JPS5949401A - Three-stage pressure type exhaust gas economizer system - Google Patents

Three-stage pressure type exhaust gas economizer system

Info

Publication number
JPS5949401A
JPS5949401A JP57160270A JP16027082A JPS5949401A JP S5949401 A JPS5949401 A JP S5949401A JP 57160270 A JP57160270 A JP 57160270A JP 16027082 A JP16027082 A JP 16027082A JP S5949401 A JPS5949401 A JP S5949401A
Authority
JP
Japan
Prior art keywords
pipe
pressure side
steam
water
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57160270A
Other languages
Japanese (ja)
Inventor
浦川 治
緒方 正明
杉村 浩正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP57160270A priority Critical patent/JPS5949401A/en
Publication of JPS5949401A publication Critical patent/JPS5949401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は3段圧力式排ガスエコノマイサシステムに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a three-stage pressure exhaust gas economizer system.

従来、船舶等の大形ディーゼル機W!におい°Cは、排
カスエネルギを回収しUW気を作り、その蒸気で発電機
を駆動して電力を得る1段圧力式排ガスエコノマイザシ
ステム(熱回収システA ) カffi Jilされ°
Cいるが、最近の省エネルギ化に伴っc1中形及び小形
のディーゼル機関にも上記のような排ガス熱回収システ
ムが要望され°Cいる。しかし、近年ディーゼル機関の
燃費も向”」二し、排ガス温度も低くなつCきており、
従っ′C上記のような1段千力式排ガスエコノマイザシ
ステムヲ、ffJ q:to)よい中形及び小形ディー
ゼル機関(ガス温度が低く、ガス量が少ない)に採用す
る場合、熱回収を十分に行なうことができないという問
題があった。
Conventionally, large diesel aircraft such as ships W! The odor °C is a one-stage pressure exhaust gas economizer system (heat recovery system A) that recovers exhaust gas energy, creates UW air, and uses the steam to drive a generator to generate electricity.
However, with the recent trend toward energy conservation, there is a demand for exhaust gas heat recovery systems such as the one described above for medium-sized and small-sized diesel engines. However, in recent years, the fuel efficiency of diesel engines has improved and the exhaust gas temperature has become lower.
Therefore, when adopting a single-stage exhaust gas economizer system as described above in a good medium and small diesel engine (low gas temperature and small gas amount), sufficient heat recovery is required. The problem was that it couldn't be done.

そこで、本発明は上記問題を解消し得る3段圧力式排ガ
スエコノマイザシステムを提供することを目的とする。
Therefore, an object of the present invention is to provide a three-stage pressure exhaust gas economizer system that can solve the above problems.

即ち、本発明は排ガス放出管内に且つ下から上に向つC
順次、過熱管、高圧側蒸発管、中圧側蒸発ち″及び低圧
側1蒸発管を配置し、上記高圧側蒸発管と高圧側汽水分
離器とを第1温水管及び第1蒸気管で、上記中圧側蒸発
管と中圧側汽水分離器とを第2温水管及び第2蒸気管で
、上記低圧側蒸発管と低圧側汽水分前器とを第8温水管
及び第3蒸気管とでそれぞれ接続し、上記低圧側汽水分
離器に水を供給する第1給水管を設けると共に、上記@
2温水管途中に該第1給水管を加熱する1次熱交換器を
設け、を記高圧側及び中圧側汽水分離器に、1次熱交換
器により加熱された第1給水管内の温水の一部を供給す
る第2給水管を設けると共に、上記第2温水管υの1次
熱交換器より上流側4q置に、第2給水管内の温水をさ
らに加熱ずろ2次熱交換器を設け、上記高圧伸汽水分離
器内の高圧蒸気を上記過熱管を介し°CC蒸気ターノン
^水分離器内の中圧蒸気を一般使用若しくは上記蒸気タ
ービンに供することを特徴とする8段圧力式排ガスエコ
ノマイザシステムである。
That is, the present invention provides C in the exhaust gas discharge pipe from the bottom to the top.
A superheating tube, a high-pressure side evaporator tube, a medium-pressure side evaporator tube, and a low-pressure side 1 evaporator tube are arranged in sequence, and the high-pressure side evaporator tube and high-pressure side brackish water separator are connected to the first hot water tube and the first steam tube, and the Connect the medium pressure side evaporation pipe and the medium pressure side steam water separator with a second hot water pipe and a second steam pipe, and connect the low pressure side evaporation pipe and the low pressure side steam water preparator with an eighth hot water pipe and a third steam pipe, respectively. A first water supply pipe is provided to supply water to the low-pressure side brackish water separator, and the @
A primary heat exchanger that heats the first water supply pipe is installed in the middle of the second hot water pipe, and a part of the hot water in the first water supply pipe heated by the primary heat exchanger is supplied to the high-pressure side and intermediate-pressure side brackish water separators. At the same time, a second water supply pipe that supplies the hot water in the second water supply pipe is provided at a position 4q upstream from the primary heat exchanger of the second hot water pipe υ, and a secondary heat exchanger that further heats the hot water in the second water supply pipe, An 8-stage pressure exhaust gas economizer system characterized in that high-pressure steam in the high-pressure steam water separator is supplied to the CC steam turnon through the superheating pipe, and medium-pressure steam in the water separator is supplied for general use or to the steam turbine. be.

かかる構成によると、排ガスの熱を、高温、中温、低温
に亘つ′C広範囲に且つ効率よく熱回収を行なうことが
でき、また中圧側汽水分離器内の温水により各汽水分前
器への給水を加熱(7°C各汽水分離器内での蒸発量を
増大させることができると共に、中圧側蒸発管の入口部
温1(を下げて中圧(i1111000出入口温闇差を
広げ、もつ°C熱回収の効率を高めることができる。
According to this configuration, the heat of the exhaust gas can be efficiently recovered over a wide range of temperatures ranging from high temperature to medium temperature to low temperature, and the hot water in the medium pressure side brackish water separator can be used to transfer the heat to each brackish water preparator. Heating the feed water (7°C) can increase the amount of evaporation in each brackish water separator, and also lowers the temperature at the inlet of the medium pressure side evaporator pipe (1) to widen the temperature difference between the medium pressure (i1111000 inlet and outlet) and maintain The efficiency of C heat recovery can be increased.

以下、本発明の一実施例を第1図に基づき説明する。(
1)は例えば船舶等における主機(中形及び小形のディ
ーゼル機関)(2)からの排ガスを煙突(3)から放出
するための排ガス放出管で、この内扉には下から上に回
つ゛C順番に、過熱管(4)、高圧側蒸発管(5)、中
圧側蒸発w(6)及び低圧側蒸発管(7)がそれぞれ配
置され、また高圧側蒸発w(5)と高圧側汽水分角[器
(8)とは@1温水管り9)及び第1蒸気管Qlを介し
て接続され、中圧側蒸発管(6)と中圧側汽水分離器Q
pとは第2温水肯′0擾及び第2蒸気管0埠を介して接
続され、低圧側蒸発管(7)と低圧側汽水分離器0壬と
は第3温水管(IG及び第8蒸気管0峰を介し゛C接続
されCいる。(1カは上記第2温水管0の途中に設けら
;rL4.l−1次熱交換器、(ハ)は同じく第2温水
管C功途中の1次熱交換器O′hより上流側位置に設け
られた2次熱交換器である。09は上記低圧側蒸発管め
IF器O■に水を給水する第1給水管で、その途中には
1次熱交換器α力が介在させられ′Cいる。いりは上記
高圧側及び中圧側汽水分離器(8) (II)に、1次
熱交換器0柵こより加熱さnだ第1給水管0鳴内の温水
を供給する第2給水管で、その途中には上記2次熱交換
器(肋が介在させられCいる。従って、2次熱交換器0
榎を出た後の部分(下流倶nにおける第2給水’il−
a)は2本に分岐させられで、−万(20A)は高圧側
汽水分離器(8)に、池万(20B)は中圧側蒸発管4
iF器Oηにそれぞれ接続されCいる。G(1)は高圧
側汽水分角1「器(8)内の高圧蒸気を上記過斧・、+
I!(4)を介し“C蒸気・タービン(ハ)の高圧部に
導く高IF:蒸気供給管である。そし′C%蒸気タービ
ン@の低圧部には、但;圧蒸気供給管(ホ)を介しC低
圧側蒸発管め1イHαO内の低圧蒸気が導かれ、また中
圧側汽水分離器θυ内の中圧蒸気は、中圧蒸気供給管(
ハ)を介し°C所定の場所に等かれC一般便用され、ま
lコ余1ξ11中圧#気は上記然気タービンに)に供給
される。に)は蒸気タービンいに連結されtコ発電機、
(ハ)は蒸気タービン(イ)から出た蒸気を復水させる
復水器、@は復水器(ハ)からの水をドレンタンクに>
j+ <ドレン管である。また、@(イ)■は第1温水
管(9)、第2温水管0砂及び第3温水管に)途中に設
けられた循環水ポンプ、0υは第1給水管α1途中に設
けられた給水ポンプ、く0はドレン盲eカ途中に設けら
れた復水ポンプである。
An embodiment of the present invention will be described below with reference to FIG. (
1) is an exhaust gas discharge pipe for discharging exhaust gas from the main engine (medium and small diesel engine) (2) of a ship, etc. from the chimney (3). A superheating pipe (4), a high-pressure side evaporator pipe (5), a medium-pressure side evaporator w (6), and a low-pressure side evaporator pipe (7) are arranged in this order, and the high-pressure side evaporator w (5) and the high-pressure side brackish water The corner (8) is connected via the hot water pipe 9) and the first steam pipe Ql, and is connected to the medium pressure side evaporation pipe (6) and the medium pressure side brackish water separator Q.
The low pressure side evaporator pipe (7) and the low pressure side brackish water separator 0 are connected to the third hot water pipe (IG and the eighth steam pipe). (C) is connected to C through the pipe 0. (One part is installed in the middle of the second hot water pipe 0; rL4.L-1 primary heat exchanger, This is a secondary heat exchanger installed upstream of the primary heat exchanger O'h.09 is the first water supply pipe that supplies water to the IF device O■ to the low-pressure side evaporation pipe; The primary heat exchanger α force is interposed in the above-mentioned high-pressure side and intermediate-pressure side brackish water separators (8) (II). This is the second water supply pipe that supplies hot water inside the water supply pipe, and there is a secondary heat exchanger (a rib interposed therebetween) in the middle of the water supply pipe.Therefore, the secondary heat exchanger
The part after leaving Enoki (the second water supply in the downstream area)
a) is branched into two pipes, -1000 (20A) is connected to the high pressure side brackish water separator (8), and 2000 (20B) is connected to the medium pressure side evaporator pipe 4.
They are connected to the iF device Oη, respectively. G(1) is the high-pressure side steam moisture angle 1 "high-pressure steam in the vessel (8)
I! (4) is a high IF: steam supply pipe that leads to the high pressure part of the C steam turbine (C). The low-pressure steam in HαO is guided through the low-pressure side evaporation pipe (C), and the medium-pressure steam in the medium-pressure side brackish water separator θυ is guided through the medium-pressure steam supply pipe (
The medium pressure air is supplied to the above-mentioned natural air turbine through C) for general use. ) is connected to a steam turbine and a t-cogenerator,
(c) is a condenser that condenses the steam coming out of the steam turbine (a), @ is the water from the condenser (c) to the drain tank>
j+ <Drain pipe. In addition, @(a)■ is a circulating water pump installed in the middle of the first hot water pipe (9), second hot water pipe 0 sand, and third hot water pipe), and 0υ is a circulating water pump installed in the middle of the first water supply pipe α1. The water supply pump is a condensate pump installed midway through the drain blind.

なお、(2)は排ガス放出’i#+1)とは別個に設け
られたバイパスダクトで、例えばすすの発生し易い際に
、排ガスをバイパスさせC各蒸発fl (5) (6)
 (7)にすすが付着するのを防止するためのものであ
る。〈列(ハ)は排カス放lJt管(1)、バイパスダ
クト0.全のM+上下部設けら第1たタンパ−である。
Note that (2) is a bypass duct that is provided separately from the exhaust gas discharge 'i#+1), which bypasses the exhaust gas when soot is likely to be generated.
This is to prevent soot from adhering to (7). <Row (c) is the waste discharge lJt pipe (1), bypass duct 0. All M+ upper and lower parts are the first tamper.

次lid 、主$ +21の運動;時における熱回収作
用に一フいC説明すると、名汽水分111t W <8
)(11) Q6内の水け、それぞれ循環水ポンプM 
e?4 @hにより、各蒸発管(5)(6) (71に
送られC加熱され、蒸気となつ゛C各汽水分離1’ (
8)CI+) (+4)内に戻る。そして、高a側汽水
分離器(8)内の高圧蒸気(例えば6.51g/ca 
(ゲージ圧)。
Next lid, main motion of $ +21; One step C for heat recovery action at time.
) (11) Water drain in Q6, each circulating water pump M
e? 4 @h sends to each evaporator tube (5) (6) (71) and heats it, converting it into steam.
8) Return to CI+) (+4). Then, the high pressure steam (for example, 6.51 g/ca) in the high a side brackish water separator (8)
(gauge pressure).

166°CNンけ、過熱管(4)によりさらに(例えば
245°Cに11!1≠°1(されて蒸気タービン(イ
)の高B部に供給され、まに蒸気タービンいの低圧部に
は、低圧011IQ水分離器04)内からの低圧に3気
(例えばi kg/nl(ゲージ圧) 、 119°C
)が供給され、これら画然%+Cよツ’7: R<’!
気シタ−ビンハ)が回転させられると共に発電4・小(
ハ)が回転させられ゛C1効率よく熱回収が行なわれる
。蒸気・タービン?うを通過した蒸気は、?tJ水器6
1で復水させられ′Cドレンタンクに送られる。まtコ
、中圧■1゛1汽水の離型0】)内の中圧蒸気(例えば
4 kglol (ゲージ圧) 、 151°C)は、
pH尼(7) 場所に送らオ]C−rθ″使川さ用、ま
た9で一″つだ場合はノt、気ターヒン曽にシーられる
。更に、中圧(ijlへ水分ν11(器(11)内の温
水は、第24部本管<14途中に設りら旧コ1次及び2
次熱交換器θカθ台全介しC各?6(水分ト;:[器(
8> tll) tt美への六合水を力11−ノ4 シ
’Ct)るので、中月二イli:i魚タ11官(1υの
入[−1部における温水温1「は(「j’、 <なり、
従って中圧(till蒸発管(6)の出入に1のnjl
ず差が大きくなり、熱回収効率が良くなる。
166°CN is further heated (for example, 11!1≠°1) to 245°C by the superheating pipe (4) and then supplied to the high B section of the steam turbine (A), and then immediately to the low pressure section of the steam turbine (A). is 3 atmospheres (e.g. i kg/nl (gauge pressure), 119°C) to the low pressure from inside the low pressure 011IQ water separator
) is supplied, and these clearly %+Cyotsu'7: R<'!
At the same time, the electric power generation unit 4.
C) is rotated and heat recovery is performed efficiently. Steam/turbine? The steam that passed through the tJ water container 6
1, it is condensed and sent to the 'C drain tank. Medium pressure steam (e.g. 4 kglol (gauge pressure), 151°C) in medium pressure ■1゛1 Brackish water mold release 0]
pH (7) Sent to place O] C-rθ''Sagawa Sayo, and if there is one in 9, Not, it will be seen in the air. In addition, the hot water in the medium pressure (ijl) water ν11 (the hot water in the vessel (11) is installed in the middle of the 24th part main <14
Next heat exchanger θ and θ units all through C each? 6 (moisture): [vessel (
8 > tll) tt Beauty 6-go water is force 11-no4 shi'Ct), so the middle moon two li:i fish 11 official (1υ entry [-1 part warm water temperature 1" is ("j', <become,
Therefore, medium pressure (till 1 njl at the entrance and exit of the evaporation tube (6)
This increases the difference in heat recovery and improves heat recovery efficiency.

上6己イ’4 J戊(こよると、I非カスの熱k 、”
’l ’jbA %中希ま、低温に)工ってEC範囲に
且つ効率よく熱間((I4を行なうことができ、まtコ
中圧側汽水分111器内の泥水を(−より各汽水分離i
ツへの給水を加熱しC各f′:℃水分子f+it甜内で
の蒸’tl i4を増大さセることができると共(こ中
圧側蒸発管の入口部温度をドげC中圧側蒸発管の出入口
温度差を広げ、もつ°C熱回収の効率を高めることがで
きる。なお、第2図に従来のシステム(a)と本発明の
システム(1))における熱回収jをそれぞれ示す。
6th grade I'4 J 戊
'l'jbA % medium dilution, low temperature) to efficiently perform hot ((I4) within the EC range. separation i
It is possible to increase the evaporation in the water molecule f+it by heating the water supplied to the tube, and also to reduce the temperature at the inlet of the evaporator tube on the medium pressure side. It is possible to widen the temperature difference between the entrance and exit of the evaporation tube and increase the efficiency of heat recovery by °C. Figure 2 shows the heat recovery j in the conventional system (a) and the system (1) of the present invention, respectively. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実Mt1例を示す4(′を略系統図
、第211は従来のシステム(a)と本発明の、システ
ム0))との熱間1jv儂の比較を示す図である。 (1)・・・排ガス放出管、(4)・・・過熱管、(5
)・・・高圧11111蒸発管、(6)・・・中圧側蒸
発管、(7)・・・低圧側熱発着、(8)・・・高圧側
汽水分141C器、(9)・・・第1渇水管、(11・
・・第1蒸気管、(Ill・中圧1i111汽水分i’
ilt :青、a′4・・・第2温水管。 Q3・・・第2蒸気管、 (I4・・・低圧イ011汽
水分離器、(1つ・・・第3温水管、(1ト・・第3ズ
〜気管、αη・・・1次熱交換器2(至)・・・2次熱
交挟器、C11・・・第1給水管、0)・・・第2.給
水管 44+)・・・高圧zく気供給管、@・・・蒸気
ター]どン。 朝ト・・低圧蒸気イ1(給管、V◆・・・中正蒸気供給
管、Vl、・・発’1’lV桟 代理人  森 木 攬 弘
FIG. 1 is a diagram showing a comparison between the hot 1jv version of Mt1 example of the present invention and 4 (' is a schematic diagram, and 211 is the conventional system (a) and the present invention's system 0)). It is. (1)...Exhaust gas discharge pipe, (4)...Superheating pipe, (5
)...High pressure 11111 evaporator tube, (6)...Medium pressure side evaporation tube, (7)...Low pressure side heat absorption and adsorption, (8)...High pressure side steam moisture 141C vessel, (9)... No. 1 drought pipe, (11.
・・First steam pipe, (Ill・Intermediate pressure 1i111Brackish water i'
ilt: blue, a'4...second hot water pipe. Q3...Second steam pipe, (I4...Low pressure I011 brackish water separator, (1...Third hot water pipe, (1T...Third pipe - trachea, αη...Primary heat Exchanger 2 (to)... Secondary heat exchanger clamp, C11... 1st water supply pipe, 0)... 2nd water supply pipe 44+)... High pressure Z air supply pipe, @...・Steamer] Don. Morning...Low pressure steam I1 (supply pipe, V◆...Zhongzheng steam supply pipe, Vl...departure '1'lV pier agent Hiroshi Moriki

Claims (1)

【特許請求の範囲】[Claims] 1、 排ガス放出管内に且つ下から上に向って順次、過
熱管、高圧側蒸発管、中圧側蒸発管及び低圧側蒸発管を
配置し、上記高圧側蒸発管と高圧側汽水分離器とを第1
温水管及び第1蒸気管で、上記中圧側蒸発管と中圧側汽
水性Ilt器とを第2温水管及び第2蒸気管で、上記低
圧側蒸発管と低圧1141.1汽水分翻1器とを第8温
水管及び第3蒸気管とでそれぞれ接続し、上記低圧側汽
水分離器に水を供給する第1給水管を設けると共に、上
記第2温水管途中に該第1給水管を加熱する1次熱交換
器を設け、上記高圧側及び中圧側・汽水分離器に、1次
熱交換器により加熱された第1給水管内の温水の一部を
供給する第2給水管を設けると共に、上記第2温水管途
中の1次熱交換器より上流側位置に、第2給水管内の温
水をさらに加熱する2次熱交換器を設け、上記高圧側汽
水分離器内の高圧蒸気を上記過熱管を分圧側汽水分離器
内の低圧蒸気を蒸気タービンの低圧部に導き、更に上記
中圧側汽水分離器内の中圧蒸気を一般使用若しくは上記
蒸気タービンに供することを特徴とする3段圧力式排ガ
スエコノマイザシステム。
1. A superheating tube, a high-pressure side evaporation tube, an intermediate-pressure side evaporation tube, and a low-pressure side evaporation tube are arranged in the exhaust gas discharge pipe in order from bottom to top, and the high-pressure side evaporation pipe and high-pressure side brackish water separator are 1
The hot water pipe and the first steam pipe are used to connect the medium pressure side evaporation pipe and the medium pressure side brackish water Ilt vessel to the second hot water pipe and the second steam pipe, and the low pressure side evaporation pipe and the low pressure 1141.1 brackish water inverter are connected to the second hot water pipe and the second steam pipe. A first water supply pipe is provided which is connected to an eighth hot water pipe and a third steam pipe to supply water to the low pressure side brackish water separator, and the first water supply pipe is heated in the middle of the second hot water pipe. A primary heat exchanger is provided, and a second water supply pipe is provided for supplying a portion of the hot water in the first water supply pipe heated by the primary heat exchanger to the high pressure side and intermediate pressure side/brackish water separator, and the above-mentioned A secondary heat exchanger that further heats the hot water in the second water supply pipe is installed at a position upstream of the primary heat exchanger in the middle of the second hot water pipe, and the high pressure steam in the high pressure side brackish water separator is transferred to the superheating pipe. A three-stage pressure exhaust gas economizer characterized in that the low-pressure steam in the partial-pressure side brackish water separator is guided to the low-pressure part of the steam turbine, and the intermediate-pressure steam in the intermediate-pressure side brackish water separator is provided for general use or to the steam turbine. system.
JP57160270A 1982-09-13 1982-09-13 Three-stage pressure type exhaust gas economizer system Pending JPS5949401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57160270A JPS5949401A (en) 1982-09-13 1982-09-13 Three-stage pressure type exhaust gas economizer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57160270A JPS5949401A (en) 1982-09-13 1982-09-13 Three-stage pressure type exhaust gas economizer system

Publications (1)

Publication Number Publication Date
JPS5949401A true JPS5949401A (en) 1984-03-22

Family

ID=15711364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57160270A Pending JPS5949401A (en) 1982-09-13 1982-09-13 Three-stage pressure type exhaust gas economizer system

Country Status (1)

Country Link
JP (1) JPS5949401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8727713B2 (en) 2010-03-26 2014-05-20 Hitachi, Ltd. Rotor oscillation preventing structure and steam turbine using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8727713B2 (en) 2010-03-26 2014-05-20 Hitachi, Ltd. Rotor oscillation preventing structure and steam turbine using the same

Similar Documents

Publication Publication Date Title
JPS6213485B2 (en)
DK153239B (en) PROCEDURE FOR RECOVERY OF ENERGY IN A POWER GENERATOR AND A POWER GENERATOR FOR USE IN THE PROCEDURE
US6408612B2 (en) Gas and steam-turbine plant
US4387577A (en) Boilers
US6363710B1 (en) Gas and steam-turbine plant
JPH03221702A (en) Duplex type heat exchanger for waste heat recovery
JPS5949401A (en) Three-stage pressure type exhaust gas economizer system
CN202511307U (en) Compound phase change heat exchange system for recycling boiler flue gas waste heat
JPH05203792A (en) Power plant equipment and operation thereof
US3161572A (en) Nuclear reactor plant for utilizing heat generated therein
JPS58107803A (en) Power generation plant
JPH0440524B2 (en)
JPS6160242B2 (en)
JPH0233568A (en) Method of recovering and utilizing waste heat
KR880000050B1 (en) Apparatus of recovering of the waste energy
JPS58143114A (en) Waste heat recovery plant for diesel engine
GB866939A (en) Method for the conversion of excess energy from nuclear power
JPS6027317Y2 (en) Solar thermal steam generator
JPS59225203A (en) Device for recovering waste heat
KR20190030918A (en) Combined cycle gas power plant
CN208139239U (en) A kind of low grade residual heat steam is applied to high parameter steam generating system
JPS6365819B2 (en)
JPS6319683Y2 (en)
JPH0529015A (en) Fuel cell power generation system
JPS6098178A (en) Geothermal electric power plant