JPS5949438B2 - Impeller of linear radial type mixed flow blower - Google Patents
Impeller of linear radial type mixed flow blowerInfo
- Publication number
- JPS5949438B2 JPS5949438B2 JP7816877A JP7816877A JPS5949438B2 JP S5949438 B2 JPS5949438 B2 JP S5949438B2 JP 7816877 A JP7816877 A JP 7816877A JP 7816877 A JP7816877 A JP 7816877A JP S5949438 B2 JPS5949438 B2 JP S5949438B2
- Authority
- JP
- Japan
- Prior art keywords
- cylindrical surface
- plane
- edge
- point
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
【発明の詳細な説明】
この発明は直線径向型(いわゆるラジアルプレート型)
斜流送風機の新規な羽根車の構成に関する。[Detailed description of the invention] This invention is a linear radial type (so-called radial plate type)
This invention relates to a new impeller configuration for a mixed flow blower.
通常の直線径向型遠心送風機の羽根車は、第1図に示す
ように、羽根1の入口縁2および出口縁3がそれぞれ回
転軸心4と平行で、かつ羽根1を回転軸心4と平行な方
向(矢印P方向)から跳めたとき、第2図に示すように
、羽根入口での衝突損失を最小にするために、羽根1は
入口縁2付近で円弧状に湾曲し、続いて出口縁3に向か
つて径方向へ放射状に延びている。As shown in FIG. 1, the impeller of a normal linear radial centrifugal blower has an inlet edge 2 and an outlet edge 3 of the blade 1 parallel to the rotation axis 4, and the blade 1 is parallel to the rotation axis 4. When jumping from a parallel direction (direction of arrow P), as shown in Figure 2, in order to minimize the collision loss at the blade entrance, the blade 1 curves into an arc near the entrance edge 2, and then and extending radially in the radial direction towards the outlet edge 3.
しかし、羽根1は入口縁2付近で円弧状に湾曲している
けれども、回転軸心4の方向では羽根1にねじれがなく
、回転軸心4に直交する各平面a、、a。、・・・an
における各断面が互いに重なつて見えるような2次元曲
面を有する。また、羽根1の断面の多くはその入口縁2
付近の湾曲部分で単一半径の円弧か多くて2個の円弧を
連結したものがほとんどである。したがつて、直線径向
遠心送風機の羽根車における羽根1の製作は比較的簡単
である。しかし、この種の羽根1においても、流体力学
的な観点から理想に近い、円弧の半径が弦長(流れ方向
の羽根長さ)に沿つて漸次変化していくものは工作が非
常に困難であるゆえ、効率、騒音などの点で有利である
のはわかつていてもいまだに実用化されていない。これ
に対し、直線径向型斜流送風機では、第3図に示すよう
に、羽根11の入口縁12および出口縁13はいずれも
回転軸心14と平行ではない。However, although the blade 1 is curved in an arc shape near the inlet edge 2, there is no twist in the blade 1 in the direction of the rotation axis 4, and each plane a,, a perpendicular to the rotation axis 4. ,...an
It has a two-dimensional curved surface in which each cross section of the plane appears to overlap each other. Also, most of the cross section of the blade 1 is the inlet edge 2.
Most of the curved parts in the vicinity are circular arcs with a single radius or two circular arcs connected at most. Therefore, the production of the blades 1 in the impeller of a linear radial centrifugal blower is relatively simple. However, even with this type of blade 1, it is extremely difficult to manufacture one in which the radius of the arc gradually changes along the chord length (the length of the blade in the flow direction), which is close to the ideal from a hydrodynamic point of view. Therefore, although it is known that it is advantageous in terms of efficiency and noise, it has not yet been put into practical use. On the other hand, in the linear radial type mixed flow blower, as shown in FIG. 3, neither the inlet edge 12 nor the outlet edge 13 of the blade 11 is parallel to the rotation axis 14.
、そして、いま、主板16と側板ITの間の気体通路内
を気体が入口縁12から出口縁13の方向へ流れるとき
、気体は上記気体通路内で層状に、かつ連続した無限の
数の流線上を流れると仮定し、この中の複数の代表的な
ものを代表流線151、152、・・・・・・15nと
して、これら代表流線15、、152,・・・・・・1
5nにより、気体通路の横断面を複数(この例ではn−
1個)に分割する。こうすると、回転軸心14から入口
縁12までの半径が羽根車内の気体通路中における各代
表流線151,152,・・・,15nごとにγIO,
,riO2,・・・,γInnのように漸次変化し、ま
た、軸心14から出口繍3までの各半径もγ。011,
γ0012,・・・,γ0ut0のように漸次変化して
いる。, and now, when gas flows in the gas passage between the main plate 16 and the side plate IT from the inlet edge 12 to the outlet edge 13, the gas flows in layers in the gas passage and in an infinite number of continuous flows. Assuming that the flow flows on a line, a plurality of representative streamlines among them are designated as representative streamlines 151, 152, . . . 15n, and these representative streamlines 15, 152, . . . 1
5n allows the gas passage to have multiple cross sections (in this example, n-
1 piece). In this way, the radius from the rotation axis 14 to the inlet edge 12 becomes γIO,
, riO2,..., γInn, and each radius from the axis 14 to the exit embroidery 3 is also γ. 011,
It changes gradually like γ0012, . . . , γ0ut0.
これら半径が変化すればそれに応じて流入出点での回転
周速度が変化するので、入口縁12での衝突損失を少な
くするためには、流入角β1を入口縁13に沿つて漸次
変化させねばならず、また、出口縁13での昇圧ヘツド
を揃えるためには、流出角β2を出口縁に沿つて漸次変
化させねばならない。ここで流出角β2については、こ
れを変化させずに一定値に設定しても、羽根車の内外径
比(−γ0ut/γIn)を適当に選ぶことによつて昇
圧ヘツドをある程度揃えることができるので、流出角β
2は強度上有利な900(一定値)に設定されることが
多い。しかし、流入角β1については、上記の理由から
、第4図に示すように、これをβ11,β12,・・・
,β11のように漸次変化させる必要がある。したがつ
て、たとえ流出角β2を一定値に設定したとしても羽根
11の形状は回転軸心14の方向から見たとき、少くと
も流入点付近ではねじれた複数な3次元曲面となる。流
出角β2も変化させれば、流入点から流出点にわたつて
ねじれたさらに複雑な3次元曲面となる。換言すれば、
第3図に示す直線径向型斜流送風機の羽根車に第1図お
よび第2図に示した直線径向型遠心送風機の羽根1と同
じ単一円弧または2個円弧を持つ2次元曲面の羽根11
を、代表流線151,152,・・・,15nが傾いて
いるのに合わせて傾けて取付けるだけでは、ごく小型の
ものを除いて送風機性能が低下し、これを改良せんがた
めに強いてねじれた3次元曲面の羽根11を製作しよう
としても極めて困難である。If these radii change, the rotational circumferential speed at the inlet and outlet points will change accordingly, so in order to reduce the collision loss at the inlet edge 12, the inlet angle β1 must be gradually changed along the inlet edge 13. Moreover, in order to align the boost head at the outlet edge 13, the outflow angle β2 must be varied gradually along the outlet edge. Here, even if the outflow angle β2 is set to a constant value without changing it, the booster head can be made uniform to some extent by appropriately selecting the ratio of the inner and outer diameters of the impeller (-γ0ut/γIn). Therefore, the outflow angle β
2 is often set to 900 (a constant value), which is advantageous in terms of strength. However, for the inflow angle β1, for the above-mentioned reasons, as shown in FIG.
, β11. Therefore, even if the outflow angle β2 is set to a constant value, the shape of the blade 11 becomes a plurality of twisted three-dimensional curved surfaces at least near the inflow point when viewed from the direction of the rotation axis 14. If the outflow angle β2 is also changed, a more complicated three-dimensional curved surface that is twisted from the inflow point to the outflow point will be obtained. In other words,
The impeller of the linear radial type mixed flow blower shown in Fig. 3 has a two-dimensional curved surface with a single circular arc or two circular arcs, which is the same as the blade 1 of the linear radial type centrifugal blower shown in Figs. 1 and 2. Feather 11
If only the representative streamlines 151, 152, ..., 15n are tilted and installed at an angle, the performance of the blower will deteriorate except for very small ones. It is extremely difficult to manufacture a blade 11 with a three-dimensional curved surface.
元来、この種の送風機の羽根車は、いずれも鋳造ではな
く、主として圧延鋼板から組立てて作られ、しかも直径
3〜4m級の大型のものまで各種の寸法のものを多種小
量生産されるものであるから、このような羽根車の羽根
に、2次曲面は良いとしても、3次元曲面を持たせた送
風機をその都度商業採算に乗るコストで作ることは極め
て困難である。Originally, the impellers of this type of blower were not cast but mainly assembled from rolled steel plates, and they were produced in small quantities in a wide variety of sizes, including large ones with a diameter of 3 to 4 meters. Therefore, even if the blades of such an impeller have a quadratic curved surface, it is extremely difficult to produce a blower with a three-dimensional curved surface at a cost that is commensurate with commercial profitability.
このことが、第1図のような2次元曲面の羽根1を植設
した羽根車を持つ直線径向型遠心送風機が従来一般に製
作されているのに反し、第3図および第4図に示すよう
な3次元曲面の羽根11を必要とする直線径向型斜流送
風機については、それが遠心送風機と軸流送風機との中
間的な高い性能を持つものと期待されているにもかかわ
らず、いまだに実用化されていない理由の1つである。This is because, contrary to the conventionally generally produced linear radial centrifugal blower having an impeller with two-dimensionally curved blades 1 as shown in Fig. 1, as shown in Figs. 3 and 4, Although linear radial type mixed flow fans that require blades 11 with three-dimensional curved surfaces are expected to have high performance intermediate between centrifugal fans and axial fans, This is one of the reasons why it has not been put into practical use yet.
そこで、この発明の目的は、2次元曲面である円筒面の
一部と2次元平面の一部を羽根に利用することにより、
流体力学的に理想に近い3次元曲面の羽根と同等効果を
得て、優れた送風機性能を持ち、なおかつ、上に記した
工作上の困難を解消して、製作の容易な直線径向型斜流
送風機の羽根車を提供することにある。上記目的を達成
するために、この発明は、主板と側板が構成する両円錐
面に対して、共通の1個の円筒面とこの円筒面に接する
1つの平面とを相貫させ、上記円筒面の中心軸は、上記
回転軸心に対して交差しないねじれた位置関係にあり、
もつて上記相貫による各相貫線を、羽根の入口縁に沿つ
て漸次変化すべき羽根の流入点の流入角、羽根の出口縁
に沿つて漸次変化すべき羽根の流出点の流出角、ならび
にこれら流入点と流出点とを結んで上記円筒面上または
平面上に位置する曲線にそれぞれ合致させ、上記円筒面
および平面の一部で薄板の羽根を形成した構成としてい
る。Therefore, the purpose of the present invention is to utilize a part of a cylindrical surface, which is a two-dimensional curved surface, and a part of a two-dimensional plane as a blade.
A linear radial inclined type that has the same effect as a blade with a three-dimensional curved surface that is close to the hydrodynamic ideal, has excellent blower performance, and is easy to manufacture by eliminating the manufacturing difficulties described above. Our objective is to provide an impeller for a flow blower. In order to achieve the above object, the present invention makes one common cylindrical surface and one plane in contact with this cylindrical surface interpenetrate both conical surfaces constituted by the main plate and the side plate, so that the cylindrical surface The central axis of is in a twisted positional relationship that does not intersect with the rotation axis,
The inflow angle at the inlet point of the blade should gradually change along the inlet edge of the blade, the outflow angle at the outflow point of the blade should gradually change along the outlet edge of the blade, The inflow point and the outflow point are connected to curves located on the cylindrical surface or the plane, respectively, and a thin plate blade is formed by a part of the cylindrical surface and the plane.
以下、この発明の実施例の説明に先立つて、発明の基本
原理を図面に基づいて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Prior to describing embodiments of the invention, the basic principles of the invention will be described below with reference to the drawings.
直線径向型斜流送風機の羽根車はすでに第3図において
一部説明したように、ハブ18に固定した回転軸心14
と同心の截頭円錐形の主板16と、この主板16との間
で斜流的気体通路を形成すべく回転軸心14方向に距離
を隔てて同心的に配設された截頭円錐形の側板17と、
この気体通路内に回転軸心14と同心の円周上に多数配
設され、そのそれぞれが一方の側縁を主板16に他方の
側縁を側板17に溶接またはリベツト止め等で固定され
、かつ、回転軸心14寄りに気体の入口縁12を、反対
側に気体の出口縁13をもち、運転時この入口縁12か
ら出口縁13へ連続して気体が流れる如くした羽根11
とから構成されている。As already partially explained in FIG.
A truncated conical main plate 16 concentric with the main plate 16 and a truncated conical main plate 16 concentrically arranged at a distance in the direction of the rotation axis 14 to form a diagonal gas passage between the main plate 16 and the main plate 16. side plate 17;
A large number of gas passages are arranged on a circumference concentric with the rotation axis 14 in this gas passage, and each of them is fixed at one side edge to the main plate 16 and the other side edge to the side plate 17 by welding or riveting, and , a blade 11 having a gas inlet edge 12 near the rotational axis 14 and a gas outlet edge 13 on the opposite side, so that gas flows continuously from the inlet edge 12 to the outlet edge 13 during operation.
It is composed of.
羽根車内の代表流線151,152,・・・,15nは
それぞれ半頂角θ1,θ2,・・・θ。の円錐面を構成
し、各円錐面は回転軸心14と同心である。羽根11は
これら各円錐面上をそれぞれ流入点Ml,M2,・・・
,Mnから始まり、流出点N,,N2,・・・Nnで終
つている。その1つである代表流線151が構成する円
錐面を平面に展開したものが第5図で、同図には羽根1
1の断面が1枚だけ描かれている。第5図における羽根
11の断面は、流入点M1で所望の流入角β11を、流
出点N1で所望の流出角β21(この場合は900)を
持ち、その間は、流入点M,付近では楕円の一部に近似
した如く曲率半径ρが次第に変化する曲線で連結され、
以後径方向に放射状に延びる直線で連結された形状を有
する。Representative streamlines 151, 152, . . . , 15n inside the impeller have half apex angles θ1, θ2, . Each conical surface is concentric with the rotation axis 14. The blades 11 move on each of these conical surfaces to the inflow points Ml, M2, . . .
, Mn and ends at the outflow point N,, N2, . . . Nn. FIG. 5 is a plan view of the conical surface formed by the representative streamline 151, which is one of the representative streamlines.
Only one cross section of 1 is drawn. The cross section of the blade 11 in FIG. 5 has a desired inflow angle β11 at the inflow point M1 and a desired outflow angle β21 (900 in this case) at the outflow point N1, and between them, an elliptical shape is formed near the inflow point M. Connected by a curve whose radius of curvature ρ gradually changes as if it were partially approximated,
Thereafter, it has a shape connected by straight lines extending radially in the radial direction.
この羽根11の所望の流入角β11および曲率半径ρは
、第3図の代表流線152,153,・・・15。に移
行するにしたがい、第4図に示すβ,2,β,3,・・
・,β1nのように常に変化するので羽根11には複雑
な3次元曲面が要求される。第6図は第3図に示す代表
流線151,152,・・・,15。The desired inflow angle β11 and radius of curvature ρ of this blade 11 are represented by representative streamlines 152, 153, . . . 15 in FIG. As shown in Fig. 4, β, 2, β, 3, etc.
, β1n, so the blade 11 is required to have a complex three-dimensional curved surface. FIG. 6 shows representative streamlines 151, 152, . . . , 15 shown in FIG. 3.
が構成する各円錐面と新規に想定する円筒面19および
平面20との相貫斜視図で、第7図A−Cにおいて代表
流線151が構成する円錐面と、円筒面19および平面
20との相貫図が投影的に示されている。第6図におい
て、半径Cの円筒面19は、U軸方向へ距離U。.V軸
方向・\距離V。を存して円錐面151,の中心軸Hに
対して角度Kだけ傾いている。すなわち、円筒面19の
中心軸0から距離U。離れていて、かつ中心軸H(回転
軸心14と同じ)を含む平面(この平面は同時に軸も含
む)を考え、この平面と直角方向に、すなわちU方向に
眺めたとき、円筒面19の中心軸0は、第7図Bの通り
角度Kだけ傾いている。つまり、円筒面19の中心軸0
は、回転軸心Hに対して交差しないねじれた位置関係に
ある。平面20はV軸およびW軸を含む平面で、この円
筒面19とV軸土のS。点を通る円筒線SlS2におい
て接している。したがつて平面20は円錐面1511の
母線22を含む平面でもある。ここでU,V,Wは、円
錐面1511の頂点Eを原点とし、W軸が円筒面19の
中心軸0と平行で、V軸が第7図に示すように、W軸方
向(第6図の矢印Q方向)に見たときに曲線0,上にお
ける円筒面19と平面20との接点であるM8lに重な
ノるように取つた3次元直交座標である。This is a mutual perspective view of each conical surface constituted by the newly assumed cylindrical surface 19 and the plane 20, and the conical surface constituted by the representative streamline 151 in FIG. 7A-C, the cylindrical surface 19 and the plane 20. The continuum diagram of is shown in projection. In FIG. 6, the cylindrical surface 19 of radius C is a distance U in the U-axis direction. .. V-axis direction/distance V. , and is inclined by an angle K with respect to the central axis H of the conical surface 151. That is, the distance U from the central axis 0 of the cylindrical surface 19. Considering a plane that is far away and includes the center axis H (same as the rotational axis 14) (this plane also includes the axis at the same time), when viewed in a direction perpendicular to this plane, that is, in the U direction, the cylindrical surface 19 The central axis 0 is inclined by an angle K as shown in FIG. 7B. In other words, the central axis 0 of the cylindrical surface 19
is in a twisted positional relationship that does not intersect with the rotation axis H. The plane 20 is a plane including the V axis and the W axis, and this cylindrical surface 19 and the S of the V axis soil. They are in contact at the cylindrical line SlS2 passing through the point. Therefore, plane 20 is also a plane containing generatrix 22 of conical surface 1511. Here, U, V, and W have the vertex E of the conical surface 1511 as the origin, the W axis is parallel to the central axis 0 of the cylindrical surface 19, and the V axis is in the W axis direction (6th These are three-dimensional orthogonal coordinates taken so as to overlap M8l, which is the point of contact between the cylindrical surface 19 and the plane 20 on the curve 0 when viewed in the direction of the arrow Q in the figure.
W軸の取り方から、円筒面19の傾き角度KはW軸と円
錐面1511の中心軸Hとがなす角で表わされる。円錐
面1511は第3図における代表流線151が構成する
円錐面と同一であり、この円錐面1511と円筒面19
および平面20との相貫線、つまり接触線のうちM1か
らM,lを通りN1までの線分が第7図Cにおいて円錐
面1511を展開した図面上で太線によつて示され、こ
れは第5図と等価となる。すなわち、第5図に示された
1つの代表流線151の円錐面1511上における所望
の流入角β11,流出角β21(この場合は900)を
持ち、その間流入点M1付近で漸次変化する半径ρを持
ち、かつ上記円筒面19(第7図参照)上に位置する渭
らかな曲線で連結され、以後径方向へ放射状に延びる直
線で連結された羽根11の断面形状は第7図A,Bに示
す距離U。,vO,傾き角度K1および半径Cを後述す
る方法で求めることにより幾何学的に得られる。なお、
平面20は円錐面1511の母線22を含むから、流出
点β21での流出角β21は902である。これらの関
係を幾何学的に考察する。From the way the W axis is taken, the inclination angle K of the cylindrical surface 19 is expressed by the angle formed by the W axis and the central axis H of the conical surface 1511. The conical surface 1511 is the same as the conical surface constituted by the representative streamline 151 in FIG.
The interpenetration line with the plane 20, that is, the line segment from M1 through M, l to N1 among the lines of contact, is shown by a thick line on the developed drawing of the conical surface 1511 in FIG. 7C, and this is This is equivalent to Figure 5. That is, one representative streamline 151 shown in FIG. 5 has a desired inflow angle β11 and an outflow angle β21 (900 in this case) on the conical surface 1511, and a radius ρ that gradually changes around the inflow point M1 during that time. The cross-sectional shapes of the blades 11, which are connected by gentle curves located on the cylindrical surface 19 (see FIG. 7) and then connected by straight lines extending radially in the radial direction, are shown in FIGS. 7A and B. The distance U shown in , vO, the inclination angle K1, and the radius C are obtained geometrically by the method described later. In addition,
Since the plane 20 includes the generatrix 22 of the conical surface 1511, the outflow angle β21 at the outflow point β21 is 902. Let us consider these relationships geometrically.
いま、第7図において、代表流線151が構成する円錐
面15,1と円筒面19との相貫線の一部である曲線G
1ヒにある任意の点mを考える。点mは第7図A上では
座標(U,)を持ち、第7図B上では座標(V,w)を
持ち、第7図C上では座標(X,y)を持つ。ここで、
座標(X,y)は円錐面1511の頂点Eを原点とし、
接点M5lセよび流出点N1を通るY軸とこれに直交す
るX軸とからなるX−Y座標系の座標である。この場合
、つぎの関係がある。Now, in FIG. 7, a curve G is a part of the line of intersection between the conical surface 15,1 and the cylindrical surface 19, which is constituted by the representative streamline 151.
Consider an arbitrary point m on 1hi. Point m has coordinates (U,) on FIG. 7A, coordinates (V, w) on FIG. 7B, and coordinates (X, y) on FIG. 7C. here,
The coordinates (X, y) have the vertex E of the conical surface 1511 as the origin,
These are the coordinates of an X-Y coordinate system consisting of a Y-axis passing through the contact point M5l and the outflow point N1 and an X-axis perpendicular to the Y-axis. In this case, the following relationship exists.
x=f(θ1,U,γ)
(1)y=f(θ1,U,γ)
(2)u=f(UO,vO,K,θ1,C,γ)(3)
φ=f(θ,,U,γ)
(4)ここで、γは第7図Bに示すように、点mと中心
軸Hとの距離、φは第7図Cに示すように、点mと原点
Eとを結ぶ直線がY軸となす角である。x = f (θ1, U, γ) (1) y = f (θ1, U, γ) (2) u = f (UO, vO, K, θ1, C, γ) (3)
φ=f(θ,,U,γ) (4) Here, γ is the distance between the point m and the central axis H, as shown in FIG. 7B, and φ is the distance between the point m and the central axis H, as shown in FIG. 7C. This is the angle that the straight line connecting m and the origin E makes with the Y axis.
さらに、微分法による関係式に、それぞれ(1)〜(4
)式を代入すればm点の第7図Cにおける半径ρと角度
(流れ角)βが得られる。Furthermore, the relational expressions (1) to (4) based on the differential method are
), the radius ρ and angle (flow angle) β at point m in FIG. 7C can be obtained.
点mが流入点M1上にあればそのときのβは流入角β1
1と一致し、点mが円筒面19と平面20との接点M8
l上にあればそのときのβは流れ角β21(この場合は
90)と一致する。同様に、任意の点mが代表流線15
1の構成する円錐面1511と平面20との相貫線の一
部である直線M8lNl上にある場合には、(3)式で
表わされる座標uは、点mの位置にかかわらず、u−0
(3)′であり、
(5)式,(6)式はそれぞれρ−00(無限大)
(5Yβ=β81=β21(この場
合90 ) (6Yとなる。If the point m is on the inflow point M1, then β is the inflow angle β1
1, and the point m is the contact point M8 between the cylindrical surface 19 and the plane 20.
1, then β matches the flow angle β21 (90 in this case). Similarly, any point m is the representative streamline 15
1, the coordinate u expressed by equation (3) is u- regardless of the position of point m. 0
(3)′,
Equations (5) and (6) are each ρ-00 (infinity)
(5Yβ=β81=β21 (90 in this case) (6Y).
円筒面19上(曲線Q1上)での演算でも、平面20上
(直線M8lNl上)での演算でも、ともに、その接点
M8lでの流れ角βS1が同じ値(この場合90接)と
なることは、円筒面19と平面20が接点M8lを含む
円筒母線S1−S2において接しているからであり、こ
の結果、流入点M1から接点M8,を通り流出点N1に
達する相貫線は代数学で言う連続となる。Whether the calculation is performed on the cylindrical surface 19 (on the curve Q1) or on the plane 20 (on the straight line M8lNl), the flow angle βS1 at the contact point M8l will be the same value (90 tangent in this case). , this is because the cylindrical surface 19 and the plane 20 are in contact at the cylindrical generatrix S1-S2, which includes the contact point M8l, and as a result, the intersecting line from the inflow point M1, passing through the contact point M8, and reaching the outflow point N1 is expressed in algebra as It becomes continuous.
また、曲率半径ρは点mが流入点M,から接点M8lへ
移動して行くにしたがい、少しづつ変化して行くので、
流入点M1付近において単一のもしくはせいぜい2個の
半径を連結した従来の直線径向型遠心送風機の羽根車に
比べて、流入点M1から接点M8lまでの曲線が理想的
な滑らかなものとなる。Also, the radius of curvature ρ changes little by little as the point m moves from the inlet point M to the contact point M8l, so
The curve from the inflow point M1 to the contact point M8l is ideally smooth compared to the impeller of a conventional linear radial centrifugal blower in which a single or at most two radii are connected near the inflow point M1. .
以上によつて、第3図に示した代表流線15,が第6図
に概略的に示すように得られる。As a result of the above, the representative streamline 15 shown in FIG. 3 is obtained as schematically shown in FIG. 6.
以下、同様にして第3図の各代表流線152,153,
・・・150が円筒面19および平面20との各相貫線
として得られる。第8図Aはこの状態を第6図の矢印Q
方向から見た投影図で、この図は第7図Aに対応し、ま
た、第8図Bは第7図Bに対応する。Hereinafter, each representative streamline 152, 153,
. . 150 are obtained as the intersecting lines with the cylindrical surface 19 and the plane 20. Figure 8A shows this state by the arrow Q in Figure 6.
This figure corresponds to FIG. 7A, and FIG. 8B corresponds to FIG. 7B.
これら各相貫線は各円錐面1521,1531,・・・
,15n1に対し、円錐面1511について行なつたと
同様の演算を行なえば容易に算出することができる。つ
まり、第8図A,Bは第7図に、さらに円錐面1511
と共通の軸心Hを持ち、それぞれ半頂角θ2,θ3,・
・・θ。Each of these mutual penetration lines corresponds to each conical surface 1521, 1531,...
, 15n1 can be easily calculated by performing the same calculation as that for the conical surface 1511. In other words, FIGS. 8A and B are in addition to the conical surface 1511 in FIG.
have a common axis H, and half apex angles θ2, θ3, ·
...θ.
を持つ円錐面1521,1531,・・・,15n1が
付加されている。このようなn個の円錐面1511,1
521,・・・,15n1を第3図の代表流線151,
152,15nが構成するn個の円錐面と同じ配置とし
、かつ第3図の羽根11を第8図の半径Cなる円筒面1
9および平面20の一部に置換する。第6図,第8図A
でも明らかなように、n個の円錐面上の各相貫線を円筒
面19の軸方向(第6図の矢印Q方向)に見れば、各相
貫線つまり羽根11は半径Cを持つ円筒面19および平
面20で構成されるところの2次元曲面の一部としてね
じれがなく、同一断面形に重なつて見える。Conical surfaces 1521, 1531, . . . , 15n1 are added. Such n conical surfaces 1511,1
521,..., 15n1 as the representative streamline 151,
152, 15n have the same arrangement as n conical surfaces, and the blade 11 in FIG. 3 is replaced by the cylindrical surface 1 with radius C in FIG.
9 and a part of the plane 20. Figure 6, Figure 8A
However, as is clear, if each phase penetration line on the n conical surfaces is viewed in the axial direction of the cylindrical surface 19 (in the direction of arrow Q in FIG. 6), each phase penetration line, that is, the blade 11, is a cylinder with radius C. As part of the two-dimensional curved surface composed of the surface 19 and the plane 20, there is no twist and the same cross-sectional shape appears to overlap.
円錐面1511を平面に展開すれば前記の通り第7図C
となるが、円錐面1521,1531,・・・1501
も同様に展開することができ、各展開による相貫線は、
第8図では図示が省略されているけれども、第6図に概
略的に示すように、流入点M2,M3,・・・,Mnで
始まり)接点MS2FmS39l)MSnを通つて、流
出点N2,N3,・・・,NOで終り、上記流入点にお
いては流線151上の流入角β11とは少しづつ異なつ
たβ12,β13,・・・,β1nを有し、ノ 上記流
入点と上記接点との間は少しづつ曲率半径ρが変化する
ような曲線で滑らかに連結されている。各相貫線すなわ
ち各代表流線152,153,・・・,15。上の流出
角β22,β23ツ゜゜゜・β2nは、相貫する平面2
0が各円錐面1521,1531,・・・,15n1の
母線を通るから、900(一定値)である。勿論、各相
貫線は、円筒面19と平面20と接点M82,m83,
゜゜゜m8nにおいても代数学で言う連続となつている
。流入角β,1,β12,・・・,β,oが相互に少し
づつ異なることは先に第3図において述べたように、各
代表流線15,,152,・・・,150ごとに流入点
の半径距離γIOが変化しているために当然のことがら
である。上記のようにして各相貫線つまり各代表流線1
51,152,・・・,15。が演算決定されたならば
、代表流線151での曲線Mr;冫,、代表流線150
での曲線0。、残る各代表流線にまたノ′−Z\
―−ーーーーーーーーー
ー一がる曲線MlMOおよび直線M8lmsnで囲まれ
る部分を半径Cの円筒面19から、また、代表流線15
1での直線M8lNl、代表流線15nでの直線M5。
NO、残る各代表流線にまたがる直線M8lm8。およ
び曲線qで囲まれる部分を平面20から切り出す。この
切出軌跡は第7図におけるm点座標つまりm(U,v,
w)より容易に知ることができる。他方、平面に展開し
た場合の切出軌跡も同様に、3二+=雫五ぽ″ぽ罎喰?
およびMlMnで囲まれる部分を切り出し、流入点Ml
FM2Fl@2Mnから接点MSl)MS2yO鴇M8
。If the conical surface 1511 is developed into a plane, as described above, Fig. 7C
However, the conical surfaces 1521, 1531, ... 1501
can be expanded in the same way, and the mutual line due to each expansion is
Although illustration is omitted in FIG. 8, as schematically shown in FIG. 6, starting from the inflow points M2, M3, . , . The spaces between the two are smoothly connected by a curve whose radius of curvature ρ changes little by little. Each interpenetrating line, that is, each representative streamline 152, 153, . . . , 15. The upper outflow angles β22, β23゜゜゜・β2n are the intersecting plane 2
Since 0 passes through the generatrix of each conical surface 1521, 1531, . . . , 15n1, it is 900 (a constant value). Of course, each intersecting line has contact points M82, m83, and the cylindrical surface 19 and the plane 20, respectively.
゜゜゜m8n is also continuous in algebra. As mentioned earlier in FIG. 3, the inflow angles β, 1, β12, ..., β, o differ slightly from each other for each representative streamline 15, 152, ..., 150. This is natural because the radial distance γIO of the inflow point is changing. As described above, each interpenetrating line, that is, each representative streamline 1
51,152,...,15. is calculated and determined, the curve Mr at the representative streamline 151;
The curve at 0. , for each remaining representative streamline.
―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――‖‖‖‖‖
Straight line M8lNl at 1, straight line M5 at representative streamline 15n.
NO, the straight line M8lm8 spans each remaining representative streamline. and a portion surrounded by curve q is cut out from plane 20. This cutting locus is the coordinate of m point in Fig. 7, that is, m (U, v,
w) Easier to know. On the other hand, the cutout locus when expanded on a plane is also 32+=Shizukugopo''Poten?
Cut out the part surrounded by and MlMn, and inflow point Ml
FM2Fl @ 2Mn to contact MSl) MS2yO Toki M8
.
に致る部分を半径Cに曲げてもよい。この場合、半径C
の円筒面19と平面20との接触線は円筒面19の母線
S,−S2となつているので、たとえば、ロール加工に
よつて鋼板を曲げる場合にはその加工が容易である。上
記のようにして、円筒面19および平面20から羽根1
1を切り出し、あるいは、先に切り出した鋼板をその流
入点付近に当る部分において半径Cに曲げて、第9図に
示すように、主板16と側板17との間に挿入して組立
てれば、斜流送風機として必要とされていた3次元曲面
を持つ羽根を用いなくとも、それと同等の性能を持つ羽
根を容易に製作することができる。You may bend the part that corresponds to radius C. In this case, radius C
Since the line of contact between the cylindrical surface 19 and the plane 20 is the generatrix S, -S2 of the cylindrical surface 19, it is easy to bend the steel plate by rolling, for example. As described above, from the cylindrical surface 19 and the plane 20, the blade 1 is
1, or by bending the previously cut steel plate to a radius C at the part near the inflow point and inserting it between the main plate 16 and the side plate 17 as shown in FIG. Even without using blades with three-dimensional curved surfaces, which are required for mixed flow blowers, it is possible to easily manufacture blades that have the same performance.
実際に、この発明による直線径向型斜流送風機の羽根車
を設計する場合には、まず、第3図に示す代表流線15
1〜15nを決める。Actually, when designing the impeller of the linear radial type mixed flow blower according to the present invention, first, the representative streamline 15 shown in FIG.
Decide on 1 to 15n.
これより円錐面の半頂角θ1〜θ。が決まる。羽根の内
外径比は風量および風圧により一応の標準値が決まつて
いるから、回転数より羽根入口縁12に沿う流入角β1
の分布が定まる。羽根11上の曲線部と直線部との接点
M5の半径距離γ8も経験的な値として一応の標準値が
決まつている。第6図および第7図に示す距離U。,v
Oは傾き角度Kと円筒半径Cが決まれば接点M5,の半
径距離γ81(第7図B)より一義的に決定される。し
たがつて、残る変数はKとCの2つとなり、この2変数
を変化させて入口縁12における流入角β1が所定の値
となるようなK(5Cとを求めればよい。以上のように
、設計資料としては羽根車の流入角および内外径比が与
えられたとき、ただちに諸寸法が見い出せるようにデー
タを用意しておくとよい。From this, the half apex angle θ1~θ of the conical surface. is decided. Since the inner and outer diameter ratio of the blade has a standard value determined depending on the air volume and wind pressure, the inflow angle β1 along the blade inlet edge 12 is determined from the rotation speed.
The distribution of is determined. The radial distance γ8 of the contact point M5 between the curved part and the straight part on the blade 11 has also been determined as a standard value based on experience. The distance U shown in FIGS. 6 and 7. ,v
Once the inclination angle K and the cylinder radius C are determined, O is uniquely determined from the radial distance γ81 (FIG. 7B) of the contact point M5. Therefore, the remaining variables are K and C, and by changing these two variables, K (5C) such that the inflow angle β1 at the entrance edge 12 becomes a predetermined value can be found.As described above, As design data, it is best to prepare data so that various dimensions can be found immediately when the inlet angle and inner/outer diameter ratio of the impeller are given.
たとえば、内外径比λ、円錐半頂角θの場合、円筒半径
Cをパラメータとし、横軸に傾き角度K、縦軸に流入角
β1を取つた図表を作成しておくとよい。以上の説明し
た基本原理はすべて、相貫させる平面20を円錐面の母
線がその平面に含まれるように設定することにより流出
角β2を一定値90としたものであつたが、以下に説明
するこの発明の実施例では、圧力係数を調整するなどに
より送風機性能に変化をもたせるために、β2を羽根1
1の出口円13に沿つて漸次変化させた場合を取り扱う
。For example, in the case of the inner/outer diameter ratio λ and the cone half-vertical angle θ, it is preferable to create a chart in which the cylinder radius C is used as a parameter, the horizontal axis is the inclination angle K, and the vertical axis is the inflow angle β1. In all of the basic principles explained above, the outflow angle β2 is set to a constant value of 90 by setting the plane 20 to be intersected so that the generatrix of the conical surface is included in the plane. In the embodiment of this invention, in order to change the performance of the blower by adjusting the pressure coefficient, β2 is
We will deal with the case of gradual change along the exit circle 13 of No. 1.
このように流出角β2が漸次変化する場合でも、上記基
本原理と同様な演算により諸寸法を見い出すことができ
る。Even when the outflow angle β2 changes gradually in this way, various dimensions can be found by calculations similar to the basic principle described above.
たとえば、出口縁13での昇圧ヘツドをより一層均一化
するため、または性能の改善等のために流出角β2を出
口縁13に沿つて漸次変化させようとする場合、円筒面
19と平面20との接点M8での流れ角β5を900よ
り小さい(あるいは大きい)角度にすればよい。この場
合の第7図に対応する相貫図を第10図に示す。ここで
は、平面20はW軸と平行で、かつV軸上の点S。にて
V軸と一定の角度を有して交わるように設定されている
。以下、各円錐面1511,1521,・・・,150
1と円筒面19および平面20との相貫線を同様な方法
で得れば、羽根11の流出角β2は各相貫点でβ2,,
β22,・・・,β2、のように漸次変化したものとな
り、さらに、第10図Cに示すように、接点M8から流
出点Nに至る間も、曲率半径ρが少しづつ変化するよう
な曲線(この場合、後方湾曲線)で滑らかに連結された
ものとなる。匁論、羽根11は円筒面19と平面20と
の接点M5l〜M5Oにおいても代数学で言う連続にな
つている。第11図は、第3図の羽根車にさらに円錐形
の中間板21が入り、羽根11が全周にわたつて111
および112に2分割されている。For example, when attempting to gradually change the outflow angle β2 along the outlet edge 13 in order to make the boost head at the outlet edge 13 more uniform or to improve performance, the cylindrical surface 19 and the flat surface 20 The flow angle β5 at the contact point M8 may be set to an angle smaller (or larger) than 900. A continuation diagram corresponding to FIG. 7 in this case is shown in FIG. Here, the plane 20 is parallel to the W axis and at a point S on the V axis. It is set to intersect with the V-axis at a constant angle. Below, each conical surface 1511, 1521, ..., 150
1 and the cylindrical surface 19 and the plane 20 are obtained in the same way, the outflow angle β2 of the blade 11 becomes β2, , at each mutual penetration point.
β22, . (In this case, they are connected smoothly by a backward curved line). In theory, the blade 11 is also continuous in terms of algebra at the contact points M5l to M5O between the cylindrical surface 19 and the plane 20. FIG. 11 shows that a conical intermediate plate 21 is further inserted into the impeller of FIG.
and 112.
事情によつては中間板を複数枚入れて羽根11をより多
く分割することもできる。これは、羽根11上の全部の
代表流線151〜150にわたつて1個の円筒面19と
1枚の平面20だけでは流入角β1,〜β1。や流出角
β21〜β2nの必要な変化を満たせない場合、互いに
異なる複数の円筒面および平面との相貫による羽根を用
いることができるからである。さらに他の理由は、中間
板21を介挿して羽根車自体の強度を増すためである。
この発明は上述の通り、直線径向型斜流送風機の羽根車
において、従来必要とされていた3次元曲面に代わり、
2次元曲面である円筒面の一部と2次元平面の一部とを
用いて理想的な3次元曲面羽根と同等の性能を発揮でき
るようにしたものである。Depending on the circumstances, it is also possible to insert a plurality of intermediate plates to divide the blade 11 into more parts. This means that if there is only one cylindrical surface 19 and one flat surface 20 across all the representative streamlines 151 to 150 on the blade 11, the inflow angles β1 to β1 will be the same. This is because, if the necessary changes in the flow angles β21 to β2n cannot be satisfied, blades formed by interpenetration with a plurality of mutually different cylindrical surfaces and planes can be used. Still another reason is that the intermediate plate 21 is inserted to increase the strength of the impeller itself.
As mentioned above, this invention replaces the conventionally required three-dimensional curved surface in the impeller of a linear radial mixed flow blower.
By using a part of the cylindrical surface, which is a two-dimensional curved surface, and a part of the two-dimensional plane, it is possible to exhibit the same performance as an ideal three-dimensional curved blade.
すなわち、羽根車内の気体通路中における各代表流線が
気体通路中に占める位置に応じて羽根の流入角および流
出角が漸次変化している上に、流入点付近の曲線も直線
径向型遠心送風機に見られるような単一半径の円弧かせ
いぜい2個の円弧を連結したようなものではなく、流体
力学的に理想に近い、曲率半径が弦長(羽根の流れ方向
長さ)に沿つて漸次変化する形状となつている。このよ
うに、従来3次元曲面羽根を必要とするために極めて製
作困難と考えられ、そのため、遠心送風機と軸流送風機
との中間的な高い性能を持つものとして期待されながら
製品化が行なわれなかつた直線径向型斜流送風機を、こ
の発明によれば、安価に製作できて工業的価値を高める
ことができる。In other words, the inlet and outlet angles of the blades gradually change depending on the position of each representative streamline in the gas passage in the impeller, and the curve near the inlet point also has a linear radial centrifugal shape. It is not an arc with a single radius or at most two arcs connected together as seen in blowers, but an arc with a radius of curvature along the chord length (the length of the blade in the flow direction), which is close to the hydrodynamic ideal. It has a shape that changes gradually. In this way, it was considered extremely difficult to manufacture because it required three-dimensionally curved blades, and for this reason, although it was expected to have a high performance intermediate between centrifugal fans and axial flow fans, it was not commercialized. According to the present invention, a linear radial type mixed flow blower can be manufactured at low cost and its industrial value can be increased.
第1図は直線径向型遠心送風機の羽根車の一部を示す縦
断面図、第2図は第1図の正面図、第3図は直線径向型
斜流送風機の羽根車の一部を示す縦断面図、第4図は第
3図の要部斜視図、第5図は第3図の代表流線151が
構成する円錐面15,1の平面展開図、第6図はこの発
明の原理を示す羽根車の羽根の製作を説明するための斜
視図、第7図A−Cおよび第8図A,Bは第6図の投影
図、第9図は同基本原理による直線径向型斜流送風機の
羽根車の一例を示す一部分の斜視図、第10図A−Cは
この発明の一実施例を示す第7図A−Cに対応した投影
図、第11図は中間板を介挿した羽根車の一例の一部を
示す縦断面図である。
11(111,112)・・・・・・羽根、12・・・
・・・入口縁、13・・・・・・出口縁、14I−1・
・・・・・回転軸心、151,152,・・・,15。Figure 1 is a longitudinal sectional view of a part of the impeller of a linear radial type centrifugal blower, Figure 2 is a front view of Figure 1, and Figure 3 is a part of the impeller of a linear radial type mixed flow fan. 4 is a perspective view of the main part of FIG. 3, FIG. 5 is a plan development view of the conical surface 15, 1 formed by the representative streamline 151 of FIG. 3, and FIG. 6 is a plan view of the present invention. Figures 7A-C and 8A and B are projection views of Figure 6, and Figure 9 is a straight radial view based on the same basic principle. A partial perspective view showing an example of an impeller of a type mixed flow blower, FIGS. 10A-C are projection views corresponding to FIGS. 7A-C showing an embodiment of the present invention, and FIG. 11 shows an intermediate plate. It is a longitudinal cross-sectional view which shows a part of example of the impeller inserted. 11 (111, 112) ... feather, 12 ...
...Entrance edge, 13...Exit edge, 14I-1.
...rotation axis, 151, 152,..., 15.
Claims (1)
斜流的気体通路を形成すべく回転軸心方向に距離を隔て
て同心的に配設された截頭円錐形の側板と、上記気体通
路内に上記回転軸心と同心の円周上に多数配設され、そ
のそれぞれが一方の側縁を上記主板に、他方の側縁を上
記側板に固定され、かつ、上記回転軸心寄りに気体の入
口縁を、反対側に気体の出口縁をもち、運転時この入口
縁から出口縁へ連続して気体が流れる羽根とを備え、上
記主板と側板が構成する両円錐面に対して、共通の1個
の円筒面とこの円筒面に接する1つの平面とを相貫させ
、上記円筒面の中心軸は、上記回転軸心に対して交差し
ないねじれた位置関係にあり、もつて上記相貫による各
相貫線を、羽根の入口縁に沿つて漸次変化すべき羽根の
流入点の流入角、羽根の出口縁に沿つて漸次変化すべき
羽根の流出点の流出角、ならびにこれら流入点と流出点
とを結んで上記円筒面上または平面上に位置する曲線に
それぞれ合致させ、上記円筒面および平面の一部で薄板
の羽根を形成したことを特徴とする直線径向型斜流送風
機の羽根車。1. A truncated conical main plate concentric with the rotation axis, and a truncated conical side plate arranged concentrically at a distance in the direction of the rotation axis to form a diagonal gas passage with the main plate. , are disposed in the gas passage on a circumference concentric with the rotation axis, each having one side edge fixed to the main plate and the other side edge fixed to the side plate, and each of which is fixed to the rotation axis. It has a gas inlet edge near the center and a gas outlet edge on the opposite side, and is equipped with a vane through which gas flows continuously from the inlet edge to the outlet edge during operation, and on both conical surfaces constituted by the main plate and the side plate. On the other hand, one common cylindrical surface and one plane in contact with this cylindrical surface are made to intersect with each other, and the central axis of the cylindrical surface is in a twisted positional relationship that does not intersect with the rotational axis. The inflow angle at the inlet point of the vane should gradually change along the inlet edge of the vane, the outflow angle at the outflow point of the vane should gradually change along the outlet edge of the vane, and A linear radial type characterized in that these inflow points and outflow points are connected to match curves located on the cylindrical surface or the plane, respectively, and a thin plate blade is formed by a part of the cylindrical surface and the plane. Impeller of mixed flow blower.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7816877A JPS5949438B2 (en) | 1977-06-29 | 1977-06-29 | Impeller of linear radial type mixed flow blower |
GB21834/78A GB1598616A (en) | 1977-06-29 | 1978-05-24 | Diagonal-flow fan wheel with blades of developable surface shape |
DE2826791A DE2826791C2 (en) | 1977-06-29 | 1978-06-19 | Fan wheel for a diagonal fan |
FR7818388A FR2396191A1 (en) | 1977-06-29 | 1978-06-20 | DIAGONAL FLOW FAN ROTOR WHOSE BLADES HAVE A DEVELOPABLE SURFACE |
BR7803987A BR7803987A (en) | 1977-06-29 | 1978-06-23 | DIAGONAL FLOW FAN WHEEL |
US05/918,556 US4274810A (en) | 1977-06-29 | 1978-06-23 | Diagonal-flow fan wheel with blades of developable surface shape |
US06/214,290 US4401410A (en) | 1977-06-29 | 1980-12-08 | Diagonal-flow fan wheel with blades of developable surface shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7816877A JPS5949438B2 (en) | 1977-06-29 | 1977-06-29 | Impeller of linear radial type mixed flow blower |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5413004A JPS5413004A (en) | 1979-01-31 |
JPS5949438B2 true JPS5949438B2 (en) | 1984-12-03 |
Family
ID=13654396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7816877A Expired JPS5949438B2 (en) | 1977-06-29 | 1977-06-29 | Impeller of linear radial type mixed flow blower |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5949438B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58208148A (en) * | 1982-05-28 | 1983-12-03 | Fujikura Ltd | Manufacture of optical fiber causing single polarization |
CN105351250A (en) * | 2015-12-18 | 2016-02-24 | 中车大连机车研究所有限公司 | Centrifugal type diagonal impeller |
-
1977
- 1977-06-29 JP JP7816877A patent/JPS5949438B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5413004A (en) | 1979-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5949437B2 (en) | mixed flow blower impeller | |
CN114519238B (en) | Full three-dimensional modeling method and device for high-performance impeller mechanical blade and electronic equipment | |
US10474787B2 (en) | Method for designing centrifugal pump and mixed flow pump having specific speed of 150-1200 | |
CN102575688B (en) | Centrifugal compressor diffuser | |
EP1507977B1 (en) | Discrete passage diffuser | |
US20030086788A1 (en) | Three dimensional blade | |
JP2011237971A (en) | Blade design device, blade design method, blade designed by the same and turbo machine using the same | |
KR20080018838A (en) | Axial flow fan and method for designing addition winglet thereof | |
CN101144487B (en) | Axial fan blade design method | |
CN106949095B (en) | The optimization method of Low-pressure axial fan impeller blade | |
JPH074371A (en) | Pumping, polyphase compression equipment and its application | |
US3743436A (en) | Diffuser for centrifugal compressor | |
JP2022515453A (en) | Modeling method for aero engine fan assembly | |
CN113898607B (en) | Blade intersecting line of impeller machine, design method of blade and blade of impeller machine | |
US4218190A (en) | Flat-bladed fan wheel of diagonal-flow fan | |
CN109812413A (en) | A kind of pump maximum form factor calculation method of rotor acquirement | |
US4401410A (en) | Diagonal-flow fan wheel with blades of developable surface shape | |
JPS5949438B2 (en) | Impeller of linear radial type mixed flow blower | |
CN112528427A (en) | Method for designing blade skeleton line of impeller machinery | |
US7179058B2 (en) | Aerodynamically wide range applicable cylindrical blade profiles | |
JPS5949439B2 (en) | Impeller of limit load type mixed flow blower | |
CN211449215U (en) | Despin structure, mixed flow fan assembly and air conditioner | |
CN107013490B (en) | A kind of optimization method of Low-pressure axial fan impeller blade | |
CA1134333A (en) | Radially curved axial crossections of tips and sides of diffuser vanes | |
CA1084458A (en) | Sawtoothed diffuser, vaned, for centrifugal compressors |