JPS5949365A - Discharge amount adjusting device in fuel injection pump - Google Patents

Discharge amount adjusting device in fuel injection pump

Info

Publication number
JPS5949365A
JPS5949365A JP15942182A JP15942182A JPS5949365A JP S5949365 A JPS5949365 A JP S5949365A JP 15942182 A JP15942182 A JP 15942182A JP 15942182 A JP15942182 A JP 15942182A JP S5949365 A JPS5949365 A JP S5949365A
Authority
JP
Japan
Prior art keywords
valve member
fuel
plunger
discharge amount
adjusting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15942182A
Other languages
Japanese (ja)
Other versions
JPS6337257B2 (en
Inventor
Masahiro Honma
正宏 本間
Iwane Inokuchi
井之口 岩根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15942182A priority Critical patent/JPS5949365A/en
Publication of JPS5949365A publication Critical patent/JPS5949365A/en
Publication of JPS6337257B2 publication Critical patent/JPS6337257B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/10Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor
    • F02M41/12Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor
    • F02M41/123Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor characterised by means for varying fuel delivery or injection timing
    • F02M41/125Variably-timed valves controlling fuel passages
    • F02M41/126Variably-timed valves controlling fuel passages valves being mechanically or electrically adjustable sleeves slidably mounted on rotary piston

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To simplify the structure of a discharge adjusting device, by directly displacing a valve member by means of a permanent magnet and energizing current for electro-magnet coils so that, even when one of the electro-magnet coils fails, the other one thereof is energized to displace the valve member. CONSTITUTION:A sleeve valve 30 in which magnetic pole pieces 32a, 32b are secured to both end faces of a permanent magnet 31, is alidably fitted onto the outer periphery of a plunger 3 in the axial direction thereof. A cover yoke 35 which is secured to an outer casing 17 by means of screws, surrounds a pair of cylindrical electo-magnet coils 33, 34 arranged to face the outer periphery of the sleeve 30. A magnetic stay 36 secured to the pole piece 32a, is projected outward, radially of the plunger 3, and a magnetic position sensor 37 is attached to a bracket 17b in the position corresponding to the front end of part of the stay 36. A detection signal from the position sensor 36 is used as a feed-back signal. During the adjustment of discharge amount, if the wire of the electro- magnet coil 33 is broken in the energizing condition of the electro-magnet coils 33, 34, the sleeve valve 30 is successively displaced in the direction B since the electro-magnet coil 34 is energized with the same polarity as that of the coil 33.

Description

【発明の詳細な説明】 この発明は、ディーゼル機関等における燃料噴射ポンプ
の燃料吐出量を調整する吐出量調整装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a discharge amount adjusting device for adjusting the fuel discharge amount of a fuel injection pump in a diesel engine or the like.

従来の燃料噴射ポンプの吐出量調整装置としては、例え
ば特公昭55−31307号公報に記載されているよう
に、第1図(イ)、(ロ)に示すようなものがある。
As a conventional fuel injection pump discharge amount adjusting device, there is one shown in FIGS. 1(a) and 1(b), as described in, for example, Japanese Patent Publication No. 55-31307.

すなわち、この燃料噴射ポンプ1は、エンジンのドライ
ブシャフトに連結されたカムディスク20回転によって
、軸方向の往復移動および回転運動を行なうようになっ
ているプランジャ3を有しており、吸入行程では、プラ
ンジャ6が左側に移動して、吸入縦溝4が燃料流入通路
5と一致するとプランジャ6の動作空間6へ燃料が吸入
される。
That is, this fuel injection pump 1 has a plunger 3 that performs axial reciprocating movement and rotational movement by 20 rotations of a cam disk connected to the drive shaft of the engine. When the plunger 6 moves to the left and the suction vertical groove 4 coincides with the fuel inflow passage 5, fuel is sucked into the operating space 6 of the plunger 6.

次に、吐出行程では、プランジャ3が右側に移動して吸
入された燃料を加圧し、加圧された燃料は縦通路7を介
し、吐出縦溝8が吐出通路9と一致したときに逆1ト弁
10を経て対応する気筒の噴射弁(図示していない)へ
吐出される。
Next, in the discharge stroke, the plunger 3 moves to the right to pressurize the inhaled fuel, and the pressurized fuel passes through the vertical passage 7, and when the discharge vertical groove 8 coincides with the discharge passage 9, the plunger 3 moves to the right side and pressurizes the sucked fuel. The fuel is discharged through the exhaust valve 10 to the injection valve (not shown) of the corresponding cylinder.

この場合、噴射ポンプの吐出終了は、プランジャ乙に設
けた燃料逃がし通路11を介してポンプの動作空間6内
の燃料をポンプ外筐内の空間へ逃がすことによって行な
われるが、この燃料逃がし通路11を開(時期は、プラ
ンジャ乙の外周に摺動可能に嵌装された円筒状弁部材(
スリーブ弁)12の軸方向の変位により変化され、それ
によって燃料の吐出量が調整される。
In this case, the discharge of the injection pump is completed by releasing the fuel in the operating space 6 of the pump to the space inside the pump outer casing via the fuel escape passage 11 provided in the plunger B. Open the cylindrical valve member (slidably fitted around the outer periphery of the plunger B).
The displacement of the sleeve valve 12 in the axial direction adjusts the amount of fuel discharged.

この従来例において、この弁部材12を操作する機構は
、円筒状空隙をもつ鉄心16上に巻かれた二つのコイル
14.15を不する電磁石と、この空隙内において回転
軸16によって外筐部17に回転自在に支承された回転
永久磁石18とからなるトルクモータを用いている。
In this conventional example, the mechanism for operating the valve member 12 consists of an electromagnet having two coils 14 and 15 wound around an iron core 16 having a cylindrical gap, and an outer casing mounted by a rotating shaft 16 within the gap. A torque motor consisting of a rotating permanent magnet 18 rotatably supported by a magnet 17 is used.

このトルクモータの回転軸16の下端には扇形片19が
偏心して取付けられ、この扇形片19の中心軸より偏よ
って固定された球状保合片20が、弁部材12の穴21
にはまっており、回転永久磁石18の回転運動を弁部材
12へ伝達して軸線方向へ変位させるようになっている
A fan-shaped piece 19 is attached eccentrically to the lower end of the rotating shaft 16 of the torque motor, and a spherical retaining piece 20 fixed eccentrically from the central axis of the fan-shaped piece 19 is attached to the hole 20 of the valve member 12.
The rotary permanent magnet 18 is fitted into the valve member 12 so that the rotational movement of the rotating permanent magnet 18 is transmitted to the valve member 12 to cause the valve member 12 to be displaced in the axial direction.

電磁石のコイル14.15は、増幅器22を介して制御
装置26の出力端に接続されている。この制御装置26
には、内燃機関の作動パラメータ(運転条件)として例
えば、回転数センサ25がらの機関回転数信号2発振器
26からの加速ペダル位置信号、その他図示していない
が吸気管負圧。
The electromagnetic coil 14 , 15 is connected via an amplifier 22 to an output of a control device 26 . This control device 26
The operating parameters (operating conditions) of the internal combustion engine include, for example, an engine rotation speed signal from a rotation speed sensor 25, an accelerator pedal position signal from an oscillator 26, and other intake pipe negative pressure (not shown).

機関温度あるいは周囲温度等に関する信号が入力として
与えられ、増幅器22を介してこれらの作動パラメータ
に対応した電流を供給して、これに応じた操作力で回転
永久磁石18を回転させるものである。
A signal relating to engine temperature or ambient temperature is given as an input, and a current corresponding to these operating parameters is supplied via an amplifier 22 to rotate the rotating permanent magnet 18 with a corresponding operating force.

回転センサ25は、エンジンのドライブシャフトに取付
けた歯付き円板24に対向して配置され、磁石25aに
巻回した誘導コイル251)からエンジンの回転数に比
例した電圧を発生し、それを制御装置26へ入力する。
The rotation sensor 25 is arranged facing a toothed disk 24 attached to the drive shaft of the engine, and generates a voltage proportional to the engine rotation speed from an induction coil 251) wound around a magnet 25a, and controls it. input to device 26;

また、弁部材12の位置制御のためのフィードバック信
号を発生する位置センサ27は、回転永久磁石18の回
転をカム板29.ロッド27a及びばね271)によっ
てフェライト磁心27Cの直線変位に変換して、発振器
28から給電される2個のインダクタンスコイル27d
、27eによって間接的に弁部材12の位置を検出して
いる。
Further, a position sensor 27 that generates a feedback signal for controlling the position of the valve member 12 controls the rotation of the rotating permanent magnet 18 from the cam plate 29 . The rod 27a and the spring 271) convert the linear displacement of the ferrite magnetic core 27C into two inductance coils 27d, which are supplied with power from the oscillator 28.
, 27e, the position of the valve member 12 is indirectly detected.

しかしながら、このような従来の燃料噴射ポンプの吐出
量制御装置では、弁部材12を変位させるためにトルク
モータを用いて、その回転力を回転軸16.偏心扇形片
199球状保合片20等の部材を介して弁部材12に伝
達しているので、機構が複雑であるし、各部材間で機械
的誤差が生ずるため高精度の調整を行なうことができな
かった。
However, in such a conventional fuel injection pump discharge amount control device, a torque motor is used to displace the valve member 12, and the torque is applied to the rotation shaft 16. Since the signal is transmitted to the valve member 12 through members such as the eccentric fan-shaped piece 199 and the spherical retaining piece 20, the mechanism is complicated and mechanical errors occur between each member, making it difficult to perform highly accurate adjustment. could not.

また、トルクモータが故障した場合に、弁部材12を変
位させることができな(なるため、燃料吐出量が多い状
態のままになって機関を暴走させる恐れがあるという問
題もあった。
Furthermore, if the torque motor fails, the valve member 12 cannot be displaced (therefore, the amount of fuel discharged remains high and there is a risk that the engine may run out of control).

この発明は、上記の点に鑑みてなされたもので、上述の
ような燃料噴射ポンプにおける吐出量調整装置の構造を
簡単にしてコスト低減を計ると共に調整精度を向上させ
、安全性も向上させることを目的とする。
This invention has been made in view of the above points, and an object of the present invention is to simplify the structure of the discharge amount adjusting device in the above-mentioned fuel injection pump, reduce costs, improve adjustment accuracy, and improve safety. With the goal.

そのため、この発明による燃料噴射ポンプの吐出量調整
装置は、上述した吐出量調整用の円筒状弁部材(スリー
ブ弁)を円筒状永久磁石によっであるいは円筒状永久磁
石と一体に構成し、この弁部材の外周に間隔を置いて対
向する一対の電磁コイルを設け、内燃機関の作動パラメ
ータ(運転条件)に関連してこの一対の電磁コイルの励
磁電流を変化させて、弁部材を駆動力伝達機構を介する
ことな(直接変位させるようにすると共に、上記一対の
電磁コイルのいずれか一方が故障した時にも、他方の電
磁コイルを励磁して弁部材を変位させ得るようにしたも
のである。
Therefore, in the fuel injection pump discharge amount adjusting device according to the present invention, the above-mentioned cylindrical valve member (sleeve valve) for adjusting the discharge amount is constituted by a cylindrical permanent magnet or integrally with a cylindrical permanent magnet. A pair of electromagnetic coils are provided on the outer periphery of the valve member, facing each other at a distance, and the excitation current of the pair of electromagnetic coils is changed in relation to the operating parameters (operating conditions) of the internal combustion engine to transmit driving force to the valve member. In addition to directly displacing the valve member without using a mechanism, even if one of the pair of electromagnetic coils fails, the other electromagnetic coil can be energized to displace the valve member.

以下、第2図以降を参照して、この発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to FIG. 2 and subsequent figures.

第2図は、この発明の一実施例を示す燃料噴射ポンプの
吐出量調整装置部分の縦断面図であり、第1図(ロ)と
対応する部分には同一符号を付してあシ、それらの説明
は省略する。
FIG. 2 is a longitudinal sectional view of a discharge amount adjusting device portion of a fuel injection pump showing an embodiment of the present invention, and parts corresponding to those in FIG. Their explanation will be omitted.

この実施例において、プランジャ乙に設けられた燃料逃
がし通路11の開閉を行なう円筒状弁部材であるスリー
ブ弁60は、円筒状の永久磁石31の両端面に磁性体か
らなるリング状のポールピース32a、32b’に固着
して構成され、プランジャ乙の外周に軸方向に摺動自在
に嵌装されている。
In this embodiment, the sleeve valve 60, which is a cylindrical valve member that opens and closes the fuel escape passage 11 provided in the plunger B, has a ring-shaped pole piece 32a made of a magnetic material on both end surfaces of a cylindrical permanent magnet 31. , 32b', and is fitted to the outer periphery of the plunger B so as to be slidable in the axial direction.

このスリーブ弁60の永久磁石61は、例えば図で左側
のポールピース32a’kN極、右側のポールピース3
2bffiS極にするように着磁されている。
The permanent magnet 61 of this sleeve valve 60 is, for example, the left pole piece 32a'k N pole and the right pole piece 3 in the figure.
It is magnetized to make it 2bffiS pole.

一方、このスリーブ弁30を左右に変位させるために、
このスリーブ弁60の外周に間隔を置いて対向する一対
の円筒状電磁コイル33.34を設け、その外周を磁路
とコイルの保護を兼ねる外被ヨーク65で取囲み、その
ヨーク35を外筐部17にねじ止め固定している。
On the other hand, in order to displace this sleeve valve 30 from side to side,
A pair of cylindrical electromagnetic coils 33 and 34 are provided on the outer periphery of this sleeve valve 60, facing each other with an interval, and the outer periphery is surrounded by an outer yoke 65 that serves as a magnetic path and protection for the coil. It is fixed to section 17 with screws.

この永久磁石61からなるスリーブ弁30と、左右一対
の電磁コイル33.34とによって吐出量調整装置の主
要部を構成している。
The sleeve valve 30 made of the permanent magnet 61 and the pair of left and right electromagnetic coils 33 and 34 constitute the main part of the discharge amount adjusting device.

また、スリーブ弁60のポールピース328に磁性体の
ステイ66を固設してプランジャ乙の径方向の外方へ突
出させ、その先端部に対向して、スリーブ弁60の変位
を非接触で検出する磁気センサによる位置センサ67を
、外筐部17と一体のブラケツ)17bに取付けて配設
している。
In addition, a magnetic stay 66 is fixed to the pole piece 328 of the sleeve valve 60 so as to protrude outward in the radial direction of the plunger B, and the displacement of the sleeve valve 60 is detected in a non-contact manner by facing the tip of the magnetic stay 66. A position sensor 67, which is a magnetic sensor, is attached to a bracket 17b that is integrated with the outer casing 17.

そして、この位置センサ36からの検出信号をフィード
バック信号として使用する。なお、68はプランジャス
プリング、39はスプリング受板である。
The detection signal from this position sensor 36 is then used as a feedback signal. Note that 68 is a plunger spring, and 39 is a spring receiving plate.

第3図は、この吐出量調整装置の駆動制御回路を示すブ
ロック図である。
FIG. 3 is a block diagram showing a drive control circuit of this discharge amount adjusting device.

41は高周波発生回路であシ、第1駆動回路50及び第
2駆動回路51を作動させる高周波矩形波信号を出力す
る。
Reference numeral 41 denotes a high frequency generation circuit, which outputs a high frequency rectangular wave signal for operating the first drive circuit 50 and the second drive circuit 51.

42は三角波信号を出力する三角波発生回路、46はス
リーブ弁60の目標値信号を出力する指令回路、44は
第2図の位置センサ67を含む位置検出回路で、実際の
スリーブ弁位置を検出して実在値信号を出力する。
42 is a triangular wave generation circuit that outputs a triangular wave signal, 46 is a command circuit that outputs a target value signal for the sleeve valve 60, and 44 is a position detection circuit including the position sensor 67 shown in FIG. 2, which detects the actual sleeve valve position. outputs the real value signal.

45は偏差増幅回路であシ、指令回路46からの目標値
信号SOと位置検出回路44からの実在値信号SFとの
偏差に応じた偏差信号を出力する。
Reference numeral 45 denotes a deviation amplification circuit, which outputs a deviation signal corresponding to the deviation between the target value signal SO from the command circuit 46 and the actual value signal SF from the position detection circuit 44.

46は比較回路であり、三角波発生回路42かもの三角
波信号と偏差増幅回路45かもの偏差信号とを比較して
、偏差信号を所定の周期でその偏差の大小に応じたパル
ス幅のパルス信号に変換するパルス幅変調回路の作用を
なす。
46 is a comparison circuit which compares the triangular wave signal of the triangular wave generating circuit 42 and the deviation signal of the deviation amplifying circuit 45, and converts the deviation signal into a pulse signal having a pulse width corresponding to the magnitude of the deviation at a predetermined period. It acts as a converting pulse width modulation circuit.

47はアンド回路であり、比較回路46の出力と高周波
発生回路41からの高周波矩形波信号とのアンドをとっ
て駆動用信号を出力する。
47 is an AND circuit, which performs an AND operation between the output of the comparator circuit 46 and the high frequency rectangular wave signal from the high frequency generation circuit 41, and outputs a driving signal.

48は、指令回路46からの目標値信号Soと位置検出
回路44からの実在値信号SFの大小を比較する比較回
路である。
48 is a comparison circuit that compares the magnitude of the target value signal So from the command circuit 46 and the actual value signal SF from the position detection circuit 44.

49は選択回路であり、比較回路48からの出力に応じ
て、アンド回路47からの駆動用信号Aを第1.第2の
駆動回路50.51に選択的に与えて電磁コイル33.
34に流す励磁電流の向きを制御する。
49 is a selection circuit which selects the drive signal A from the AND circuit 47 according to the output from the comparison circuit 48. selectively applied to the second drive circuit 50.51 and the electromagnetic coil 33.
The direction of the excitation current applied to 34 is controlled.

第4図は、この選択回路49と第1.第2駆動回路50
,51.及び比較回路48の具体例を示す回路図である
FIG. 4 shows this selection circuit 49 and the first . Second drive circuit 50
,51. 2 is a circuit diagram showing a specific example of a comparison circuit 48. FIG.

比較回路48は、目標値SOが実在値SFよシ大きい時
は出力りをローレベル′″L″にし、目標値Soが実在
値5prp小さい時は出力りをハイレベル′H#にする
The comparison circuit 48 sets the output to a low level ``L'' when the target value SO is larger than the actual value SF, and sets the output to a high level ``H#'' when the target value So is smaller than the actual value 5 prp.

選択回路49は、比較回路48の出力りによって、例え
ばオン・オフを逆に制御される1対のアナログスイッチ
からなる切換スイッチ回路によって構成され、第6図の
アンド回路47がらの駆動用信号A−i出力線B又はC
に切換えて出力する。
The selection circuit 49 is constituted by a changeover switch circuit consisting of a pair of analog switches whose ON and OFF states are reversely controlled, for example, by the output of the comparison circuit 48, and receives the driving signal A from the AND circuit 47 in FIG. -i output line B or C
Switch to output.

第1駆動回路50はトランジスタTrzと肯2、第2駆
動回路51はトランジスタTr3とTr4によってそれ
ぞれ並列接続された電磁コイル33.34に反対方向に
励磁電流を流すようにブリッジ回路を構成している。
The first drive circuit 50 has transistors Trz and 2, and the second drive circuit 51 has transistors Tr3 and Tr4, which form a bridge circuit so that excitation current flows in the opposite direction to the electromagnetic coils 33 and 34 connected in parallel. .

次に、この実施例の動作を第5図及び第6図も参照して
説明する。
Next, the operation of this embodiment will be explained with reference also to FIGS. 5 and 6.

いま、指令回路46から機関の作動パラメータ(運転条
件)、例えば、回転数、アクセルペダル位置、吸気管負
圧2機関源度等に応じて最適の燃料吐出量を与えるだめ
のスリーブ弁60の位置の目標値が出力されると、初期
状態はスリーブ弁60が左端位置にあシ、位置検出回路
44からの実在値信号SFは0であるから、偏差増幅回
路45の出力は大きくなり、比較回路48の出力りがQ
 L I+になる。
Now, the command circuit 46 determines the position of the sleeve valve 60 that provides the optimum fuel discharge amount according to the operating parameters (operating conditions) of the engine, such as engine speed, accelerator pedal position, intake pipe negative pressure, engine power level, etc. When the target value is output, the sleeve valve 60 is initially at the left end position and the actual value signal SF from the position detection circuit 44 is 0, so the output of the deviation amplification circuit 45 becomes large and the comparison circuit The output of 48 is Q
It becomes L I+.

この場合、選択回路49によって駆動用信号Aが出力線
Bに出力され、第1駆動回路50のトランジスタTr1
. Trzがオンしく実際には高周波パルスによジオン
・オフを繰返す)、電磁コイル36゜64にそれぞれ第
4図に実線矢印で示す方向の励磁電流を流し、第5図(
イ)に示すように相隣接する部分にS極を、外側端部に
N極を発生させる。
In this case, the selection circuit 49 outputs the drive signal A to the output line B, and the transistor Tr1 of the first drive circuit 50
.. When the Trz is turned on and actually turns on and off repeatedly due to high-frequency pulses), excitation current is applied to the electromagnetic coil 36°64 in the direction shown by the solid arrow in Fig. 4, and as shown in Fig. 5 (
As shown in b), S poles are generated in adjacent parts and N poles are generated at the outer ends.

それによって、スリーブ弁30が矢示A方向に変位する
ように力を受けて、プランジャ乙の軸方向に右行する。
Thereby, the sleeve valve 30 receives a force so as to be displaced in the direction of the arrow A, and moves to the right in the axial direction of the plunger B.

そして、スリーブ弁30が目標位置に達すると、位置検
出回路44からの実在値信号が目標値信号と一致するた
め、偏差増幅回路45の出力が0になシ1.駆動用信号
Aが出力されなくなるので、選択回路49は第1.第2
駆動回路50゜51へ作動信号を出力しな(なり、電磁
コイル63゜34に励磁電流が流れなくなる。
When the sleeve valve 30 reaches the target position, the actual value signal from the position detection circuit 44 matches the target value signal, so the output of the deviation amplification circuit 45 becomes 0.1. Since the drive signal A is no longer output, the selection circuit 49 selects the first. Second
No activation signal is output to the drive circuits 50, 51 (and no excitation current flows to the electromagnetic coils 63, 34).

逆に、スリーブ弁30が目標値よ勺も図で右方へ行きす
ぎると、位置検出回路44からの実在値信号SFが目標
値信号SOより太き(な9、比較回路48の出力が″′
H#になるので、選択回路49は偏差に応じた1駆動用
信号Ai出力線Cに出力する。
On the other hand, if the sleeve valve 30 moves too far to the right in the figure than the target value, the actual value signal SF from the position detection circuit 44 becomes thicker than the target value signal SO (9, the output of the comparison circuit 48 becomes ′
Since it becomes H#, the selection circuit 49 outputs the 1 drive signal Ai to the output line C according to the deviation.

したがって、第2駆動回路51のトランジスタTr+、
 Tr4がオンし、電磁コイル33,34にそれぞれ第
4図に破線矢印で示す方向の励磁電流を流し、第5図(
ロ)に示すように相隣る部分にN極を、外側端部にS極
を発生させる。
Therefore, the transistor Tr+ of the second drive circuit 51,
Tr4 is turned on, and excitation current is passed through the electromagnetic coils 33 and 34 in the directions shown by the broken line arrows in FIG.
As shown in b), N poles are generated in adjacent portions and S poles are generated at the outer ends.

それによって、スリーブ弁30は矢示B方向に変位する
ように力を受けて、プランジャ乙の軸方向に左行する。
As a result, the sleeve valve 30 receives a force so as to be displaced in the direction of the arrow B, and moves to the left in the axial direction of the plunger B.

このようにして、スリーブ弁60の位置が常に目標値に
なるように制御することによって、燃料吐出量を機関の
作動パラメータに対して最適量に調整することができる
In this way, by controlling the position of the sleeve valve 60 so that it is always at the target value, the fuel discharge amount can be adjusted to the optimal amount with respect to the operating parameters of the engine.

ところで、このような吐出量調整動作中に、例えば第5
図(ロ)に示したように電磁コイル33.34を励磁し
ている状態で第1の電磁コイル66が断線等の故障を起
した場合は、第2の電磁コイル64は第6図(イ)に示
すような極性で励磁されているため、引続きスリーブ弁
60を矢示B方向に変位させることができる。
By the way, during such a discharge amount adjustment operation, for example, the fifth
If the first electromagnetic coil 66 has a failure such as disconnection while the electromagnetic coils 33 and 34 are being excited as shown in Figure (B), the second electromagnetic coil 64 will be activated as shown in Figure 6 (I). ), the sleeve valve 60 can be continuously displaced in the direction of arrow B.

また、第2の電磁コイル64が故障したときには、第1
の電磁コイル63が第6図(ロ)に示すような極性で励
磁されているため、やはり引続きスリーブ弁30を矢示
B方向に変位させることができる。
Further, when the second electromagnetic coil 64 fails, the first electromagnetic coil 64
Since the electromagnetic coil 63 is excited with the polarity shown in FIG. 6(b), the sleeve valve 30 can still be displaced in the direction of arrow B.

第5図(イ)に示したように電磁コイル33.34を励
磁している状態で、電磁コイル33.34の一方が断線
した場合にも、残りの電磁コイルのみによって引続きス
リーブ弁60を矢示A方向に変位させることができる。
As shown in FIG. 5(a), even if one of the electromagnetic coils 33, 34 is disconnected while the electromagnetic coils 33, 34 are energized, the sleeve valve 60 will continue to be operated by the remaining electromagnetic coil only. It can be displaced in the direction indicated by A.

このように、一対の電磁コイル36,34のいずれか一
方が故障した時に、他方の電磁コイルのみによっても引
続きスリーブ弁30を変位させることができるので、燃
料が過大に吐出し続けて機関が暴走するような恐れはな
い。
In this way, when either one of the pair of electromagnetic coils 36, 34 fails, the sleeve valve 30 can be continuously displaced only by the other electromagnetic coil, so that excessive fuel continues to be discharged and the engine goes out of control. There is no fear that it will.

なお、電磁コイル33.34の一方が断線等の故障を起
した時には、それを検出して、他方の電磁コイルを必ず
第6図(イ)又は(ロ)に示すように励磁して、スリー
ブ弁30をプランジャ乙の燃料逃がし通路11を開く方
向へ変位させ、燃料の吐出を停止させるようにしてもよ
い。
In addition, if one of the electromagnetic coils 33 or 34 has a failure such as a disconnection, it will be detected and the other electromagnetic coil will be energized as shown in Figure 6 (a) or (b) to remove the sleeve. The valve 30 may be displaced in the direction of opening the fuel relief passage 11 of the plunger B to stop the discharge of fuel.

第7図は、この発明の他の実施例のスリーブ弁を示す。FIG. 7 shows a sleeve valve according to another embodiment of the invention.

このスリーブ弁60は、プランジャ乙に直接摺接する部
分が円筒状非磁性体67であり、その外周に円筒状永久
磁石61を一体に嵌着し、その両端面にリング状のポー
ルピース32 a 、32bを固着している。
This sleeve valve 60 has a cylindrical non-magnetic material 67 in the part that directly comes into sliding contact with the plunger B, a cylindrical permanent magnet 61 is integrally fitted on its outer periphery, and ring-shaped pole pieces 32 a are attached to both end surfaces of the sleeve valve 60 . 32b is fixed.

このようにすれば、プランジャ6が磁性体であつても永
久磁石610両極間に閉磁路が形成されることがなくな
るので、スリーブ弁30を変位させる推力を大きくでき
、応答性が向上する。
In this way, even if the plunger 6 is made of a magnetic material, a closed magnetic path will not be formed between the two poles of the permanent magnet 610, so the thrust force for displacing the sleeve valve 30 can be increased, and responsiveness can be improved.

第8図は、この発明のさらに他の実施例を示し、スリー
ブ弁300図で右側のポールピースとプランジャ収納部
材17aとの間に圧縮コイルスプリング52を介装し、
その弾撥力でスリーブ弁60をプランジャ乙に設けた燃
料逃がし通路11を開く方向(図で左方)に付勢するよ
うにし、たものである。
FIG. 8 shows still another embodiment of the present invention, in which a compression coil spring 52 is interposed between the right pole piece and the plunger storage member 17a in the sleeve valve 300 view.
The repulsive force biases the sleeve valve 60 in the direction of opening the fuel escape passage 11 provided in the plunger B (leftward in the figure).

このようにすれば、一対の電磁コイル33.34が両方
共故障しても、スプリング68による付勢力でスリーブ
弁が左方に変位して燃料逃がし通路11を開き、燃料を
ポンプ空間に逃がして吐出を停止させることができる。
In this way, even if both of the pair of electromagnetic coils 33 and 34 fail, the sleeve valve is displaced to the left by the biasing force of the spring 68, opening the fuel escape passage 11 and allowing fuel to escape into the pump space. Discharge can be stopped.

以上説明してきたように、この発明による燃料噴射ポン
プの吐出量調整装置は、吐出量調整用の弁部材を永久磁
石と電磁コイルによる電磁力で直接変位させるようにし
たので、構造が簡単でコスト低減を計れ、しかも調整精
度が向上する。
As explained above, the fuel injection pump discharge rate adjusting device according to the present invention has a simple structure and low cost because the valve member for adjusting the discharge rate is directly displaced by the electromagnetic force generated by the permanent magnet and the electromagnetic coil. You can measure the reduction and improve the adjustment accuracy.

また、一対の電磁コイルの一方が故障しても他方の電磁
コイルに励磁電流を流し、弁部材を制御することができ
るので、安全性も向上する。
Furthermore, even if one of the pair of electromagnetic coils fails, the excitation current can be passed through the other electromagnetic coil to control the valve member, which improves safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)、(ロ)は、従来の燃料噴射ポンプの吐出
量調整装置を示す構成図及び要部断面図である。 第2図は、この発明の一実施例を示す態別噴射ポンプの
吐出量調整装置部分の縦断面図、第6図は、同じ(その
駆動制御回路を示すブロック図、 第4図は、同じ(その要部の具体例を示す回路図、第5
図及び第6図は、同じくその動作説明のための電磁コイ
ル33.34の励磁極性とスリーブ弁60の変位方向と
の関係を示す説明図である。 第7図は、この発明の他の実施例のスリーブ弁を示す断
面図である。 第8図は、この発明のさらに他の実施例を示す第2図と
同様な断面図である。 2・・・・・・カムディスク   3・・・・・・プラ
ンジャ11・・・・・・燃料逃がし通路  17・・曲
外筐部60・・・・・・スリーブ弁(弁部材)61・・
・・・・永久磁石  33,34・・・・・・電磁コイ
ル35・・・・・畑〜り   37・・・・・・位置セ
ンサ第4図 一413− 第5図 第6図 (イ)         (ロ)
FIGS. 1A and 1B are a configuration diagram and a sectional view of a main part of a conventional fuel injection pump discharge amount adjusting device. FIG. 2 is a vertical cross-sectional view of the discharge amount adjusting device portion of a mode-specific injection pump showing an embodiment of the present invention, FIG. 6 is a block diagram showing the same drive control circuit, and FIG. 4 is the same (Circuit diagram showing a specific example of the main part, Part 5
6 are explanatory diagrams showing the relationship between the excitation polarity of the electromagnetic coils 33 and 34 and the displacement direction of the sleeve valve 60, also for explaining the operation thereof. FIG. 7 is a sectional view showing a sleeve valve according to another embodiment of the invention. FIG. 8 is a sectional view similar to FIG. 2 showing still another embodiment of the invention. 2...Cam disc 3...Plunger 11...Fuel relief passage 17...Curved outer housing portion 60...Sleeve valve (valve member) 61...
... Permanent magnet 33, 34 ... Electromagnetic coil 35 ... Field 37 ... Position sensor Fig. 4 - 413 - Fig. 5 Fig. 6 (a) (B)

Claims (1)

【特許請求の範囲】 1 燃料噴射ポンプのプランジャに設けた燃料逃がし通
路を閉じる円筒状弁部材を、前記プランジャの軸方向に
変位させることによって前記プランジャによる燃料吐出
行程における前記燃料逃がし通路を開く時期を変化させ
て燃料の吐出量を調整する吐出量調整装置において、 前記弁部材を円筒状永久磁石によっであるいは円筒状永
久磁石と一体に構成し、この弁部材の外周に間隔を置い
て対向する一対の電磁コイルを設け、内燃機関の作動パ
ラメータに関連して前記一対の電磁コイルの励磁電流を
変化させて前記弁部材を直接変位させるようにすると共
に、前記一対の電磁コイルのいずれか一方が故障した時
にも、他方の電磁コイルを励磁して前記弁部材を変位さ
せ得るようにしたことを特徴とする燃料噴射ポンプの吐
出量調整装置。 2 前記弁部材が、円筒状非磁性体の外周に円筒状永久
磁石を一体に嵌着してなる特許請求の範囲第1項記載の
燃料噴射ポンプの吐出量調整装置。 6 前記弁部材とプランジャ収納部材との間に、該弁部
材をプランジャに設けた燃料逃がし通路を開く方向に付
勢するスプリングが介装されている特許請求の範囲第1
項又は第2項記載の燃料噴射ポンプの吐出量調整装置。
[Scope of Claims] 1. Timing of opening the fuel relief passage during the fuel discharge stroke of the plunger by displacing a cylindrical valve member provided in the plunger of the fuel injection pump in the axial direction of the plunger, which closes the fuel relief passage. In the discharge amount adjusting device that adjusts the discharge amount of fuel by changing the amount of fuel, the valve member is formed of a cylindrical permanent magnet or is formed integrally with a cylindrical permanent magnet, and the valve member is configured with a cylindrical permanent magnet that faces the outer periphery of the valve member at a distance. a pair of electromagnetic coils configured to directly displace the valve member by varying the excitation current of the pair of electromagnetic coils in relation to operating parameters of the internal combustion engine; 1. A discharge amount adjusting device for a fuel injection pump, characterized in that even when the valve member malfunctions, the other electromagnetic coil can be energized to displace the valve member. 2. The discharge amount adjusting device for a fuel injection pump according to claim 1, wherein the valve member is formed by integrally fitting a cylindrical permanent magnet to the outer periphery of a cylindrical non-magnetic material. 6. Claim 1, wherein a spring is interposed between the valve member and the plunger storage member to bias the valve member in a direction to open a fuel escape passage provided in the plunger.
The discharge amount adjusting device for a fuel injection pump according to item 1 or 2.
JP15942182A 1982-09-16 1982-09-16 Discharge amount adjusting device in fuel injection pump Granted JPS5949365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15942182A JPS5949365A (en) 1982-09-16 1982-09-16 Discharge amount adjusting device in fuel injection pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15942182A JPS5949365A (en) 1982-09-16 1982-09-16 Discharge amount adjusting device in fuel injection pump

Publications (2)

Publication Number Publication Date
JPS5949365A true JPS5949365A (en) 1984-03-21
JPS6337257B2 JPS6337257B2 (en) 1988-07-25

Family

ID=15693374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15942182A Granted JPS5949365A (en) 1982-09-16 1982-09-16 Discharge amount adjusting device in fuel injection pump

Country Status (1)

Country Link
JP (1) JPS5949365A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983863A (en) * 1993-05-06 1999-11-16 Cummins Engine Company, Inc. Compact high performance fuel system with accumulator
WO2002066817A1 (en) * 2001-02-16 2002-08-29 Daguang Xi Electrically operated fuel injection apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578356U (en) * 1980-06-14 1982-01-16
JPS5740658U (en) * 1980-08-18 1982-03-04

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740658B2 (en) * 1974-04-30 1982-08-28
JPS51147027A (en) * 1975-06-13 1976-12-17 Tlv Co Ltd Air trap

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578356U (en) * 1980-06-14 1982-01-16
JPS5740658U (en) * 1980-08-18 1982-03-04

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983863A (en) * 1993-05-06 1999-11-16 Cummins Engine Company, Inc. Compact high performance fuel system with accumulator
WO2002066817A1 (en) * 2001-02-16 2002-08-29 Daguang Xi Electrically operated fuel injection apparatus
US6964263B2 (en) 2001-02-16 2005-11-15 Zhejiang Fai Electronics Co. Ltd. Electrically operated fuel injection apparatus

Also Published As

Publication number Publication date
JPS6337257B2 (en) 1988-07-25

Similar Documents

Publication Publication Date Title
US4544986A (en) Method of activating an electromagnetic positioning means and apparatus for carrying out the method
US4526145A (en) Fuel injection quantity adjustment apparatus for fuel injection pump
JP3665710B2 (en) DC torque motor, drive control device using the same, and throttle valve control device
WO1990007635A1 (en) Electromagnetic valve actuator
JPH02181008A (en) Electromagnetic valve
JP6115510B2 (en) Fully closed position learning device
JPS5949365A (en) Discharge amount adjusting device in fuel injection pump
WO1992002712A1 (en) A valve control arrangement
JP4194942B2 (en) High speed adjuster
JP2950882B2 (en) Valve for intermittent fuel supply
JP2687286B2 (en) Initial control method for solenoid valve-controlled fuel injection system
JPS5932633A (en) Fuel injection controlling apparatus for diesel engine
JPS6327089Y2 (en)
JPH07118882B2 (en) Electric motor
JPS5949338A (en) Injection quantity controller for fuel injection pump
JPS59541A (en) Discharge amount control device for fuel injection pump
JPS5949366A (en) Discharge amount adjusting device in fuel injection pump
JPS5867932A (en) Discharge regulator for fuel injection pump
JPH0138273Y2 (en)
JPH025078Y2 (en)
JPH07115762A (en) Two-position oscillating type motor
JPS5946330A (en) Injection quantity controller for fuel injection pump
JPH05280315A (en) Electromagneticaly driven valve
RU2290523C1 (en) Electronic speed governor to control fuel delivery by high-pressure fuel pump
JPS59120729A (en) Regulating device for delivery amount of fuel injection pump