JPS5949503A - Multimode optical fiber - Google Patents

Multimode optical fiber

Info

Publication number
JPS5949503A
JPS5949503A JP57160554A JP16055482A JPS5949503A JP S5949503 A JPS5949503 A JP S5949503A JP 57160554 A JP57160554 A JP 57160554A JP 16055482 A JP16055482 A JP 16055482A JP S5949503 A JPS5949503 A JP S5949503A
Authority
JP
Japan
Prior art keywords
loss
group
core
deposited
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57160554A
Other languages
Japanese (ja)
Inventor
Taiji Murakami
村上 泰司
Hiroshi Ishihara
石原 浩志
Yukiyasu Negishi
根岸 幸康
Shinya Kojima
小島 伸哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57160554A priority Critical patent/JPS5949503A/en
Publication of JPS5949503A publication Critical patent/JPS5949503A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Waveguides (AREA)

Abstract

PURPOSE:To decrease the loss right after drawing and the loss after cabling and owing to deterioration with the lapse of time by making a deposited clad layer thick to maintain the concn. of the OH group at the boundary between a core and a clad at a specific value or below. CONSTITUTION:A quartz multimode optical fiber is constructed of a core glass part 1, a deposited clad layer 2 and a molten quartz tube 3. The OH group from the tube 3 diffuses when the tube 3 is exposed to a high temp. of >=1,200 deg.C such as in the stage manufacturing a small diameter fiber by drawing from a preform or during the glass deposition when the core part and the layer 2 are deposited internally by MCVD on the inside of said tube. The reason for such diffusion lies in that the coefft. of diffusion of the OH group increases with an increase in the temp. The OH group which is the main factor for the loss on a higher mode side is reduced in order to decrease the increase in the loss occurring in cabling and deterioration with age. The thickness of the layer 2 is made <=7mum in order to maintain the concn. distribution of the OH group at the boundary with the clad layer 2 at <=0.1ppm to prevent the diffusion of the OH group particularly to the core part 1.

Description

【発明の詳細な説明】 本発明はケーブル化、布設および布設後の経時特性にお
ける損失増加量を低減する多モード光ファイバの構造に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure of a multimode optical fiber that reduces the amount of loss increase in cabling, installation, and characteristics over time after installation.

石英系多モード光ファイバは、第1図に示すように、コ
アガラス部l、堆積クラッド/*2および溶融石英管8
で構造される。
As shown in FIG. 1, the silica-based multimode optical fiber consists of a core glass part l, a deposited cladding /*2, and a fused silica tube 8.
It is structured as follows.

このような構造の多モードファイバは、主に次の三種類
の製法により作製される。
Multimode fibers having such a structure are mainly manufactured using the following three manufacturing methods.

一つの製法は、MGVD法(Moclified Ch
emicalVapor Deposition me
thod )またはIVPO法(In5ide vap
or phase 0xidation methoa
 )と呼ばれる製法であり、現在世界的に最も広く用い
られている。この製法では、ガラスの原料となる四塩化
硅素(SiO4,) %四塩化ゲルマニウム(Ge0t
、)、三塩化酸化リン(POCl2)および三臭化ホウ
素(BBr8) ’eどのガスを、酸水素バーナにより
加熱した出発石英ガラス管内に酸素とともに送り込む。
One manufacturing method is the MGVD method (Mocified Ch
chemical vapor deposition me
thod) or IVPO method (In5ide vap
or phase oxidation method
), which is currently the most widely used method worldwide. In this manufacturing method, silicon tetrachloride (SiO4,), which is the raw material for glass, and germanium tetrachloride (Ge0t
, ), phosphorous trichloride oxide (POCl2) and boron tribromide (BBr8)'e are pumped together with oxygen into a starting quartz glass tube heated by an oxyhydrogen burner.

そして、酸化反応により生ずるガラス微粒子を管内壁に
付着堆積させてカラス層(厚さ数μm)を形成する。プ
リフォームの屈折率は、原料組成、流量を時間的に変化
させることにより制御でき、バーナを石英管の軸方向に
沿って移動させる操作を数十回から百回近く繰り返して
、任意の屈折率分布のガラス層を形成する。初めにクラ
ッド層、引き続いてコア層を作製した後、バーナの温度
を上げて中空部をつぶしくコラゲスと呼ばれている六党
ファイバ用母材とする。母材はカーボン抵抗炉などで2
000〜2200℃に加熱溶融され、100〜150μ
mの太さの糸に引かれ、光ファイバとなる。
Glass particles produced by the oxidation reaction are deposited on the inner wall of the tube to form a glass layer (several μm thick). The refractive index of the preform can be controlled by changing the raw material composition and flow rate over time, and by repeating the operation of moving the burner along the axial direction of the quartz tube several dozen to nearly 100 times, a desired refractive index can be achieved. Form a glass layer of distribution. First, a cladding layer and then a core layer are prepared, and then the temperature of the burner is raised to crush the hollow part to form a base material for a six-party fiber called collagen. The base material is heated in a carbon resistance furnace, etc.
Heat-melted at 000-2200℃, 100-150μ
It is pulled by a thread with a thickness of m and becomes an optical fiber.

さらに一つのW法は0VPO法(0utside’Va
por−Phase 0xidation metho
a )と呼ばれる製法でアリ、棒状中心部材上(通常グ
ラファイト)に外径方向にガラス全堆積するものである
。出発材の表面にMGVD法と同様のノ・ロゲン化物原
料金酸水素炎とともに吹き付けて、火炎加水分解反応で
生ずるガラス微粒子を層状に堆積させ、多孔質母材とす
る。その後、出発材を取り除き、電気炉中で加熱溶融し
バイブ状の透明母材を作る。この内外面を研磨した後、
外径調整のため、通常溶融石英管會かぶせてM(3VD
法と同じように中実化全行い、最終的な母材とする。
Furthermore, one W method is the 0VPO method (0outside'Va
por-Phase Oxidation method
In the manufacturing method called a), glass is entirely deposited on a rod-shaped central member (usually made of graphite) in the outer diameter direction. The surface of the starting material is sprayed with an oxyhydrogen flame similar to that used in the MGVD method, and glass fine particles produced by the flame hydrolysis reaction are deposited in a layered manner to form a porous base material. Thereafter, the starting material is removed and heated and melted in an electric furnace to create a vibrator-shaped transparent base material. After polishing this inner and outer surface,
To adjust the outer diameter, M (3VD) is usually covered with a fused silica tube.
As in the process, solidification is carried out to form the final base material.

最後の製法は、VAD法(Vapor−phase a
xialdeposition method )と呼
ばれるものである。原料供給系から搬送された原料カス
は、反応引き上げ基部で酸水素炎中に導入され、火炎加
水分解反応によりガラス微粒子となる。このガラス微粒
子は火炎先方に位置する石英製出発棒の先端に吹き付け
、多孔質母材を成長させる。多孔質母材の軸方向への成
長速度に合わせて出発棒を上方に引き上げていき、上部
の電気炉中で脱OH処理を行う。
The final manufacturing method is the VAD method (Vapor-phase a
xialdeposition method). The raw material waste transported from the raw material supply system is introduced into an oxyhydrogen flame at the reaction pulling base, and becomes glass fine particles through a flame hydrolysis reaction. These glass particles are blown onto the tip of a quartz starting rod located at the front of the flame, thereby growing a porous base material. The starting rod is pulled upward in accordance with the growth rate of the porous base material in the axial direction, and deOH treatment is performed in the upper electric furnace.

引き続いて高温で焼結、透明ガラス化し、透明母材とす
る。この場合も、ovpo法と同様、外径調整のため通
常、石英管をかぶせて最終的な母材とする。母材はMO
VD法と同様にして線引きされ、光ファイバとなる。
Subsequently, it is sintered at a high temperature and turned into transparent glass to form a transparent base material. In this case, as in the ovpo method, a quartz tube is usually placed over the tube to adjust the outer diameter to form the final base material. Base material is MO
It is drawn in the same manner as the VD method to become an optical fiber.

このような製法によ、り f′F−製された光ファイバ
において、一般に多モード光ファイバのコア直径および
外径寸法として50μm、125μmが採用されている
。しかしながら堆積クラッド層厚については、特に規定
はなく種々の値が用いられている。
In the optical fiber produced by such a manufacturing method, the core diameter and outer diameter of the multimode optical fiber are generally 50 μm and 125 μm. However, there are no particular regulations regarding the thickness of the deposited cladding layer, and various values are used.

たとえば、M OV D (Modified Che
mical VtaporDeposition )法
で作製されたファイバにおいては、通常4〜6μmが用
いられている。この値は、ファイバを紡糸した直後にフ
ァイバ損失を測定した結果より、損失を充分に低減化し
、かつ製造コストを低減化する最適値として広く採用さ
れている。堆積クラッド層厚が5μmの場合、波長1.
8μmおよび1.5μmでの損失が0.8dB/Ax以
下のMOVD多モードファイバは、現在では比較的容易
に作製できる。
For example, M OV D (Modified Che
In fibers produced by the mical Vtapor Deposition method, a thickness of 4 to 6 μm is usually used. Based on the results of measuring fiber loss immediately after spinning the fiber, this value has been widely adopted as an optimal value that sufficiently reduces loss and reduces manufacturing costs. When the deposited cladding layer thickness is 5 μm, the wavelength is 1.
MOVD multimode fibers with losses of 0.8 dB/Ax or less at 8 μm and 1.5 μm can now be produced relatively easily.

しかしながらこのようなファイバにおいて、紡糸した直
後のファイバ損失としては充分に低減化されているが、
ケーブル化ま′fcは布設後の経時変化により、損失が
急増する結果が得られている。
However, in such a fiber, although the fiber loss immediately after spinning is sufficiently reduced,
It has been observed that the loss of cables increases rapidly due to changes over time after installation.

第21aKu、このような損失増加が生じたMOVD多
モードファイバのケーブル化前後における損失波長特性
の一例を示す。用いたファイバの堆積クラッド層の厚さ
は5μmである。A、Bはケーブル化前後のそれぞれの
ファイバ損失を示し、0はその差すなわちケーブル化に
よる損失増加量を示す。損失増加量は波長により大きく
異なる。
The 21st aKu shows an example of the loss wavelength characteristics of the MOVD multimode fiber with such increased loss before and after being made into a cable. The thickness of the deposited cladding layer of the fiber used was 5 μm. A and B indicate the respective fiber losses before and after cabling, and 0 indicates the difference between them, that is, the amount of increase in loss due to cabling. The amount of loss increase varies greatly depending on the wavelength.

1.2μm以下では、損失0.os dB//anの平
坦な増加に示すが、1.3μmよジ長波長側で損失が急
増する。このうち1.24μm 、 1.4μm付近で
の損失増加の原因は、5i−OH結合での吸収である。
At 1.2 μm or less, the loss is 0. Although the os dB//an shows a flat increase, the loss sharply increases on the longer wavelength side of 1.3 μm. Among these, the cause of the increase in loss near 1.24 μm and 1.4 μm is absorption at the 5i-OH bond.

また1、45μm以上における0、96B/lanの損
失増加は、P−0)I結合の吸収によるものである。M
OVD法では、出発石英管の内側に堆積石英層を形成す
る際、反応温度を下げる目的で、堆積層にはP 2’0
5を添加する。このPとOH基との結合は、3,05μ
mにブロードな吸収ピークを持ち、この第1次高調波に
よる吸収が1.60μm付近に現われる。OH基は、ク
ラッド層およびコア層のOVD内付は中および高温加熱
する線引き中に、出発石英管より拡散する。従って5i
−OH結合およびP−OH結合はクラッド層およびコア
とクラッドの境界に多く形成される。
Further, the increase in loss of 0.96 B/lan at 1.45 μm or more is due to absorption of the P-0)I bond. M
In the OVD method, when forming a deposited quartz layer inside the starting quartz tube, P2'0 is added to the deposited layer in order to lower the reaction temperature.
Add 5. The bond between this P and OH group is 3.05μ
It has a broad absorption peak at m, and absorption due to this first harmonic appears around 1.60 μm. OH groups diffuse out of the starting quartz tube during drawing, where the OVD internals of the cladding and core layers are heated to medium and high temperatures. Therefore 5i
Many -OH bonds and P-OH bonds are formed in the cladding layer and at the boundary between the core and the cladding.

ファイバを線引きした直後の損失は小さいが、ケーブル
化した後に損失が急増する主な理由を次に説明する。
The main reason why the loss is small immediately after the fiber is drawn, but the loss increases rapidly after it is made into a cable is explained below.

第3図に伝搬角度に対する損失の測定結果を示す。測定
ファイバ長は3紬である。白丸は波長1.29μmでの
損失であり、黒丸は波長1.52μmでの損失である。
Figure 3 shows the measurement results of loss versus propagation angle. The measured fiber length is 3 pongees. The white circle represents the loss at a wavelength of 1.29 μm, and the black circle represents the loss at a wavelength of 1.52 μm.

θ。は被測定ファイバの臨界角度を示す。波長が]、2
9μmの場合、損失は伝搬角度に対して大きな変化をし
ない。10°付近の損失が小さいのは、モード変換のた
め低次モード側の光パワが高次モード側に移動するため
である。−万、波長が1.52μmの場合、損失は伝搬
角度に対1〜で大きく変化し、高次モード側では損失が
急増する。
θ. indicates the critical angle of the fiber under test. wavelength], 2
For 9 μm, the loss does not change significantly with propagation angle. The reason why the loss around 10° is small is because the optical power on the lower-order mode side moves to the higher-order mode side due to mode conversion. - 10,000, when the wavelength is 1.52 μm, the loss changes greatly with a ratio of 1 to the propagation angle, and the loss rapidly increases on the higher-order mode side.

この結果、微少向が9によるモード変換のため高次モー
ド側に移動した元パワは大きな損失を受ける。
As a result, the original power that has moved to the higher-order mode side due to the mode conversion due to the minute direction 9 suffers a large loss.

ケーブル化または経時変化によりファイバには、わずか
な微少向がりが発生する。発生した微少向がりが光パワ
を低次モード側から高次モード側に変換し、変換された
光パワは高次モード側の大きな損失を受ける。この結果
、ファイバ損失が急増する。高次モード側で損失が大き
い理由は、出発石英管より拡散したOH基とSiおよび
Pとの結合が1 pI)m当り1.00 (iB/kr
n近い大きな吸収損失?持つためである。これらの結合
は、クラッド層およびコアとクラッドの境界に形成され
るので、高次モードのみに影響する。
A slight bending occurs in the fiber due to cabling or aging. The generated slight deflection converts the optical power from the lower-order mode side to the higher-order mode side, and the converted optical power suffers a large loss on the higher-order mode side. As a result, fiber loss increases rapidly. The reason for the large loss on the higher-order mode side is that the bond between the OH groups diffused from the starting quartz tube and Si and P is 1.00 (iB/kr) per 1 pI)m.
Large absorption loss close to n? It is to have. These couplings are formed at the cladding layer and at the core-cladding boundary, so they only affect higher order modes.

本発明はこれらの欠点を解決するため、堆積クラッド層
厚に制限を加えたものである。以下、制限内容について
詳細に説明する。
In order to solve these drawbacks, the present invention imposes restrictions on the thickness of the deposited cladding layer. The restrictions will be explained in detail below.

溶融石英管からのOH基は、プリフォームから細径ファ
イバを作製する線引き時および該石英管の内fljll
にコア部および堆積クラッド層iM CV D内付けす
るガラス堆積中など、石英管が1200′C以上の高温
にさらされる時に拡散する。これは高温になるほどOH
基の拡散係数が大きくなるためである。ケーブル化およ
び経時変化による損失増加量を低減するためには、高次
モード(till損失の主要因であるOH基全全低減る
必要がある。特にコア部付近にまでOH基が拡散しない
ようにする必要がある。
OH groups from the fused silica tube are removed during drawing to produce a small diameter fiber from the preform and during the inside of the quartz tube.
Diffusion occurs when the quartz tube is exposed to high temperatures above 1200'C, such as during glass deposition within the core and deposited cladding layers. This is OH as the temperature gets higher
This is because the diffusion coefficient of the group increases. In order to reduce the amount of loss increase due to cable construction and aging, it is necessary to completely reduce the OH groups, which are the main cause of higher mode (till loss). There is a need to.

第4図はファイバ線引き後の拡散したOH基の濃度分布
の計算値を示す。線引き温度2 ] 00 ’0におけ
るOH基の拡散係数t 2.I X 1 o−8Crn
2/seaとし、線引き速[(Iはi o m/分、■
は50心/分、■は1.00 m /分〕をノシラメー
タとした。損失k 0.8 dB/Az以下とするため
には、コアとクラッドの境界におけるOH基の濃度を0
.1 ppm以下とする必要がある。このためには、線
引き速度が10m/分の場合、堆積クラッド層の厚さ全
3.5μm以上にする必要がある。現状での線引き速度
は通常、30〜1oom/分であるので、堆積クラッド
層の厚さが8.5μm以上であれば、OH基拡散による
損失は充分に低減される。溶融石英管に一1’)外径A
整されp V A D (Vapor−PhaseAX
lal 1)eposition )法′またはOV 
P O(0utsideVapor−Phase 0x
1dation )法で作製された多モードファイバに
おいては、OH基の拡散は主として線引き時に生じるの
で、これら製法により作製されたファイバの堆積クラッ
ド層の厚さとして3.5μm以上が必要である。
FIG. 4 shows calculated values of the concentration distribution of diffused OH groups after fiber drawing. Drawing temperature 2] Diffusion coefficient t of OH group at 00'0 2. IX1 o-8Crn
2/sea, and the drawing speed [(I is i o m/min, ■
50 fibers/min, ■ 1.00 m/min] was used as the nosilameter. In order to reduce the loss k to 0.8 dB/Az or less, the concentration of OH groups at the boundary between the core and cladding must be set to 0.
.. It is necessary to keep it below 1 ppm. For this purpose, when the drawing speed is 10 m/min, the total thickness of the deposited cladding layer must be 3.5 μm or more. Since the current drawing speed is usually 30 to 1 oom/min, loss due to OH group diffusion can be sufficiently reduced if the thickness of the deposited cladding layer is 8.5 μm or more. 1') Outer diameter A for the fused silica tube
p V A D (Vapor-Phase AX
lal 1) eposition ) method' or OV
P O (0outside Vapor-Phase 0x
In multimode fibers manufactured by the 1 dation ) method, diffusion of OH groups mainly occurs during drawing, so the thickness of the deposited cladding layer of fibers manufactured by these methods is required to be 3.5 μm or more.

第5図はMGVD法によってガラス堆積してファイバ線
引きした後の拡散したOH基の濃度分布の計算値を示す
。I、It、Iは第4図と同様の線引き速度を示す。M
(CVD内付は時の温度1600”0 ニオケ;b O
H基)拡散係数’r: 7.3 X 10−9cm7s
ecとした。コアとクラッドの境界におけるOH基の濃
度分布を0.1 ppm以下とするためには、堆積クラ
ッド層の厚さを7μm以上とする必要がある。すなわち
MOVD法により作製された多モードファイバにおいて
は、ケーブル化および経時変化による損失を低減するた
め、堆積クラッド層の厚さを7μn1以上とする必要が
ある。
FIG. 5 shows calculated values of the concentration distribution of diffused OH groups after glass deposition and fiber drawing by the MGVD method. I, It, and I indicate the drawing speeds similar to those in FIG. M
(The temperature of CVD internal mounting is 1600"0.
H group) Diffusion coefficient 'r: 7.3 X 10-9cm7s
It was set as ec. In order to keep the concentration distribution of OH groups at the boundary between the core and the cladding to 0.1 ppm or less, the thickness of the deposited cladding layer needs to be 7 μm or more. That is, in a multimode fiber produced by the MOVD method, the thickness of the deposited cladding layer must be 7 μn1 or more in order to reduce loss due to cable formation and aging.

以上説明したように、本発明の多モート光ファイバはコ
アとクラッドの境界におけるO)1基の濃度’i 0.
1 ppm以下とするように堆積クラッド層を充分に厚
くしているので、線引き直後のコアイノ(損失のみなら
ず、ケーブル化後および経II8変化においても充分に
低損失となる利点がある。
As explained above, the multi-mode optical fiber of the present invention has an O)1 group concentration 'i 0.
Since the deposited cladding layer is sufficiently thick to 1 ppm or less, there is an advantage that the loss is sufficiently low not only in the core loss immediately after drawing, but also in the cable formation and during the warp II8 change.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は多モード光ファイバの断面図、第2図はケーブ
ル化前後の損失波長特性図、第3図は伝搬角度に対する
損失測定の結果を示す図、第斗図は線引き後の拡散した
OH基の濃度分布図、第6図はMOVD法によって堆積
して線引きした後のOH基のa度分布図である。 J・・コアガラス部、2・・・堆積クラッド層、8・・
・溶融石英管。 特許出願人 日本電信電話公社 第1図 第2し1 0、Q   10   f、f   /、2   /3
   f、4   f5   白Kl  (/1tfn
) 第31−1 伝搬角度θ。
Figure 1 is a cross-sectional view of a multimode optical fiber, Figure 2 is a diagram of loss wavelength characteristics before and after being made into a cable, Figure 3 is a diagram showing the results of loss measurement with respect to propagation angle, and Figure 2 is a graph of the diffused OH after drawing. FIG. 6 is a concentration distribution diagram of OH groups after being deposited and drawn by the MOVD method. J... Core glass part, 2... Deposited cladding layer, 8...
・Fused quartz tube. Patent applicant: Nippon Telegraph and Telephone Public Corporation Figure 1, Figure 2, 10, Q 10 f, f/, 2/3
f, 4 f5 White Kl (/1tfn
) No. 31-1 Propagation angle θ.

Claims (1)

【特許請求の範囲】 L  V A D (Vapor−Phase Axi
al Deposition)法ま几はOV P O(
0utside Vapor−PhaseOxidat
ion )法により作製された中心にコア部、その外側
に堆積クラッド層、さらにその外側に溶融石英クラッド
層から成る多モード光ファイバにおいて、前記堆積クラ
ッド層の厚さが3.5μm以上であることを特徴とする
多モード光ファイバ。 p、  M OV D (Modified Chem
ical VaporDeposition )法によ
り作製された中心にコア部、その外側に堆積クラッド層
、さらにその外側に溶融石英クラッド層から成る多モー
ド光ファイバにおいて、前記堆積クラッド層の厚さが7
μm以上であることを特徴とする多モード光ファイバ。
[Claims] L V A D (Vapor-Phase Axi
al Deposition) Law is OV P O (
0outside Vapor-Phase Oxidat
In a multimode optical fiber fabricated by a core portion at the center, a deposited cladding layer outside the core, and a fused silica cladding layer outside the core, the thickness of the deposited cladding layer is 3.5 μm or more. A multimode optical fiber featuring p, MOV D (Modified Chem
In a multimode optical fiber fabricated by a core portion at the center, a deposited cladding layer outside the core, and a fused silica cladding layer outside the core, the thickness of the deposited cladding layer is 7.
A multimode optical fiber characterized by having a diameter of μm or more.
JP57160554A 1982-09-14 1982-09-14 Multimode optical fiber Pending JPS5949503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57160554A JPS5949503A (en) 1982-09-14 1982-09-14 Multimode optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57160554A JPS5949503A (en) 1982-09-14 1982-09-14 Multimode optical fiber

Publications (1)

Publication Number Publication Date
JPS5949503A true JPS5949503A (en) 1984-03-22

Family

ID=15717497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57160554A Pending JPS5949503A (en) 1982-09-14 1982-09-14 Multimode optical fiber

Country Status (1)

Country Link
JP (1) JPS5949503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236360U (en) * 1985-08-23 1987-03-04

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236360U (en) * 1985-08-23 1987-03-04
JPH0332936Y2 (en) * 1985-08-23 1991-07-12

Similar Documents

Publication Publication Date Title
FI81209B (en) ENMODS OPTICAL VAOGROERSFIBER OCH FOERFARANDET FOER FRAMSTAELLNING AV DESS.
FI68391B (en) CONTAINER CONTAINER FOIL FRAMEWORK FOR FRAMSTAELLNING AV ETT AEMNE FOER EN OPTISK VAOGLEDARE
US4082420A (en) An optical transmission fiber containing fluorine
US4161505A (en) Process for producing optical transmission fiber
KR100524158B1 (en) Decreased H2 sensitivity in optical fiber
US8820121B2 (en) Method of manufacturing optical fiber base material
US4165152A (en) Process for producing optical transmission fiber
EP0164103A2 (en) Method for producing glass preform for optical fiber containing fluorine in cladding
KR100878709B1 (en) A method for fabricating optical fiber using adjustment of oxygen stoichiometry
JPS5949503A (en) Multimode optical fiber
JPH07230015A (en) Dispersion shift type single-mode optical fiber, and preform for the same and its manufacture
CN113461322A (en) Optical fiber and method for manufacturing optical fiber preform
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
JPH09221335A (en) Production of precursor of optical fiber glass preform
JPS591222B2 (en) Optical fiber manufacturing method
JPS63248733A (en) Production of single-mode optical fiber base material
GB1593488A (en) Low loss high n a plastic clad optical fibres
JPH0460930B2 (en)
JPS6227343A (en) Production of base material for single mode optical fiber
JP3569910B2 (en) Optical fiber manufacturing method
JPH01201045A (en) Germanium oxide based optical fiber and preparation thereof
JPH0324420B2 (en)
JPS6136130A (en) Manufacture of preform for polarization-keeping optical fiber
JPS6360123A (en) Production for porous base material for single mode type optical fiber
JPH02201403A (en) Optical fiber and production of base material thereof as well as production of optical fiber