JPS5949529B2 - Platelet measuring device - Google Patents

Platelet measuring device

Info

Publication number
JPS5949529B2
JPS5949529B2 JP7588376A JP7588376A JPS5949529B2 JP S5949529 B2 JPS5949529 B2 JP S5949529B2 JP 7588376 A JP7588376 A JP 7588376A JP 7588376 A JP7588376 A JP 7588376A JP S5949529 B2 JPS5949529 B2 JP S5949529B2
Authority
JP
Japan
Prior art keywords
platelet
platelets
division ratio
frequency division
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7588376A
Other languages
Japanese (ja)
Other versions
JPS531598A (en
Inventor
健治 有安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP7588376A priority Critical patent/JPS5949529B2/en
Publication of JPS531598A publication Critical patent/JPS531598A/en
Publication of JPS5949529B2 publication Critical patent/JPS5949529B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】 ブル氏の HCT補正係数 HCT補正係数 、28.66 .20.78 .29.65 .21.77 .30.63 .22.75 .31.61 .2 3 、7 4 .3 2 、60 .2 4 、7 3 この発明は、血液中の血小板数を計測する装置に関する
[Detailed description of the invention] Mr. Bull's HCT correction coefficient HCT correction coefficient, 28.66. 20.78. 29.65. 21.77. 30.63. 22.75. 31.61. 2 3, 7 4. 3 2, 60. 2 4 , 7 3 This invention relates to a device for measuring the number of platelets in blood.

血小板数は、一般に血液1−中の個数を単位として表わ
されるが、赤血球や白血球が均一に分散している中で血
小板だけを計数するのが困難なために、従来は赤血球等
を沈降させて得た上澄液である多血小板漿中の血小板を
計数し、これから血液1−中の血小板個数を推定してい
た。
The platelet count is generally expressed as the number of platelets in blood, but since it is difficult to count only platelets when red blood cells and white blood cells are uniformly dispersed, conventionally, red blood cells, etc. are precipitated. The platelets in the platelet-rich serum, which is the supernatant obtained, were counted, and the number of platelets in blood 1 was estimated from this.

その手法の1例は、凝固防止剤を加えた血液を第1図a
に示す細管容器1に容れ、これを450傾けて1時間静
置して上澄液9と沈降部10とに分離し、この上澄液9
である多血小板漿を取出して食塩水により所定の倍率に
希釈し、これを電気的な粒子計数装置にかけて希釈前の
試料1−中に含まれる血小板数を求め、その数にヘマト
クリツト値HCTに関連するブル氏の補正係数を乗じて
血小板数の計測値とする。
One example of this technique is to prepare blood with an anticoagulant as shown in Figure 1a.
The tube container 1 shown in FIG.
Take out platelet-rich plasma, dilute it to a predetermined ratio with saline, apply it to an electric particle counter, calculate the number of platelets contained in Sample 1 before dilution, and calculate the number of platelets that are related to the hematocrit value HCT. The measured value of platelet count is obtained by multiplying by Mr. Bull's correction coefficient.

このようにして得た計測値は、実際の血液中に均一に分
散している血小板数とよく一致するのであり、上述の補
正係数は次の通りである。ヤートB HCT補正係数 HCV補正導] 、44.40 .36.52 .45.39 .37.50 .46.38 .38.48 .4 7 、3 7 .3 9 、4 7 .4 8 、3 6 .40 、4 5 .4 9 、3 5 .41 、4 4 .5 0 、34 .4 2 、4 2 .4 3 、4 1 ヘマトクリツト値HCTは、赤血球の総体積を示す。
The measured value obtained in this manner closely matches the number of platelets uniformly dispersed in the actual blood, and the above-mentioned correction coefficient is as follows. Yat B HCT correction coefficient HCV correction guide], 44.40. 36.52. 45.39. 37.50. 46.38. 38.48. 4 7, 3 7. 3 9, 4 7. 4 8, 3 6. 40, 4 5. 4 9 , 3 5 . 41, 4 4. 5 0, 34. 4 2 , 4 2 . 4 3 , 4 1 Hematocrit value HCT indicates the total volume of red blood cells.

血液を細管容器1に容れて強く遠心分離を行うと、第1
図bに示すように下から順に赤血球沈澱部2、白血球沈
澱部3、血小板沈澱部4及び血清5に分離するが、この
ときの赤血球沈澱部の体積がヘマトクリツト値HCTで
ある。上述の従来の計測方法においては、多くの場合ヘ
マトクリツト値は血液検査の一環として既に計測されて
いることが多いので、これを利用することには左程問題
は無いが、ヘマトクリツト値からブル氏の補正係数を求
め、更にこれを粒子計数装置の計数値に乗することは、
多数の検体を扱う大病院の検査室や研究所などでは煩雑
になつて実施困難であり、補正係数を乗するまでは血小
板数が判らないために異常検体を即座に発見できない欠
点がある。
When blood is placed in a capillary container 1 and subjected to strong centrifugation, the first
As shown in Figure b, the blood is separated from the bottom into an erythrocyte precipitate part 2, a leukocyte precipitate part 3, a platelet precipitate part 4, and a serum 5, and the volume of the erythrocyte precipitate part at this time is the hematocrit value HCT. In the conventional measurement method described above, in many cases the hematocrit value has already been measured as part of the blood test, so there is no problem in using it, but Mr. Bull's Determining the correction coefficient and multiplying it by the count value of the particle counter is as follows:
It is complicated and difficult to implement in large hospital laboratories and laboratories that handle a large number of specimens, and it has the disadvantage that abnormal specimens cannot be detected immediately because the platelet count cannot be determined until it is multiplied by a correction coefficient.

その欠点を改善して血小板数を直読するために、ヘマト
クリツト値よりブル氏の補正係数を求めるマトリクス回
路並びに求めた補正係数を血小板計数値に乗する乗算回
路を、粒子計数装置に組込むことも考えられるが、装置
の構成が複雑になり価格が高くなる。
In order to improve this shortcoming and directly read the platelet count, we are considering incorporating into the particle counter a matrix circuit that calculates Bull's correction coefficient from the hematocrit value and a multiplication circuit that multiplies the platelet count by the calculated correction coefficient. However, the configuration of the device becomes complicated and the price increases.

この発明は、簡単な構成により上記ブル氏の係数に基く
補正を行つた正しい血小板数を直読的に表示することを
目的とする。
The object of the present invention is to directly display the correct platelet count corrected based on Bull's coefficient using a simple configuration.

この発明による血小板計測装置は、血液から分離した多
血小板漿を所定倍率に希釈してなる所定量の試料を流通
させて該試料中に含まれている粒子が通過する毎に粒子
検出パルスを得る検出装置を有する。
The platelet measuring device according to the present invention distributes a predetermined amount of a sample prepared by diluting platelet-rich plasma separated from blood to a predetermined ratio, and obtains a particle detection pulse every time particles contained in the sample pass. It has a detection device.

この粒子検出パルスには、白血球、赤血球及び血小板に
対応するものが含まれており、それぞれ波高を異にして
いるので、波高弁別手段によつて血小板に対応する波高
のものだけを血小板検出パルスとして抽出する。この血
小板検出パルスは、可変分周器によつて分周された後、
計数表示される。ここで、上記可変分周器における分周
比は、別途に入力される同じ血液試料のヘマトクリツト
値に応じて、分周比制御回路において決定される。更に
詳しく説明すれば、一般に血液1d中には血小板が20
〜30万個含まれ、更に多血小板漿中にはその2〜3倍
の血小板が含まれており、通常は検出装置によつて得て
いる血小板検出パルスの個数は、それより遥かに少ない
が、それと比例関係にある。
This particle detection pulse includes pulses corresponding to white blood cells, red blood cells, and platelets, and each has a different wave height, so the pulse height discrimination means selects only the pulse with the wave height corresponding to platelets as a platelet detection pulse. Extract. After this platelet detection pulse is divided by a variable frequency divider,
The count is displayed. Here, the frequency division ratio of the variable frequency divider is determined by the frequency division ratio control circuit according to the hematocrit value of the same blood sample that is input separately. To explain in more detail, generally there are 20 platelets in 1d of blood.
Platelet-rich plasma contains ~300,000 platelets, and platelet-rich plasma contains two to three times as many platelets, and the number of platelet detection pulses normally obtained by a detection device is far smaller than that. , is in a proportional relationship with it.

しかも、計数されるパルス数は分周によつて一層少ない
が、やはり比例関係にある。従つて、検出器に供給する
試料の希釈倍率及び量を適切に選ぶと共に、上記分周の
際の分周比をヘマトクリツト値に対応するブル氏の係数
に応じて変化させれば、上記計数値は、血液1md中に
含まれている血小板個数の100分の1、1000分の
1或いは10000分の1と言つた10の整数乗分の1
の値にすることができるから、上記計数値によつて血液
Ii中の血小板個数の直読が可能になる。以下、この発
明を図示の実施例に基いて説明する。
Furthermore, although the number of pulses counted is even smaller due to frequency division, there is still a proportional relationship. Therefore, if the dilution ratio and amount of the sample to be supplied to the detector are appropriately selected, and the frequency division ratio at the time of frequency division is changed according to Bull's coefficient corresponding to the hematocrit value, the above counted value can be reduced. is an integer power of 10, such as 1/100, 1/1000, or 1/10000 of the number of platelets contained in 1 md of blood.
Therefore, the number of platelets in blood Ii can be directly read from the above count value. The present invention will be explained below based on illustrated embodiments.

第2図において、11は粒子検出装置で、第1図に示し
た多血小板漿4の希釈液を細孔を通過させ、細孔部分に
おける希釈液の抵抗或いは誘電率の変化や、光の透過率
の変化などによつて通過粒子に対応して第3図に示すよ
うなパルス列を発生する。
In FIG. 2, numeral 11 is a particle detection device that allows a diluted solution of the platelet-rich plasma 4 shown in FIG. A pulse train as shown in FIG. 3 is generated in response to passing particles by changing the rate.

第3図において、6は雑音パルス、7は血小板検出パル
ス、8は赤血球パルスを示す。
In FIG. 3, 6 indicates a noise pulse, 7 indicates a platelet detection pulse, and 8 indicates a red blood cell pulse.

正常人の血液1J!j中には、赤血球が数100万個、
白血球が数1000個、血小板が20〜30万個含まれ
ているが、このことから判るように第1図における白血
球沈澱部3及び多血小板漿4の厚さは極めて薄い。従つ
て、遠心分離した多血小板漿4から得た試料中にも、第
3図に示されているように若干の赤血球が含まれ、かつ
微量ではあるが白血球も含まれている。12及び13は
デイスクリミネータで、デイスクリミネータ12は血小
板検出パルス7は通過ささないが赤血球検出パルス8及
びそれよりも大きな白血球検出パルスは通過ざせるよう
に、通過レベルがE1に設定され、デイスクリミネータ
13は雑音パルス6は通過させないが血小板検出パルス
7と赤血球検出パルス8と白血球検出パルスとは通過さ
せるように、通過レベルがE,に設定されている。
1J of normal human blood! There are several million red blood cells in J.
Several thousand leukocytes and 200,000 to 300,000 platelets are included, but as can be seen from this, the thickness of the leukocyte precipitated region 3 and the platelet-rich plasma 4 in FIG. 1 is extremely thin. Therefore, the sample obtained from the centrifuged platelet-rich plasma 4 also contains some red blood cells, as shown in FIG. 3, and also contains a small amount of white blood cells. 12 and 13 are discriminators, and the pass level is set to E1 so that the discriminator 12 does not pass the platelet detection pulse 7 but allows the red blood cell detection pulse 8 and the larger white blood cell detection pulse to pass. The pass level of the discriminator 13 is set to E so that the noise pulse 6 is not passed, but the platelet detection pulse 7, the red blood cell detection pulse 8, and the white blood cell detection pulse are allowed to pass.

双方の通過信号を排他的オア回路14で処理され、その
出力は可変分周回路15で分周された上で計数器16で
計数されかつ表示される。17は可変分周回路15の分
周比を決定する制御回路である。
Both passing signals are processed by an exclusive OR circuit 14, and the output thereof is frequency-divided by a variable frequency divider circuit 15, counted by a counter 16, and displayed. 17 is a control circuit that determines the frequency division ratio of the variable frequency divider circuit 15;

これは、別途に計測して得たヘマトクリツト値HCTの
大きさを示す信号を受入れ、例えばマトリツクス回路を
利用して前述したブル氏の補正係数を得、この補正係数
に対応するように回路15の分周比を制御する。ここで
、計数器16は計数表示した値を1000倍して読取る
ものとし、多血小板漿4は5000倍に希釈した試料2
50m71について粒子検出器11による計測が行われ
るものとする。
This accepts a signal indicating the magnitude of the hematocrit value HCT obtained through separate measurement, obtains the aforementioned Bull's correction coefficient using, for example, a matrix circuit, and adjusts the circuit 15 to correspond to this correction coefficient. Control the division ratio. Here, the counter 16 is to read the counted value by multiplying it by 1000, and the platelet-rich serum 4 is the sample 2 diluted 5000 times.
It is assumed that measurement by the particle detector 11 is performed for 50 m71.

この場合、多血小板漿4の1m!L中に含まれる多血小
板の個数を計数器16によつて読取るためには、可変分
周回路15の分周比が1/50でなければならない。従
つて回路15の分周比は、この1/50を基準として制
御される。仮に、同検体血液のヘマトクリツト値が44
%であつたとすると、この数値を示す信号が制御回路1
7に入力され、制御回路17内ではこのヘマトクリツト
値に対応する補正係数0.4が選出され、上述した基準
分周比1/50にこの補正係数が乗ぜられる。
In this case, 1 m of platelet-rich plasma 4! In order for the counter 16 to read the number of platelets contained in L, the frequency division ratio of the variable frequency divider circuit 15 must be 1/50. Therefore, the frequency division ratio of the circuit 15 is controlled based on this 1/50. Suppose that the hematocrit value of the blood sample is 44.
%, the signal indicating this value is the control circuit 1
7, a correction coefficient of 0.4 corresponding to this hematocrit value is selected in the control circuit 17, and the above-mentioned reference frequency division ratio of 1/50 is multiplied by this correction coefficient.

かくて、制御回路17は、可変分周回路15の分周比を
1/125に制御する。そして、上記検体の多血小板漿
4の中に50万個/Miiの血小板が存在していたとす
ると、粒子検出器11で検出される5000倍希釈液2
50md中に存在する血小板は25000個であるから
、25000個のパルスが可変分周回路15に入力し、
1/125に分周されて200個となつて計数器16で
計数され表示される。
Thus, the control circuit 17 controls the frequency division ratio of the variable frequency divider circuit 15 to 1/125. If 500,000/Mii platelets are present in the platelet-rich plasma 4 of the sample, the 5000-fold diluted solution 2 detected by the particle detector 11
Since there are 25,000 platelets in 50 md, 25,000 pulses are input to the variable frequency dividing circuit 15,
The frequency is divided into 1/125, resulting in 200 pieces, which are counted by the counter 16 and displayed.

前述のように計数器16の表示値は1000倍して読取
るから、読取値は20万個/MiLとなる。上述の例に
おける多血小板漿4中の血小板の量である50万個/U
iと、ブル氏のチヤートBにおけるヘマトクリツト値が
0.44のときの補正係数0.4とから算出される血液
中の血小板量は、20万個/1n71になるから、上述
の計数器16における読取値はこれと一致する。
As mentioned above, the value displayed on the counter 16 is multiplied by 1000 and read, so the read value is 200,000 pieces/MiL. The amount of platelets in platelet-rich plasma 4 in the above example, 500,000/U
Since the amount of platelets in the blood calculated from i and the correction coefficient 0.4 when the hematocrit value in Mr. Bull's chart B is 0.44 is 200,000/1n71, the number of platelets in the counter 16 described above is The readings match this.

以上の説明によつて明らかなように、この発明によれば
、直読的に血小板の計測を行うことができる。
As is clear from the above description, according to the present invention, platelets can be measured directly.

そして、計数値の補正には、乗算回路を使用せず、従来
から血球の計測装置等でも使用されている計数器に前置
した分周器の分周比を変更するだけであるから、多段分
周器の相互結線を変更するスイツチ回路を設ければその
制御により所望の分周比を得ることができ、簡単な構成
で目的を達成することができる。この他、試料の希釈倍
率や、粒子検出の際に計測される試料の量を変えた場合
には、分周比を修正するだけで同様に正しい血小板数が
直読できるよう手直しすることが容易である。
In order to correct the counted value, no multiplication circuit is used, and only the frequency division ratio of the frequency divider installed in front of the counter, which is conventionally used in blood cell measuring devices, etc., is changed. By providing a switch circuit for changing the interconnection of the frequency dividers, a desired frequency division ratio can be obtained by controlling the switch circuit, and the purpose can be achieved with a simple configuration. In addition, if you change the sample dilution factor or the amount of sample measured during particle detection, you can easily make adjustments so that you can directly read the correct platelet count by simply modifying the frequency division ratio. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は分離された血液成分の説明図、第2図はこの発
明の実施例のプロツク図、第3図は血液粒子の検出信号
波形図である。 11・・・・・・粒子検出器、12及び13・・・・・
・デイスクリミネータ、14・・・・・・排他的オア回
路、15・・・・・・可変分周器、16・・・・・・計
数器、17・・・・・・分周比制御回路。
FIG. 1 is an explanatory diagram of separated blood components, FIG. 2 is a block diagram of an embodiment of the present invention, and FIG. 3 is a waveform diagram of blood particle detection signals. 11...Particle detector, 12 and 13...
- Discriminator, 14... Exclusive OR circuit, 15... Variable frequency divider, 16... Counter, 17... Frequency division ratio control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 血液から分離した多血小板漿を所定倍率に希釈して
なる所定量の試料を流通させて該試料中に含まれている
粒子が通過する毎に粒子検出パルスを得る検出装置と、
該粒子検出パルスの列から血小板に対応する波高のもの
だけを血小板検出パルスとして抽出する波高弁別手段と
、該血小板検出パルスの列を分周する可変分周器と、該
可変分周器における分周比を決定する分周比制御回路と
、上記可変分周器において分周されたパルス列を計数表
示する装置とよりなり、上記可変分周器が出力するパル
スの個数が上記多血小板漿の単位体積中の血小板個数と
上記血液のヘマトクリツト値に基く補正係数との相乗積
の上位桁部分と等しくなるように、上記分周比制御回路
がヘマトクリツト値に応じて異なる分周比を決定するよ
う構成されている血小板計測装置。
1. A detection device that distributes a predetermined amount of a sample prepared by diluting platelet-rich plasma separated from blood to a predetermined ratio and obtains a particle detection pulse each time a particle contained in the sample passes;
a pulse height discriminator for extracting only pulses with wave heights corresponding to platelets from the train of particle detection pulses as platelet detection pulses; a variable frequency divider for dividing the frequency of the train of platelet detection pulses; It consists of a frequency division ratio control circuit that determines a frequency ratio, and a device that counts and displays the pulse train frequency-divided by the variable frequency divider, and the number of pulses output by the variable frequency divider is determined by the unit of the platelet-rich plasma. The frequency division ratio control circuit is configured to determine a different frequency division ratio depending on the hematocrit value so that the frequency division ratio is equal to the upper digit part of the multiplicative product of the number of platelets in the volume and the correction coefficient based on the hematocrit value of the blood. Platelet measuring device.
JP7588376A 1976-06-25 1976-06-25 Platelet measuring device Expired JPS5949529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7588376A JPS5949529B2 (en) 1976-06-25 1976-06-25 Platelet measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7588376A JPS5949529B2 (en) 1976-06-25 1976-06-25 Platelet measuring device

Publications (2)

Publication Number Publication Date
JPS531598A JPS531598A (en) 1978-01-09
JPS5949529B2 true JPS5949529B2 (en) 1984-12-03

Family

ID=13589118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7588376A Expired JPS5949529B2 (en) 1976-06-25 1976-06-25 Platelet measuring device

Country Status (1)

Country Link
JP (1) JPS5949529B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107396A (en) * 1978-02-09 1979-08-23 Toa Medical Electronics Blood checking device
US4202625A (en) * 1978-08-18 1980-05-13 Ortho Diagnostics, Inc. Method and apparatus for discriminating red blood cells from platelets
US4577964A (en) * 1978-09-06 1986-03-25 Ortho Diagnostics, Inc. Apparatus and method for detecting platelets in whole blood
JPS5825144A (en) * 1981-08-07 1983-02-15 東亜医用電子株式会社 Method and apparatus for analyzing blood
CN105728069B (en) * 2016-01-30 2021-01-19 深圳市安测健康信息技术有限公司 Multi-channel micro-fluidic chip for rapidly self-checking blood

Also Published As

Publication number Publication date
JPS531598A (en) 1978-01-09

Similar Documents

Publication Publication Date Title
US4110604A (en) Particle density measuring system
Moon et al. Accuracy of CoaguChek XS for point-of-care antithrombotic monitoring in children with heart disease
US5981285A (en) Method and apparatus for determining anticoagulant therapy factors
Brittin et al. Evaluation of the Coulter counter model S
JPH07502118A (en) Quantification methods and devices for related blood parameters
Mitra et al. Prospective comparison of point‐of‐care international normalised ratio measurement versus plasma international normalised ratio for acute traumatic coagulopathy
van den Besselaar Accuracy, precision, and quality control for point-of-care testing of oral anticoagulation
JPS5949529B2 (en) Platelet measuring device
Tendulkar et al. Stability of selected hematological parameters in stored blood samples
US4294320A (en) Method and apparatus for weighing material being collected
US3439267A (en) Automatic hematocrit measuring apparatus
Reardon et al. The routine measurement of platelet volume: a comparison of aperture‐impedance and flow cytometric systems
CA1091350A (en) Particle-density measuring system
JPS60213850A (en) Particle analyzer
England et al. Measurement of the mean cell volume using electronic particle counters
Dalton JR et al. A side-by-side evaluation of four platelet-counting instruments
US3982183A (en) Particle sizing apparatus
CN109406461A (en) The scaling method of platelet aggregation rate measurement result determination method and platelet aggregation instrument
Johannessen et al. Standardisation of platelet counting accuracy in blood banks by reference to an automated immunoplatelet procedure: comparative evaluation of Cell-Dyn CD4000 impedance and optical platelet counts
Gordge et al. An assessment of whole blood impedance aggregometry using blood from normal subjects and haemodialysis patients
JPS6133142B2 (en)
US20040219680A1 (en) Method and apparatus for determining anticoagulant therapy factors
Day et al. An evaluation of a whole-blood platelet counter
RU2790780C1 (en) Method for determining blood hematocrit during cytoplasmapheresis
JPS5822939A (en) Analyzing apparatus of blood