JPS5949851B2 - Electric discharge machining method - Google Patents
Electric discharge machining methodInfo
- Publication number
- JPS5949851B2 JPS5949851B2 JP7765479A JP7765479A JPS5949851B2 JP S5949851 B2 JPS5949851 B2 JP S5949851B2 JP 7765479 A JP7765479 A JP 7765479A JP 7765479 A JP7765479 A JP 7765479A JP S5949851 B2 JPS5949851 B2 JP S5949851B2
- Authority
- JP
- Japan
- Prior art keywords
- machining
- electrode
- jig
- processing
- discharge machining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/26—Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
- B29C33/3842—Manufacturing moulds, e.g. shaping the mould surface by machining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2030/00—Pneumatic or solid tyres or parts thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Description
【発明の詳細な説明】
本発明は、放電加工方法、特に加工電極を斜め方向に給
送して行ない得るようにした放電加工において被加工体
と加工電極との位置合せを正確に行なうようにする放電
加工方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for accurately aligning a workpiece and a machining electrode in an electric discharge machining method, particularly in electric discharge machining in which the machining electrode is fed in an oblique direction. The present invention relates to an electrical discharge machining method.
一般に知られているように放電加工装置は、放電加工法
の優れた特徴を活かして広い加工分野に使用されている
。As is generally known, electrical discharge machining equipment is used in a wide range of machining fields, taking advantage of the excellent features of electrical discharge machining.
特に、被加工体の機械的性質即ち硬度、抗張力、加工硬
化性等と関係なく能率的に加工することが出来、しかも
複雑な形状の加工においても加工すべき形状に対応した
形状の電極によつて高精度の加工が出来ることから、金
型加工分野において広く用いられている。一般に、金型
の加工面のすべてが一方向から俯瞼出来る抜型、引抜ダ
イス、成形型等の金型を加工する放電加工においては、
加工電極の給送方向は予め定めた1つの方向のみで良い
。従つて上記の如き金型を放電加工するに当つては、例
えば加工電極の給送方向は垂直方向に固定しておき、加
工テーブルを移動させることによつて加工電極と被加工
体との位置合せを容易に行なうことが出来る。しかも例
えば光学的な位置合せ手段等を用うれば精度の高い位置
合せを行なうことが出来る。しかしながら、例えば第1
図ないし第3図(第1図はタイヤ成形用金型の1実施例
の側断面図、第2図は第1図図示実施例における下部金
型2の部分拡大断面図、第3図は第2図図示欠印A−N
における展開平面図を示し、第3図図示矢印B線は第2
図図示断面に対応する線である)図示のタイヤ成形用金
型の如く、1プロツクからなる上部金型1と下部金型2
から構成され、かつ該上部金型1および下部金型2の夫
々の円筒状内周曲面上に突起する例えば複数個の突起部
3ないし7を有する金型を放電加工によつて製作するた
めには、本願発明者等が「放電加工によるタイヤ成形用
金型」(特願昭54−26919号)および「放電加工
装置」(昭和54年6月20日特許出願)によつて提案
している如く、加工電極の給送方向は一方向のみでは足
りない。例えば下部金型2を例に挙げて説明すると、該
下部金型2の中心軸から放射状に複数の方向(該複数の
放射方向の夫々方向)において更に第2図図示矢印aお
よびb方向に角位置方向を変えて加工する必要がある。
即ち、上記下部金型2の円筒内周面の全域を複数個に区
分して放電加工を行ない、しかも該区分して放電加工を
行なつて仕上げられた上記下部金型2は、第3図図示の
如き連続した模様の形状にならなければならない。その
ためには、上記夫々の方向の加工における被加工体(下
部金型2)と加工電極との位置合せ精度を高くする必要
があるが、上記の如く加工電極の給送方向を変えて行な
うタイヤ成形用金型のような場合においては、加工電極
の位置合わせは非常に困難である。特に、加工電極の給
送方向が第2図図示矢印b方向のように斜め方向である
場合は一層困難である。また、加工電極は消耗するため
、該消耗の程度に応じて新しい電極と度度交換する必要
がある。更に、一般に放電加工においては加工効率を良
くするために荒加工、中加工、仕上加工と段階的に加工
電極を交換して放電加工を行なう手段が取られることが
多い。従つて、上記タイヤ成形用金型の放電加工におい
ては、加工電極の交換頻度が高く、該電極交換の度に加
工電極の位置合せが問題となる。特に、加工電極の給送
方向が第2図図示矢印b方向の如く斜め方向の放電加工
においては、位置合わせを行なつた上で上記斜め方向の
傾きを与えると誤差が導入されることから、当該傾きを
与えた上で位置合わせを行なうことが望まれ、上記電極
の位置合せが容易にしかも精度よく行なうことが出来る
手段が強く要望されていた。本発明は、上記の如き要望
を満足せしめることを目的とし、加工電極を斜め方向に
給送して行ない得る放電加工において、被加工体と加工
電極との位置合せが容易にかつ正確に行なうことの出来
る電極位置決め手段をそなえた放電加工方法を提供する
ことを目的としている。In particular, it is possible to process efficiently regardless of the mechanical properties of the workpiece, such as hardness, tensile strength, work hardening properties, etc., and even when processing complex shapes, it is possible to use electrodes with a shape that corresponds to the shape to be machined. It is widely used in the mold processing field because it allows high-precision processing. In general, in electrical discharge machining, which involves machining molds such as cutting dies, drawing dies, and forming dies, all of the machining surfaces of the mold can be viewed from one direction.
The processing electrode may be fed in only one predetermined direction. Therefore, when electrical discharge machining is performed on the mold as described above, the feeding direction of the machining electrode is fixed in the vertical direction, and the position of the machining electrode and the workpiece is adjusted by moving the machining table. Matching can be done easily. In addition, highly accurate alignment can be achieved by using, for example, optical alignment means. However, for example, the first
Figures to Figures 3 (Figure 1 is a side sectional view of one embodiment of a tire molding die, Figure 2 is a partially enlarged sectional view of the lower mold 2 in the embodiment shown in Figure 1, and Figure 3 is a side sectional view of an embodiment of the tire molding die. 2 Illustration missing marks A-N
The arrow B line shown in FIG.
(This line corresponds to the cross section shown in the figure.) Like the tire molding die shown in the figure, an upper mold 1 and a lower mold 2 each consisting of one block.
In order to manufacture, by electric discharge machining, a mold having, for example, a plurality of protrusions 3 to 7 which protrude on the cylindrical inner curved surface of each of the upper mold 1 and the lower mold 2. has been proposed by the inventors of the present application in the "Mold for Tire Molding Using Electrical Discharge Machining" (Japanese Patent Application No. 54-26919) and the "Electrical Discharge Machining Apparatus" (patent application filed on June 20, 1978). As shown, it is not enough to feed the processing electrode in only one direction. For example, taking the lower mold 2 as an example, in a plurality of radial directions (each of the plurality of radial directions) from the central axis of the lower mold 2, and further at angles in the directions of arrows a and b shown in FIG. It is necessary to process by changing the position direction.
That is, the entire area of the cylindrical inner circumferential surface of the lower mold 2 is divided into a plurality of parts and electrical discharge machining is performed, and the lower mold 2 that is finished by performing electrical discharge machining in the divided parts is shown in FIG. It must form a continuous pattern as shown. To achieve this, it is necessary to improve the alignment accuracy between the workpiece (lower mold 2) and the processing electrode during processing in each of the above directions. In cases such as molding molds, alignment of processing electrodes is extremely difficult. This is particularly difficult when the feeding direction of the processing electrode is oblique as in the direction of arrow b in FIG. Furthermore, since the processing electrode is worn out, it is necessary to replace it with a new electrode frequently depending on the degree of wear. Furthermore, in general, in electrical discharge machining, in order to improve machining efficiency, a method is often taken in which the machining electrode is replaced in stages during rough machining, semi-machining, and finishing machining. Therefore, in the electric discharge machining of the tire molding die, the machining electrodes are frequently replaced, and alignment of the machining electrodes becomes a problem each time the electrodes are replaced. In particular, in electrical discharge machining where the feeding direction of the machining electrode is diagonal as in the direction of arrow b shown in FIG. It is desired to perform positioning after giving the above-mentioned inclination, and there is a strong demand for means that can easily and accurately perform positioning of the electrodes. The purpose of the present invention is to satisfy the above-mentioned needs, and to easily and accurately align a workpiece and a machining electrode in electrical discharge machining that can be performed by feeding a machining electrode in an oblique direction. It is an object of the present invention to provide an electric discharge machining method equipped with an electrode positioning means that can perform the following steps.
以下、図面を参照しつつ説明する。第4図は本発明の放
電加工方法を実施するために用いられる放電加工装置の
1実施例の正面図および側面図、第5図は本発明の放電
加工方法の1実施例における実施過程説明図を示してい
る。This will be explained below with reference to the drawings. FIG. 4 is a front view and side view of an embodiment of an electrical discharge machining apparatus used to carry out the electrical discharge machining method of the present invention, and FIG. 5 is an explanatory diagram of the implementation process in one embodiment of the electrical discharge machining method of the present invention. It shows.
先づ、本発明の放電加工方法を実施するために必要な機
構をそなえた放電加工装置の1実施例を第4図について
説明する。第4図における符号、8は被加工体、9は加
エヘツド、10はスピンドル、11は電極取付部、12
は加工電極、13はヘツド支持部、14はヘツド回動用
駆動部、15は昇降プロツク、16は昇降ネジ、17は
コラム、18は加工槽、19は加工テーブル、20はテ
ーブル回動用,駆動部、21は第1のテーブル、22は
第2のテーブル、23はベツドを表わしている。第4図
において、加エヘツド9は図示しない1駆動装置によつ
てスピンドル10を図示矢印H方向へ駆動する。該スピ
ンドル10には電極取付部11を介して加工電極12が
取付けられている。そして上記スピンドル10の図示矢
印H方向への,駆動は、予め定められた加工条件即ち極
問電圧、放電電流等の条件に対応させた加工電極12の
被加工体との間隙を加工の進行にともなつて常に一定に
維持、追従するように制御される(以後、自動制御送り
と呼ぶ)。上記加エヘツド9はヘツド支持部13に固定
され、該ヘツド支持部13はヘツド回動用5駆動部14
によつて図示矢印α方向へ回動可能に支持されている。
更に、該ヘツド回動用,駆動部14は昇降ネジ16によ
つて図示矢印Z方向へ昇降可能にコラム17に支持され
ている昇降プロツク15に固定されて昇降プロツク15
と共に昇降する。従つて、加エヘツド9の駆動方向であ
る図示矢印H方向即ち加工電極12の送り方向の加工テ
ーブル19に対する角度は、上記加工ヘツド9が固定さ
れているヘツド支持部13が回動可能にされていること
によつて所望の値に設定することが出来る。また、加工
電極12の高さ方向の位置合せは、図示矢印Z方向へ昇
降プロツク15を昇降させることによつて所望の高さ方
向位置に設定することが出来る。なお、上記ヘツド支持
部13の図示矢印α方向への回動および上記昇降プロツ
ク15の図示矢印Z方向への昇降は、図示しないが手動
、電動または必要に応じて自動制御駆動の何れの手段を
選んでも良い。一方、被加工体8が載置される加工テー
ブル19は、テーブル回動用駆動部20によつて図示矢
印β方向への回動が可能であり、更に上記テーブル回動
用駆動部20が固定的に載置されている第1のテーブル
21の図示矢印X方向への移動によつて該X方向への移
動が可能であり、更にまた、ベツド23上に摺動可能に
載置された第2のテーブル22の図示矢印Y方向への移
動によつて該Y方向への移動も可能となつている。First, an embodiment of an electrical discharge machining apparatus equipped with a mechanism necessary for carrying out the electrical discharge machining method of the present invention will be described with reference to FIG. 4, 8 is the workpiece, 9 is the processing head, 10 is the spindle, 11 is the electrode attachment part, 12
13 is a processing electrode, 13 is a head support part, 14 is a drive part for rotating the head, 15 is a lifting block, 16 is a lifting screw, 17 is a column, 18 is a processing tank, 19 is a processing table, 20 is a drive part for rotating the table. , 21 represents a first table, 22 represents a second table, and 23 represents a bed. In FIG. 4, the processing head 9 drives a spindle 10 in the direction of arrow H in the figure by a drive device (not shown). A processing electrode 12 is attached to the spindle 10 via an electrode attachment part 11. The spindle 10 is driven in the direction of the arrow H in the figure to control the gap between the machining electrode 12 and the workpiece, which corresponds to predetermined machining conditions, such as extreme voltage, discharge current, etc. Along with this, the feed is controlled to always maintain and follow the feed constant (hereinafter referred to as automatic control feed). The processing head 9 is fixed to a head support part 13, and the head support part 13 is connected to a drive part 14 for rotating the head.
is rotatably supported in the direction of the arrow α shown in the figure.
Furthermore, the drive unit 14 for rotating the head is fixed to a lifting block 15 supported by a column 17 so as to be movable up and down in the direction of arrow Z in the figure by a lifting screw 16.
Go up and down with. Therefore, the angle with respect to the processing table 19 in the direction of the arrow H in the figure, which is the driving direction of the processing head 9, that is, the feeding direction of the processing electrode 12, is such that the head support portion 13 to which the processing head 9 is fixed is made rotatable. It is possible to set it to a desired value by Further, the heightwise positioning of the processing electrode 12 can be set to a desired heightwise position by raising and lowering the lifting block 15 in the direction of the arrow Z shown in the figure. Note that the rotation of the head support portion 13 in the direction of the arrow α in the figure and the raising and lowering of the lifting block 15 in the direction of the arrow Z in the figure can be carried out manually, electrically, or automatically controlled as necessary, although not shown. You can choose. On the other hand, the processing table 19 on which the workpiece 8 is placed can be rotated in the direction of the arrow β shown in the figure by a table rotation drive unit 20, and the table rotation drive unit 20 is fixed. By moving the first table 21 placed thereon in the direction of the arrow X shown in the figure, movement in the X direction is possible, and furthermore, the second table 21 placed slidably on the bed 23 can be moved in the X direction. By moving the table 22 in the direction of the arrow Y shown in the figure, movement in the Y direction is also possible.
以上、本発明の放電加工方法を実施するために用いられ
る放電加工装置について述べたが、次に本発明の放電加
工方法における電極位置合せ方法を第1図ないし第3図
図示のタイヤ成形用金型の下部金型2の放電加工に関連
させて説明する。The electrical discharge machining apparatus used to carry out the electrical discharge machining method of the present invention has been described above. This will be explained in relation to electric discharge machining of the lower mold 2 of the mold.
第5図は、本発明の1実施例における電極位置合せ過程
を説明するための説明図であつて第4図図示放電加工装
置の本発明の説明に必要な部分だけを拡大して示してい
る。第5図における符号、8ないし12および19は第
4図に対応している。また、24は加工テーブル19の
回動中心線、25は被加工体8の水平上面、26は基準
治具、2Tおよび28はインジケータ、?は電極基準点
、刀は加工完了基準点を夫々表わしている。第4図およ
び第5図を参照して本発明の放電加工方法における電極
位置合せの過程を順を追つて説明する。FIG. 5 is an explanatory diagram for explaining the electrode positioning process in one embodiment of the present invention, and only the portions of the electric discharge machining apparatus shown in FIG. 4 necessary for explaining the present invention are shown in an enlarged manner. . Reference numerals 8 to 12 and 19 in FIG. 5 correspond to those in FIG. Further, 24 is the rotation center line of the processing table 19, 25 is the horizontal upper surface of the workpiece 8, 26 is a reference jig, 2T and 28 are indicators, ? indicates the electrode reference point, and the sword indicates the processing completion reference point. The process of electrode alignment in the electrical discharge machining method of the present invention will be explained step by step with reference to FIGS. 4 and 5.
(1)先づ被加工体8を加工テーブル19に載置するに
当つて被加工体8の中心と加工テーブル19の回動中心
とを一致させる。(1) First, when placing the workpiece 8 on the processing table 19, the center of the workpiece 8 and the center of rotation of the processing table 19 are made to coincide.
(2)次に、予め定められた加工電極12の放電開始位
置を表わすための関連諸元を確認する。(2) Next, the related specifications for expressing the predetermined discharge start position of the machining electrode 12 are confirmed.
即ち、I)加工電極12の給送方向角度(図示矢印角θ
)。That is, I) feeding direction angle of processing electrode 12 (illustrated arrow angle θ
).
11)加工電極12の給送ストローク(図示矢印l)。11) Feeding stroke of the processing electrode 12 (illustrated arrow l).
Iii)加工電極12が上記図示矢印lだけ給送された
際、予め定められた上記加工電極12の加工面上の基準
点?が到達する加工完了基準点刀の位置座標値。Iiii) When the machining electrode 12 is fed by the arrow l shown above, a predetermined reference point on the machining surface of the machining electrode 12? The position coordinate value of the machining completion reference point that is reached.
即ち、該加工完了基準点刀の被加工体8の中心線24に
対する水平距離dlおよび被加工体8の水平上面25に
対する垂直距離HO3)次に、第4図図示されているヘ
ツド回動用,駆動部14によつてヘツド支持部13を回
動させて加エヘツド9の傾斜角度即ち加工テーブル19
葡に対する図示矢印I{方向の角度がθとなるように設
定する。That is, the horizontal distance dl of the processing completion reference point knife with respect to the center line 24 of the workpiece 8 and the vertical distance HO3 with respect to the horizontal upper surface 25 of the workpiece 8) Next, the head rotation and drive shown in FIG. The inclination angle of the machining head 9, that is, the machining table 19, is adjusted by rotating the head support part 13 by the part 14.
The angle of the illustrated arrow I{direction with respect to the grapes is set to be θ.
4)次に、電極位置合せのための基準治具26を電極取
付部11にセツトする。4) Next, set the reference jig 26 for electrode positioning on the electrode mounting part 11.
一般に上記基準治具26は、該基準治具26の位置基準
となる予め定められた治具基準点をインジケータ等の位
置測定手段によつて正確に測定し得るような形状を有す
るものであれば良い。本発明の場合第5図図示実施例に
おける如く、基準治具26は、後述する=治具基準点を
インジケータ2Tによつて位置測定する際に便利なよう
に図示の如く支持アームに支持された球体を用いるよう
にしている。In general, the reference jig 26 has a shape that allows a predetermined jig reference point, which serves as a position reference for the reference jig 26, to be accurately measured by a position measuring means such as an indicator. good. In the case of the present invention, as in the embodiment shown in FIG. 5, the reference jig 26 is supported by a support arm as shown in the figure for convenient position measurement of the jig reference point using the indicator 2T, which will be described later. I'm trying to use a sphere.
そして該球体の中心点を治具基準点としている。上記基
準治具26をセツトするに当つては、該基準治具26の
中心点が上記電極基準点?の電極取付部11に対する垂
直線−ヒに存在するようセツトする(加工電極12は取
外された状態でセツトすることは言うまでもない)。な
お、上記基準治具26のセツトにおいて、説明を分り易
くするため電極基準点?と基準治具の中心点とを垂直線
上に存在させるようにすると説明したが、上記電極基準
点?と基準治具26との相対位置が分つていれば良い。
5)次に、第4図に図示されている第1のテーブル21
を図示矢印X方向、第2のテーブル22を図示矢印Y方
向へ移動させることによつて、上記基準治具26の中心
点が加工テーブル19の回動中心線24(被加工体8の
中心線)に一致するよう加工テーブル19を移動させる
。The center point of the sphere is set as the jig reference point. When setting the reference jig 26, make sure that the center point of the reference jig 26 is the electrode reference point. (Needless to say, the machining electrode 12 is set in the removed state.) In addition, in setting the reference jig 26, the electrode reference point is used to make the explanation easier to understand. I explained that the center point of the reference jig and the center point of the reference jig should be on a vertical line, but what about the electrode reference point above? It is only necessary to know the relative position between the reference jig 26 and the reference jig 26.
5) Next, the first table 21 illustrated in FIG.
By moving the second table 22 in the direction of the arrow X shown in the figure and the second table 22 in the direction of the arrow Y shown in the figure, the center point of the reference jig 26 is aligned with the rotation center line 24 of the processing table 19 (the center line of the workpiece 8 ) The processing table 19 is moved so as to match the position.
上記基準治具26の中心点とテーブル回動中心線24と
が一致すること確認するためには、基準治具26が球体
であるため加工テーブル19を図示矢印β方向に回動さ
せて、例えば加工テーブル19に取り付けられたインジ
ケータ27が基準治具26の球体周面を正しく摺動する
か否かを測定することによつて正確に位置を設定出来る
。なお、この時の加エヘツド9は、被加工体8から任意
の高さにセツトしておいて差支えない。(6)次に、第
4図に図示されている第1のテーブルを右方向へ移動さ
せて基準治具26を被加工体8に対して相対的に第5図
図示矢印(1)の位置から()の位置に移動させる。In order to confirm that the center point of the reference jig 26 and the table rotation center line 24 match, since the reference jig 26 is spherical, the processing table 19 is rotated in the direction of the arrow β shown in the figure, for example. The position can be set accurately by measuring whether the indicator 27 attached to the processing table 19 correctly slides on the spherical circumferential surface of the reference jig 26. Note that the processing head 9 at this time may be set at an arbitrary height from the workpiece 8. (6) Next, move the first table shown in FIG. 4 to the right to move the reference jig 26 to the position indicated by the arrow (1) in FIG. 5 relative to the workpiece 8. Move from to () position.
該移動距離D2は次式によつて表わされる数値である。
即ち、D2=d1−{l+(H1−H2)}COSθ但
し、H,は電極基準点4の電極取付部11に対する垂直
距離、H2は基準治具26の電極取付部11に対する垂
直距離とする。(7)次に、第4図図示の昇降プロツク
15を垂直に下降させることによつて加エヘツド9を下
降させ、そして上記基準治具26を第5図図示矢印()
の位置から図示矢印(1)の位置に移動させる。The moving distance D2 is a numerical value expressed by the following equation.
That is, D2=d1-{l+(H1-H2)}COSθwhere, H, is the vertical distance of the electrode reference point 4 to the electrode mounting portion 11, and H2 is the vertical distance of the reference jig 26 to the electrode mounting portion 11. (7) Next, the processing head 9 is lowered by vertically lowering the lifting block 15 shown in FIG.
from the position shown in the figure to the position shown by the arrow (1).
該図示矢印(l)の位置とは、基準治具26の中心点が
被加工体8の水平上面25の延長面上に存在する位置を
指している。上記基準治具26が図示矢印()の位置に
あるかどうかは、上記水平上面25からインジケータ2
8によつて測定すれば正確に位置を確認することが出来
る。(8)次に、上記(7)と同様にして基準治具26
の位置を図示矢印(1)から(5)へ移動させる。The position of the illustrated arrow (l) refers to the position where the center point of the reference jig 26 is on the extended surface of the horizontal upper surface 25 of the workpiece 8. Whether or not the reference jig 26 is in the position indicated by the arrow () in the figure can be determined by looking at the indicator 2 from the horizontal upper surface 25.
8, the position can be confirmed accurately. (8) Next, in the same manner as in (7) above, the reference jig 26
Move the position from arrow (1) to arrow (5) in the figure.
該移動距離D2は次式によつて示される。即ち、D3=
h−{l+(H1−H2)}Sinθ以上説明した上記
(1)ないし(8)を経て得られた位置が、予め定めら
れた加工電極12の放電加工開始位置となる。The moving distance D2 is expressed by the following equation. That is, D3=
h−{l+(H1−H2)}Sinθ The position obtained through the above-described steps (1) to (8) becomes the predetermined electric discharge machining start position of the machining electrode 12.
即ち、上記(8)の過程を終了した状態(以後この位置
を加工開始原点と呼ぶ)において、基準治具26を取り
外して加工電極12をセツトし放電加工を開始すれば良
い。なお、電極交換のために例えば加エヘツド9を上昇
させることがあつても、上昇距離を記憶しておけば電極
交換後再び上記加工開始原点に戻すことは容易である。
このようにして、上記(1)ないし(8)の過程を経て
一旦上記加工開始原点が得られたのちには、被加工体8
と加エヘツド9との相対的な移動はすべて上記加工開始
原点を基準にして行なうようにすれば、上記被加工体8
と加エヘツド9との相対位置関係をト記加工開始原点に
復帰させることは容易である。以上説明した如く、本発
明によれば、加工電極を斜め方向に給送して行なう放電
加工において、被加工体と加工電極との位置合せを容易
に行なうことが出来、しかも該位置合せ精度の高い電極
位置決め手段をそなえた放電加工方法を提供することが
出来る。That is, in a state where the process (8) above is completed (hereinafter this position will be referred to as the machining start origin), the reference jig 26 is removed, the machining electrode 12 is set, and electrical discharge machining can be started. Incidentally, even if the machining head 9 is raised to replace the electrode, for example, if the distance of elevation is memorized, it is easy to return it to the machining starting point after replacing the electrode.
In this way, once the machining start origin is obtained through the steps (1) to (8) above, the workpiece 8
If all relative movements between the workpiece 8 and the machining head 9 are performed based on the machining start origin, the workpiece 8
It is easy to return the relative positional relationship between the machining head 9 and the machining head 9 to the machining start origin. As explained above, according to the present invention, it is possible to easily align the workpiece and the machining electrode in electric discharge machining in which the machining electrode is fed in an oblique direction, and the alignment accuracy can be improved. It is possible to provide an electric discharge machining method equipped with a high electrode positioning means.
そして、本発明は電極交換頻度の高い上記放電加工にお
いて、その効果を一層顕著に発揮することが出来る。な
お、上記基準治具上の治具基準点の絶対座標位置(加工
装置に対する)を位置決めすることによつて以後の上記
加工開始原点までの位置合せは例えばNCによつて自動
的に行ない得ることは言うまでもない。Further, the present invention can exhibit its effects even more significantly in the above-mentioned electric discharge machining in which electrodes are replaced frequently. By locating the absolute coordinate position (with respect to the processing device) of the jig reference point on the reference jig, subsequent alignment to the processing start origin can be performed automatically, for example, by NC. Needless to say.
第1図はタイヤ成形用金型の1実施例における側断面図
、第2図は第1図図示実施例における下部金型の部分拡
大断面図、第3図は第2図図示矢印A−A′における展
開平面図、第4図は本発明に用いられる放電加工装置の
1実施例における正面図および側面図、第5図は本発明
の放電加工方法の1実施例を1悦明するための実施過程
説明図を示している。
図中の符号、8は被加工体、9は加エヘツド、10はス
ピンドル、11は電極取付部、12は加工電極、13は
ヘツド支持部、14はヘツド回動用駆動部、15は昇降
プロツク、16は昇降ネジ、17はコラム、18は加工
槽、19は加工テーブル、20はテーブル回動用駆動部
、21は第1のテーブル、22は第2のテーブル、23
はベツド、24はテーブル回動中心線、25は被加工体
8の水平上面、26は基準治具、27および28はイン
ジケータ、3は電極基準点、蓼は加工完了基準点を夫々
表わしている。Fig. 1 is a side sectional view of one embodiment of a tire molding mold, Fig. 2 is a partially enlarged sectional view of the lower mold in the embodiment shown in Fig. 1, and Fig. 3 is an arrow A-A shown in Fig. 2. 4 is a front view and a side view of one embodiment of the electrical discharge machining apparatus used in the present invention, and FIG. 5 is a developed plan view of one embodiment of the electrical discharge machining method of the present invention. An explanatory diagram of the implementation process is shown. In the figure, 8 is a workpiece, 9 is a processing head, 10 is a spindle, 11 is an electrode mounting part, 12 is a processing electrode, 13 is a head support part, 14 is a drive part for rotating the head, 15 is a lifting block, 16 is a lifting screw, 17 is a column, 18 is a processing tank, 19 is a processing table, 20 is a table rotation drive unit, 21 is a first table, 22 is a second table, 23
is the bed, 24 is the table rotation center line, 25 is the horizontal upper surface of the workpiece 8, 26 is the reference jig, 27 and 28 are indicators, 3 is the electrode reference point, and the base is the machining completion reference point. .
Claims (1)
載置される加工テーブルと昇降可能であつて加工電極を
斜め方向に給送し得る加工ヘッドとを少なくともそなえ
、上記加工電極によつて上記被加工体を放電加工する放
電加工装置における放電加工方法において、上記加工電
極を上記被加工体に対して予め定められた距離だけ相対
的に給送して放電加工を行なう上記加工電極の放電加工
開始位置に該加工電極をセットするに当り、(イ)上記
加工ヘッドの電極取付部から上記加工電極を取外したる
状態で該電極取付部に対して、当該基準治具上の基準点
である治具基準点を球状体の中心とした球状体を有する
基準治具を、上記放電開始位置の位置出し用基準治具と
してセットする過程、(ロ)上記加工ヘッドの給送方向
を上記斜め方向角度にセットした状態の下で、上記電極
取付部に保持されている上記基準治具における治具基準
点と上記加工テーブル上の予め定められたテーブル基準
点に垂直な基準垂直線とを、予め定めた関係に一致せし
める過程、(ハ)上記治具基準点と上記基準治具の代わ
りに上記加工電極を取り付けたと想定したときの当該加
工電極上の予め定められた電極基準点との距離を考慮し
て、上記加工ヘッドを加工開始原点にセットする過程、
(ニ)上記加工開始原点を基準として、所望の位置に上
記加工ヘッドを移動させまたは移動させることなく上記
基準治具を取り外して加工電極を取り付ける過程、を経
て上記斜め方向に向つて放電加工を開始するようにした
ことを特徴とする放電加工方法。1. At least a processing table that is movable in the front-rear and left-right directions and on which a workpiece is placed, and a processing head that is movable up and down and capable of feeding a processing electrode in an oblique direction, In the electric discharge machining method in the electric discharge machining apparatus for electric discharge machining the workpiece, the electric discharge of the machining electrode is performed by feeding the machining electrode relative to the workpiece by a predetermined distance. When setting the machining electrode at the machining start position, (a) with the machining electrode removed from the electrode attachment part of the machining head, set the reference point on the reference jig relative to the electrode attachment part; A process of setting a reference jig having a spherical body with the jig reference point at the center of the spherical body as a reference jig for locating the discharge start position, (b) setting the feeding direction of the processing head in the diagonal direction; While the reference jig is set at an angle, the jig reference point on the reference jig held in the electrode mounting part and the reference vertical line perpendicular to the predetermined table reference point on the processing table are aligned in advance. A process of matching the predetermined relationship, (c) Determining the distance between the jig reference point and the predetermined electrode reference point on the machining electrode when it is assumed that the machining electrode is attached instead of the reference jig. Taking into consideration, the process of setting the processing head to the processing start origin,
(d) Using the machining start origin as a reference, move the machining head to a desired position or remove the reference jig without moving and attach the machining electrode, and then perform electrical discharge machining in the diagonal direction. A method for electrical discharge machining, characterized in that:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7765479A JPS5949851B2 (en) | 1979-06-20 | 1979-06-20 | Electric discharge machining method |
US06/126,199 US4409457A (en) | 1979-03-08 | 1980-03-03 | System for manufacturing tire molding metal molds with electrical discharge machining |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7765479A JPS5949851B2 (en) | 1979-06-20 | 1979-06-20 | Electric discharge machining method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS563140A JPS563140A (en) | 1981-01-13 |
JPS5949851B2 true JPS5949851B2 (en) | 1984-12-05 |
Family
ID=13639867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7765479A Expired JPS5949851B2 (en) | 1979-03-08 | 1979-06-20 | Electric discharge machining method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5949851B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62135077U (en) * | 1986-02-19 | 1987-08-25 | ||
JPH0541322Y2 (en) * | 1986-07-04 | 1993-10-19 |
-
1979
- 1979-06-20 JP JP7765479A patent/JPS5949851B2/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62135077U (en) * | 1986-02-19 | 1987-08-25 | ||
JPH0541322Y2 (en) * | 1986-07-04 | 1993-10-19 |
Also Published As
Publication number | Publication date |
---|---|
JPS563140A (en) | 1981-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109975313B (en) | Automatic wheel detection device | |
DE60030441T2 (en) | METHOD FOR BLOCKING A GLASS LENS BLADE ON A HOLD BLOCK, AND FOR PRODUCING A VIRTUAL IMAGE OF THE LENS BLADE IN A COMPUTER ENVIRONMENT | |
JP4051872B2 (en) | Measuring method of processing part and processing method | |
US4101405A (en) | Shaping apparatus | |
CN109623578B (en) | CCD full-automatic high-precision needle grinding machine and needle grinding control method | |
CN114952872B (en) | Robot end effector calibration method and device | |
EP0839622B1 (en) | Method for manufacturing master of die for shaping golf ball | |
US4409457A (en) | System for manufacturing tire molding metal molds with electrical discharge machining | |
US5038012A (en) | Electrical discharge process and machining apparatus | |
CN107042323A (en) | The gas hole processing device of tire-mold | |
GB2055661A (en) | Apparatus for making a hollow die set | |
JPS5949851B2 (en) | Electric discharge machining method | |
US5144996A (en) | Tire grooving apparatus and method | |
CN210051703U (en) | Automatic wheel detection device | |
JPS601139B2 (en) | Automatic tool dimension correction method for copying machine tools | |
CN217861231U (en) | Marking device for precision mechanical parts | |
CN216267748U (en) | High-efficient precision finishing former in automotive interior | |
JPS59219156A (en) | Setting method of grinding position in tool grinder and device thereof | |
JPH10193239A (en) | Working device | |
JP2006297511A (en) | Spherical grinding device for lens | |
JPS5949850B2 (en) | Electric discharge machining method using electric discharge machining equipment | |
CN209477466U (en) | Spark machine tool special for tyre mould process | |
JP2795996B2 (en) | Jig for mold arrangement and mold arrangement method for making tire mold using the same | |
US5193600A (en) | Tire grooving apparatus and method | |
CN213005274U (en) | Quick marking device of radome point portion |