen, and the overall composition ratio of nitrogen and silicon is Si3N (4-X)
, a precursor for a silicon nitride sintered body characterized by a non-stoichiometric ratio represented by (X>O), and a silicon nitride sintered body using the precursor. This is a method of manufacturing.

本発明で使用する水素化珪素はシラン、ジシラン等一般
式5inH2n+2で表される化合物から、任意に選ぶ
ことが出来る。
The silicon hydride used in the present invention can be arbitrarily selected from compounds represented by the general formula 5inH2n+2, such as silane and disilane.

本発明で使用するハロゲン化珪素は、広く上記水素化珪
素のハロゲン化物を含む意味であるが、特にSi H(
4−n ) Xn  (Xはハロゲンを表す)で表され
るハロゲン化シランが好ましい。
The silicon halide used in the present invention broadly includes halides of the silicon hydride described above, but in particular SiH (
4-n) A halogenated silane represented by Xn (X represents halogen) is preferred.

本発明においては、珪素の原料ガスとして、上記水素化
珪素又はハロゲン化珪素の中から任意に選ぶことが出来
るが、これらは単独で用いても2種以上を混合して用い
ても良い。
In the present invention, the raw material gas for silicon can be arbitrarily selected from the above silicon hydride or silicon halide, and these may be used alone or in combination of two or more.

本発明で使用する窒素の水素化合物としては、アンモニ
ア又はヒドラジンのいずれを用いても良い。又、窒素元
素と水素元素を混合したガスを用いても、実質的に窒素
の水素化合物を用いた場合と同様の結果を得ることが出
来る。
As the nitrogen hydrogen compound used in the present invention, either ammonia or hydrazine may be used. Furthermore, even if a gas containing a mixture of nitrogen and hydrogen is used, substantially the same results as in the case of using a hydrogen compound of nitrogen can be obtained.

更に、珪素の原料ガスが、例えばSi H4の如くそれ
自身が水素原子を含む場合には、その水素原子を含む原
料ガスと窒素の混合ガスをプラズマ下におき他の水素ガ
スを含む原料ガスを用いなくても良い。
Furthermore, when the raw material gas for silicon itself contains hydrogen atoms, for example, SiH4, a mixed gas of the raw material gas containing hydrogen atoms and nitrogen is placed under plasma and other raw material gases containing hydrogen gas are mixed. It doesn't have to be used.

本発明において、窒素の水素化合物と珪素を含む原料ガ
スの比(例えばSt H4/NH3(モル比〕)は10
〜1/20好ましくは1〜1/3であり、全反応圧力は
0.05〜100 torr好ましくは1〜5 tor
rである。
In the present invention, the ratio of the hydrogen compound of nitrogen and the raw material gas containing silicon (for example, St H4/NH3 (molar ratio)) is 10
-1/20 preferably 1-1/3, and the total reaction pressure is 0.05-100 torr, preferably 1-5 torr
It is r.

本発明におけるプラズマ状態は、高周波放電やアーク放
電等の各種放電方法により、或いはプラズマジェット法
により出現させることが出来る。
The plasma state in the present invention can be caused to appear by various discharge methods such as high frequency discharge and arc discharge, or by a plasma jet method.

好ましい放電電力は陰極面積が50c+(の場合には1
〜1000ワツト150cdさらに好ましくは10〜3
00ワット150−である。
The preferred discharge power is 1 when the cathode area is 50c+ (
~1000 watts 150 cd, more preferably 10-3
00 watts 150-.

本発明に従い、珪素化合物と窒素の水素化合物とをプラ
ズマ雰囲気下で反応させると、粒径約100〜5000
Aの超微粒子状の窒化珪素粉末を生ずる。この場合、原
料ガス組成、反応圧力及び投入プラズマ放電電力等の反
応条件を調整することにより、窒化珪素粉末中に水素を
含有せしめることが出来る上、窒素と珪素の組成比も、
非化学量論的(Si3N (4−x ) 、  x>O
)とすることが出来る。これは、反応条件により、生じ
た微粒子中の窒素が不足し5t−H及び5t−3i結合
が含まれることを意味する。
According to the present invention, when a silicon compound and a hydrogen compound of nitrogen are reacted in a plasma atmosphere, the particle size is about 100 to 5000.
A ultrafine silicon nitride powder is produced. In this case, by adjusting reaction conditions such as raw material gas composition, reaction pressure, and input plasma discharge power, hydrogen can be contained in the silicon nitride powder, and the composition ratio of nitrogen and silicon can also be adjusted.
Non-stoichiometric (Si3N (4-x), x>O
) can be done. This means that, depending on the reaction conditions, the resulting fine particles lack nitrogen and contain 5t-H and 5t-3i bonds.

このように、水素を含み且つ窒素が多少不足した窒化珪
素粉末は、これを加圧成形し、実質的に窒素の雰囲気下
で高温焼成すると、完全に窒化された窒化珪素焼結体を
容易に得ることが出来ることから、窒化珪素焼結体の前
駆物質ということが出来る。
In this way, silicon nitride powder that contains hydrogen and is somewhat deficient in nitrogen can easily be formed into a completely nitrided silicon nitride sintered body by press-molding it and firing it at high temperature in a substantially nitrogen atmosphere. Since it can be obtained, it can be said to be a precursor of silicon nitride sintered bodies.

これは、該前駆物質を加圧成形し窒素雰囲気下で高温焼
成すると、該前駆物質中の結合している又は結合してい
ない水素が放出され、或いは5i−St結合の切断によ
り反応活性の未結合手が形成されると同時に、形成され
た未結合手が雰囲気中の窒素と結合することにより窒化
が進み、同時に又、結晶中の原子の再配列、再配位が起
こり、粒子間の架橋も進行し、これによって完全な窒化
と焼結が行われると考えられる。
This is because when the precursor is pressure-molded and calcined at high temperature under a nitrogen atmosphere, bound or unbound hydrogen in the precursor is released, or unreacted hydrogen is released due to cleavage of the 5i-St bond. At the same time that bonds are formed, nitridation progresses as the formed dangling bonds combine with nitrogen in the atmosphere, and at the same time, rearrangement and rearrangement of atoms in the crystal occur, resulting in cross-linking between particles. It is thought that this progresses, resulting in complete nitriding and sintering.

これらのことは、該前駆物質を350〜900℃に熱し
た前後では、熱天秤(真空理工部、ディフェレンシャル
・サーマル・マイクロバランスPGD−5000)によ
る測定の結果、加熱後の減量が認められ、窒素雰囲気下
1200℃以上で加熱した後は増量が認められることか
らも確認された。
These results show that before and after heating the precursor to 350 to 900°C, a weight loss after heating was observed as a result of measurement using a thermobalance (Differential Thermal Microbalance PGD-5000, Vacuum Science and Technology Department). This was also confirmed because an increase in weight was observed after heating at 1200° C. or higher in a nitrogen atmosphere.

従って該前駆物質は、一般式Si3NχHyで表すこと
が可能であり、これは赤外分光分析計によっても確認さ
れた。
The precursor can therefore be represented by the general formula Si3NχHy, which was also confirmed by infrared spectroscopy.

これは文献未載の新規物質である。This is a new substance that has not been described in any literature.

該前駆物質から窒化珪素焼結体を製造するための焼成反
応に際しては、窒素の加圧雰囲気とすることが好ましく
、更に必要な場合には、反応促進剤としてハロゲンガス
、酸素、−酸化窒素又は二酸化窒素から選ばれた一種又
は二種以上の混合ガスを加えてもよい。
In the firing reaction for producing a silicon nitride sintered body from the precursor, it is preferable to use a pressurized nitrogen atmosphere, and if necessary, halogen gas, oxygen, -nitrogen oxide or One or more mixed gases selected from nitrogen dioxide may be added.

本発明により製造した粉末は、プラズマ雰囲気下での気
相反応で生成したものであるため、粒子の粒径は100
〜5000Aという超微粒子である上、形状はほぼ球形
であり、粒径分布や組成分布が均一であるというプラズ
マ雰囲気下の反応一般の特徴を有する他、反応圧力も低
くすることが出来るため、プラズマのエネルギー密度も
低く抑えることが出来、従って反応室内に吸着している
不純物の混入を避けることが出来るという特徴を有する
。これらの特徴はすべて、焼結が容易で優れた性状の窒
化珪素焼結体を得るために、窒化珪素前駆物質粉末に要
求される性質と合致し、好都合である。
Since the powder produced according to the present invention is produced by a gas phase reaction in a plasma atmosphere, the particle size of the particles is 100.
In addition to being ultrafine particles of ~5000A, they are almost spherical in shape and have uniform particle size distribution and composition distribution, which are characteristics of general reactions in a plasma atmosphere. It has the characteristic that the energy density of can be suppressed to a low level, and therefore it is possible to avoid contamination of adsorbed impurities in the reaction chamber. All of these characteristics are advantageous and match the properties required of the silicon nitride precursor powder in order to obtain a silicon nitride sintered body that is easy to sinter and has excellent properties.

更に、本発明によれば、当初から完全な窒化珪素焼結体
を製造することなく、窒化珪素焼結体のための前駆物質
の段階で反応を中止することが出来るので、反応時間も
短縮することが出来る等本発明の意義は極めて大である
Furthermore, according to the present invention, the reaction can be stopped at the stage of producing a precursor for the silicon nitride sintered body without producing a complete silicon nitride sintered body from the beginning, so the reaction time is also shortened. The significance of the present invention is extremely great as it is capable of doing the following.

次に、本発明を実施例により更に詳述するが、本発明は
これにより限定されるものではない。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例 第1図のような全装置系を油回転ポンプ11を使用して
約lll2torrの真空にしたのち、シランボンベ1
より流量計3を通してシランガスを、又、アンモニアボ
ンベ2より流量計4を通してアンモニアガスを真空反応
容器7に導入した。
Example After the entire equipment system as shown in FIG.
Silane gas was introduced into the vacuum reaction vessel 7 from the ammonia cylinder 2 through the flow meter 4, and ammonia gas was introduced from the ammonia cylinder 2 through the flow meter 4.

反応容器7中の真空度を真空計8で監視しながら、メイ
ンバルブ10を操作して所用の圧力に維持しつつ高圧電
源5 (例えば、直流又は交流、或いは高周波発振器等
)で、電極6の間に電圧を印加してグロー放電を発生さ
せた。
While monitoring the degree of vacuum in the reaction vessel 7 with a vacuum gauge 8 and maintaining the desired pressure by operating the main valve 10, the electrode 6 is controlled by a high-voltage power source 5 (for example, DC or AC, or a high-frequency oscillator, etc.). A voltage was applied between them to generate glow discharge.

これにより、シランガスとアンモニアガスが反応し窒化
珪素前駆物質がスクリーン9上に体積した。未反応ガス
はスクラバー12で除去された。
As a result, the silane gas and the ammonia gas reacted, and a silicon nitride precursor was deposited on the screen 9 . Unreacted gas was removed by a scrubber 12.

1 第1表は、種々の実験条件に対して、得られた窒化珪素
前駆物質の組成比等を示したものである。
1 Table 1 shows the composition ratios of the silicon nitride precursors obtained under various experimental conditions.

このようにして得られた窒化珪素前駆物質を加圧成形後
、1800℃2気圧の窒素雰囲気の条件下で一時間焼成
して、窒化珪素焼結体を得た。得られた窒化珪素焼結体
の高温強度等は極めて満足すべきものであった。
The silicon nitride precursor thus obtained was pressure-molded and then fired at 1800° C. in a nitrogen atmosphere at 2 atm for one hour to obtain a sintered silicon nitride body. The high temperature strength etc. of the obtained silicon nitride sintered body were extremely satisfactory.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は全装置系の概略線図である。図中符号1及び2
は夫々シランボンベ及びアンモニアボンベ、3及び4は
共に流量計を表し、符号5は高圧電源、6は電極、7は
真空反応容器、8は真空針、9はスクリーン、10はメ
インバルブ、11は油回転ポンプ、12はスクラバーを
表す。 特許出願人 東亜燃料工業株式会社 代理人   弁理士 滝1)清暉 月4萌9甫正書(方力 昭和58年 2月28日 特許庁長官若杉和夫殿 1、η9牛の転 昭和57年特許出願第159354号 2、発明の名称 3、補正をする者 事件との関係   特許出願人 チョダ ヒト バシ 住所 東京都千代田区−ツ橋 1丁目1番1号トウアネ
ンリョウコウギョウ 名称東亜燃料 工業 央瞼社 4、41こ工1匡2人、 6、補正により増加する発明の数  なし7、補正の対
象 願書及び明細書 8、補正の内容  願書及び明細書の浄書(内容に変更
なし)37−
FIG. 1 is a schematic diagram of the entire equipment system. Codes 1 and 2 in the figure
3 and 4 represent a silane cylinder and an ammonia cylinder, respectively, 5 is a high-voltage power supply, 6 is an electrode, 7 is a vacuum reaction vessel, 8 is a vacuum needle, 9 is a screen, 10 is a main valve, and 11 is an oil A rotary pump, 12 represents a scrubber. Patent Applicant Toa Fuel Industry Co., Ltd. Agent Patent Attorney Taki 1) Qing Hui Yue 4 Moe 9 Fu Seishi (Holi) February 28, 1981 Kazuo Wakasugi, Commissioner of the Japan Patent Office 1, η9 Cow Conversion Patent in 1982 Application No. 159354 2, Title of the invention 3, Relationship with the case of the person making the amendment Patent applicant Hitocho Choda Address 1-1-1, Tsuhashi, Chiyoda-ku, Tokyo Name Toa Fuel Industry Oudosha 4, 2 people per 41 workers 6. Number of inventions increased by amendment None 7. Application and specification subject to amendment 8. Contents of amendment Engraving of application and specification (no change in content) 37-

Claims (1)

【特許請求の範囲】 1)水素化珪素又はハロゲン化珪素から選ばれた珪素化
合物又はこれらの混合物と窒素の水素化 ″合物とをプ
ラズマ雰囲気下で反応させることにより生じた微粒粉末
であって、該微粒粉末の各粒子が水素を含み、全体とし
て窒素と珪素の組成比がSi3N (4−x) 、  
(x>O)で表される非化学量論的な割合となっている
ことを特徴とする窒化珪素焼結体のための前駆物質。 2)その組成比が一般式Si3N (4−x)Hzで表
されることを特徴とする特許請求の範囲第1項に記載の
窒化珪素焼結体のための前駆物質。 3)その粒径が100〜5000Aであることを特徴と
する特許請求の範囲第1項又は第2項に記載の窒化珪素
焼結体のための前駆物質。 4)その粒径が100〜500Aであることを特徴とす
る特許請求の範囲第1項又は第2項に記載の窒化珪素焼
結体のための前駆物質。 5)水素化珪素又はハロゲン化珪素から選ばれた珪素化
合物、又はこれらの混合物と窒素の水素化合物とをプラ
ズマ雰囲気下で反応させることにより生じた微粒粉末で
あって、該微粒粉末の各粒子が水素を含み、全体として
窒素と珪素の組成比がSi3N (4−x)、  (x
>O)で表される非化学量論的な割合となっている窒化
珪素焼結体のための前駆物質を加圧成形し、窒素雰囲気
下で焼成することを特徴とする窒化珪素焼結体の製造方
法。 6)焼成時に窒素を加圧状態とすることを特徴とする特
許請求の範囲第5項に記載の窒化珪素焼結体の製造方法
。 7)焼成時に反応促進剤として小量のハロゲン、酸素5
−酸化窒素、二酸化窒素又はアンモニアのいずれか又は
これらの2種以上の混合ガスを加えることを特徴とする
特許請求の範囲第6項に記載の窒化珪素焼結体の製造方
法。
[Scope of Claims] 1) A fine powder produced by reacting a silicon compound selected from silicon hydride or silicon halide, or a mixture thereof, with a nitrogen hydrogenation compound in a plasma atmosphere, , each particle of the fine powder contains hydrogen, and the overall composition ratio of nitrogen and silicon is Si3N (4-x),
A precursor for a silicon nitride sintered body, characterized in that it has a non-stoichiometric ratio expressed by (x>O). 2) A precursor for a silicon nitride sintered body according to claim 1, characterized in that its composition ratio is represented by the general formula Si3N (4-x)Hz. 3) A precursor for a silicon nitride sintered body according to claim 1 or 2, wherein the particle size is 100 to 5000A. 4) A precursor for a silicon nitride sintered body according to claim 1 or 2, wherein the particle size is 100 to 500A. 5) A fine powder produced by reacting a silicon compound selected from silicon hydride or silicon halide, or a mixture thereof and a hydrogen compound of nitrogen in a plasma atmosphere, wherein each particle of the fine powder is Contains hydrogen, and the overall composition ratio of nitrogen and silicon is Si3N (4-x), (x
> O) A silicon nitride sintered body characterized in that a precursor material for a silicon nitride sintered body having a non-stoichiometric ratio is pressure-molded and fired in a nitrogen atmosphere. manufacturing method. 6) The method for producing a silicon nitride sintered body according to claim 5, which comprises pressurizing nitrogen during firing. 7) Small amounts of halogen and oxygen as reaction accelerators during firing
- The method for producing a silicon nitride sintered body according to claim 6, characterized in that any one of nitrogen oxide, nitrogen dioxide, or ammonia, or a mixed gas of two or more thereof is added.
JP57159354A 1982-09-13 1982-09-13 Precursor for sintered silicon nitride body and manufacture of sintered silicon nitride body using it Pending JPS5950007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57159354A JPS5950007A (en) 1982-09-13 1982-09-13 Precursor for sintered silicon nitride body and manufacture of sintered silicon nitride body using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57159354A JPS5950007A (en) 1982-09-13 1982-09-13 Precursor for sintered silicon nitride body and manufacture of sintered silicon nitride body using it

Publications (1)

Publication Number Publication Date
JPS5950007A true JPS5950007A (en) 1984-03-22

Family

ID=15692009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57159354A Pending JPS5950007A (en) 1982-09-13 1982-09-13 Precursor for sintered silicon nitride body and manufacture of sintered silicon nitride body using it

Country Status (1)

Country Link
JP (1) JPS5950007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470446A (en) * 1993-04-01 1995-11-28 Tioxide Specialties Limited Process for the production of silicon nitride

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3352657A (en) * 1963-04-02 1967-11-14 Pilkington Brothers Ltd Method of attenuating a ribbon of glass on a molten metal bath
JPS52128900A (en) * 1976-02-17 1977-10-28 Montedison Spa Plasmaarc method for producing particulate ceramic metal and similar products
JPS55116604A (en) * 1979-03-05 1980-09-08 Asahi Chem Ind Co Ltd Manufacture of finely powdered silicon nitride
JPS57183369A (en) * 1981-05-08 1982-11-11 Sumitomo Electric Industries Manufacture of non-oxide ceramics
JPS57209810A (en) * 1981-06-17 1982-12-23 Asahi Chem Ind Co Ltd Preparation of silicon nitride

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3352657A (en) * 1963-04-02 1967-11-14 Pilkington Brothers Ltd Method of attenuating a ribbon of glass on a molten metal bath
JPS52128900A (en) * 1976-02-17 1977-10-28 Montedison Spa Plasmaarc method for producing particulate ceramic metal and similar products
JPS55116604A (en) * 1979-03-05 1980-09-08 Asahi Chem Ind Co Ltd Manufacture of finely powdered silicon nitride
JPS57183369A (en) * 1981-05-08 1982-11-11 Sumitomo Electric Industries Manufacture of non-oxide ceramics
JPS57209810A (en) * 1981-06-17 1982-12-23 Asahi Chem Ind Co Ltd Preparation of silicon nitride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470446A (en) * 1993-04-01 1995-11-28 Tioxide Specialties Limited Process for the production of silicon nitride

Similar Documents

Publication Publication Date Title
WO2011027756A1 (en) Process for production of silicon-carbide-coated carbon base material, silicon-carbide-coated carbon base material, sintered (silicon carbide)-carbon complex, ceramic-coated sintered (silicon carbide)-carbon complex, and process for production of sintered (silicon carbide)-carbon complex
JPS6112844B2 (en)
JP3284310B2 (en) Production of α-phase silicon nitride, conversion to β-phase
JPS6138149B2 (en)
JP3290686B2 (en) Method for producing aluminum nitride powder
US4946630A (en) Making hot pressed silicon nitride by use of low density reaction bonded body
US4572844A (en) Method for preparing coated powder
JPS5950007A (en) Precursor for sintered silicon nitride body and manufacture of sintered silicon nitride body using it
JPH09255428A (en) Control of resistivity of silicon carbide sintered product
JP2531865B2 (en) Method and apparatus for manufacturing ceramics sintered body
JPS6212663A (en) Method of sintering b4c base fine body
WO1990012768A1 (en) Method of producing aluminum nitride sinter
CN116813353B (en) Silicon nitride-based composite powder and preparation method and sintering method thereof
CN117229067B (en) Method for preparing silicon nitride ceramics by low-pressure nitridation-embedding
KR102238819B1 (en) Method for producing silicon carbide fiber and the silicon carbide fiber manufactured by using the same
TW200523209A (en) Method for synthesizing aluminum nitride
JP3051931B1 (en) High-strength silicon carbide sintered body and method for producing the same
JPS58135112A (en) Production of aluminum oxynitride
KR101399694B1 (en) Process for preparing aluminum nitride powder
JPH0114168B2 (en)
JPS59174506A (en) Manufacture of new powdered silicon nitride
JP2610156B2 (en) Method for producing silicon nitride powder
JP2500012B2 (en) Method for manufacturing ceramics sintered body having composite coating layer
JPH01103913A (en) Method for synthesizing silicon carbide powder
CN1134404A (en) Preparation method of alpha-Si3N4 whisker