JPS5949132A - Ion source with high intensity - Google Patents

Ion source with high intensity

Info

Publication number
JPS5949132A
JPS5949132A JP15812182A JP15812182A JPS5949132A JP S5949132 A JPS5949132 A JP S5949132A JP 15812182 A JP15812182 A JP 15812182A JP 15812182 A JP15812182 A JP 15812182A JP S5949132 A JPS5949132 A JP S5949132A
Authority
JP
Japan
Prior art keywords
filament
ion source
ion
needle
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15812182A
Other languages
Japanese (ja)
Inventor
Shigeyuki Hosoki
茂行 細木
Toru Ishitani
亨 石谷
Hifumi Tamura
田村 一二三
Masaaki Futamoto
二本 正昭
Yukio Honda
幸雄 本多
Toshiyuki Aida
会田 敏之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15812182A priority Critical patent/JPS5949132A/en
Publication of JPS5949132A publication Critical patent/JPS5949132A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/26Ion sources; Ion guns using surface ionisation, e.g. field effect ion sources, thermionic ion sources

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To obtain a fine ion source with high intensity capable of radiating the desired ion seed when heated and applied with an electric field by carbonizing a filament or a needle-like surface layer formed with a transition metal. CONSTITUTION:A transition metal and a compound made of Si only or two or more elements are alloyed to form a prototype of a filament or a sharp needle, and the prototype is carburized to carbonize its surface layer. For example, a filament bored with a diameter of 0.5mm. at its center by machining ribbon- like tantalum (with a width of 1.5mm., a thickness of 0.1mm., a length of 20mm.) is heated at 2,200 deg.C for 60sec for carburization by introducing several Torr of C2H4 in a vacuum furnace, then a likewise-carburized sharp needle 10 is inserted into the hole of the filament 11 to form an ion source comprised of a liquid metal reservoir 9. At this time, TaC is formed on the surface of the filament and sharp needle.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、イオン・マイクロ・アナライザー。[Detailed description of the invention] [Field of application of the invention] The present invention is an ion micro analyzer.

イオンビーム描画装置あるいはマイクロビームイオ7打
込機等に用いて高性能化することのできる微小で高輝度
なイオン源に関する。
The present invention relates to a minute and high-intensity ion source that can be used in an ion beam lithography system, a microbeam IO7 implanter, etc. to improve its performance.

〔従来技術〕[Prior art]

従来、ガスイオン源、液体金属イオン源ともにWを電解
研磨して作られる尖針をイオン源基体物質として用いて
いた。ガスイオン源の場合には失調を加熱することもな
く、むしろ冷却するので問題は少ない。しかし、液体金
属イオン源では、イオン種とする金属を液体状態にして
W尖針からイオン放射させるので融点の高い物質ではW
との反応性のため、W尖針の寿命が短いという欠点があ
った。このため、イオン種にもよるが、B、A、!等で
はガラス状炭素を尖針とする考案や、Si等に対して炭
化物尖針を用いる考案がなされている。
Conventionally, both gas ion sources and liquid metal ion sources have used a pointed needle made by electrolytically polishing W as the ion source base material. In the case of a gas ion source, there are fewer problems because the ion source does not heat up the ion source, but rather cools it down. However, in a liquid metal ion source, the metal used as the ion species is in a liquid state and ions are emitted from the W needle, so for substances with high melting points, W
Due to the reactivity with the W-pointed needle, the lifespan of the W-pointed needle was short. For this reason, depending on the ion species, B, A,! et al. have devised a method of using glassy carbon as a point, and a method of using a carbide point for Si or the like.

しかし%濡れ性や、操作性の点で改良を必要としている
However, improvements are needed in terms of wettability and operability.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、B+ AS+ P、ktg S r。 The object of the present invention is B+ AS+ P, ktg Sr.

Be、Zn、Te、Se等(7)イオ7’tAヲ単独−
T::、あるいは、その中の2つ以上の組み合せで、ま
たは、Ni等のイオンイ重としては特に望まないが、融
点を下げる目的で上記の1つ以上の元素との化合物又は
合金を作ることのできる他の金属との合金又は化合物を
イオン化物質として、その尖針を加熱し、電界を作力p
することによって、それら所望のイオン種を放射できる
イオン源を掃供することにある。
Be, Zn, Te, Se, etc. (7) Io7'tAwo alone-
T::, or a combination of two or more of them, or making a compound or alloy with one or more of the above elements for the purpose of lowering the melting point, although it is not particularly desired as an ion heavy metal such as Ni. An alloy or compound with other metals that can be used as an ionizing substance is heated to create an electric field.
By doing so, the purpose is to provide an ion source capable of emitting the desired ion species.

〔発明の概要〕[Summary of the invention]

すべての物質について反応性が小さいような矢引材料は
少ない。炭素は上記のイオン種について比較的反応性が
小さく、例えばBのように単独では融点〜2000tr
である物質をNiBとすることにより融点〜1000t
Z’に下げられる。しかしこの場合に、Niと炭素との
反応が比較的太きい、という問題が生じる。現在実計の
寿命はW実計に比べ、炭素実計の方が長くなっているが
、より長寿命を考慮すると他の手段が必要である。また
、もう一つの問題は炭素実計の場合やは、9NiBの例
であるが、炭素に対して濡れ性が悪い点である。
There are few materials that have low reactivity with all substances. Carbon has relatively low reactivity with respect to the above ion species, and for example, carbon alone, like B, has a melting point of ~2000 tr.
By using NiB as the substance, the melting point is ~1000t
Lowered to Z'. However, in this case, a problem arises in that the reaction between Ni and carbon is relatively large. Currently, the lifespan of actual carbon meters is longer than that of W actual meters, but other means are required in order to achieve a longer life. Another problem is that carbon has poor wettability, as is the case with 9NiB.

これら2つの問題点を解決する材料は、炭化タングステ
ン等の炭化物材料である/ことは知れていたが、通常の
炭化物(ホイスカーを含む)を用いる場合、加熱フィラ
メントとしては接合上の問題から金@を用いることは出
来す炭素フィラメントを用いなければならない。液体金
属イオン源では、可能な限り簡単な構造でこの液体金属
を補給するための溜め部を必要とするが、それは実計部
にあったのでは少量しか補給できないので、フィラメン
ト部に濡れた状態にして溜め部を作ることである。しか
し、上記1′Iすの如く、炭素フィラメントを用いると
炭素実計と同様の問題がある。よって、前記2つの問題
およ0・イオン佇としての構造上の問題、■尖針として
反応性小さい ■尖針として濡れ性良い ■フィラメン
トと1留め部の構造が簡単でかつ■■と同要件、03点
、および実用上の操作性が良いことが望ぼれる。これら
を解決する構造は、失調およびフィラメントの表面で俣
)■■を満足するように炭化物で(11v成され、実用
的には金に、フィラメントと同等であるようなもの、タ
ングステン等のフィラメント、失調で形成きれる従来と
同等のものを浸炭処理により炭化する方法である。
It has been known that the material that can solve these two problems is a carbide material such as tungsten carbide, but when using normal carbide (including whiskers), gold@ A carbon filament that can be used must be used. A liquid metal ion source requires a reservoir part to replenish this liquid metal with the simplest possible structure, but since it can only replenish a small amount if it is in the actual measuring part, the filament part is kept wet. The first step is to create a reservoir. However, as described in 1'I above, when a carbon filament is used, there are problems similar to those of the actual carbon meter. Therefore, in addition to the above two problems and the structural problems as a 0/ion space, ■Low reactivity as a pointed needle ■Good wettability as a pointed needle ■Simple structure of the filament and 1 clasp, and the same requirements as ■■ , 03 points, and good practical operability. The structure that solves these problems is made of carbide (11V) to satisfy the defects on the surface of the filament and the filament, which is practically equivalent to gold, filament of tungsten, etc. This is a method of carbonizing a material equivalent to the conventional method, which can be formed by deformation, by carburizing.

〔発明の実施例〕[Embodiments of the invention]

以下に図を用いて実施例を示す。第1図は、従来用いら
れている■矢引と同様のものであり、アルミナ等で作ら
れるフィラメント・ベース2によって保持されたステム
1に直径0.15咽程度のW+十 線をV字型に成形したフィラメント部3をスポット溶接
し、さらに実計部4を形成するため同径のW線をフィラ
メントの屈曲中心部にスポット溶接した後、電解研磨に
よって作る。この一体としたものをCTl4. C2H
4等の炭化水素ガスが数Torrの分圧をもつ真空中か
、Arの不活性ガス中でおよそ2100rで20〜60
秒加熱して浸炭し、表面層を炭化づ゛る。この処理によ
ってフィラメント3の断面は第2図(イ)から(ロ)の
ように変化し、W部50壱面層に炭化タングステン(W
tC)層が形成される。実計部4では第2図ヒラのよう
に変化する。上舵の処理をした場合、線径のおよそ1/
10の厚さの表面層を炭化するので、本実施例の場合、
およそ15μnlの炭化層ができている。このようにし
て作られた大針およびフィラメントを第3図(イ〕に示
すように真空中炭素で作られた炉7で加熱芒れて(およ
そ1000t、’)溶融状態にを)るNiB中に葭して
引き上げることによって炭化物化した表面をもつフィラ
メント部3′と尖@4′の接合部を中心にNiBの溜め
部9が形成される。
Examples are shown below using figures. Figure 1 is similar to the conventionally used ■ Yahiki, in which a W + cross line with a diameter of about 0.15 mm is attached to a stem 1 held by a filament base 2 made of alumina etc. in a V-shape. The filament portion 3 formed in the shape of the filament is spot welded, and a W wire of the same diameter is spot welded to the bending center of the filament to form the actual measurement portion 4, and then electropolishing is performed. This integrated thing is CTl4. C2H
Hydrocarbon gas such as No. 4 is heated at approximately 2100 r in a vacuum with a partial pressure of several Torr or in an Ar inert gas at a temperature of 20 to 60
Carburize by heating for seconds to carbonize the surface layer. As a result of this treatment, the cross section of the filament 3 changes as shown in FIG.
tC) layer is formed. In the actual meter section 4, the value changes as shown in the figure 2. If the upper rudder is treated, approximately 1/1 of the wire diameter
Since the surface layer with a thickness of 10 mm is carbonized, in the case of this example,
A carbonized layer of approximately 15 μnl was formed. The large needle and filament thus made are heated (approximately 1000 tons) in a furnace 7 made of carbon in a vacuum (to a molten state) in NiB, as shown in Figure 3 (a). By pulling it up, a NiB reservoir 9 is formed around the junction between the filament portion 3' having a carbide surface and the tip 4'.

なお、実計部は、直接フィラメントに接続したが、フィ
ラメントの加熱により液体金属となるイオン材料を介し
て接続してもよい。
Although the actual measuring section is directly connected to the filament, it may be connected via an ionic material that becomes liquid metal when the filament is heated.

第4図は他の実施例を示す。リボン状タンタル(幅1.
5能、厚さ0.1咽、長さ20 am )を加工して中
心部に直径0.5肺の孔をあけたフィラメントを真空炉
中にC,H4を数’l’orr導入して、2200Cに
て60秒間加熱し浸炭してできるフィラメント11の孔
に同様に浸炭した大針10を通し、液体金属溜め部9か
らなるイオン源で、(イ)は断面図、(ロ)は見取り図
を示す。この場合、フィラメントおよび大針の表面はT
aCが形成される。
FIG. 4 shows another embodiment. Ribbon tantalum (width 1.
A filament with a diameter of 0.5 mm and a hole of 0.5 mm in diameter was processed into a vacuum furnace, and C and H4 were introduced into the vacuum furnace. A similarly carburized large needle 10 is passed through the hole of the filament 11 formed by heating and carburizing it at 2200C for 60 seconds to obtain an ion source consisting of a liquid metal reservoir 9, (a) is a cross-sectional view, and (b) is a floor plan. shows. In this case, the surface of the filament and large needle is T
aC is formed.

第5図も他の実施例を示す。ガラス状炭素又はSiCな
どの内径0.5 mm程度パイプ状電極13とTi線か
ら作った大針を浸炭して表面を炭化物とした大針10の
間にNiBを溶融して溜め部9を作る。加熱方法は、電
源16によってW等からなる13の周囲を円型に配置し
たフィラメント12に通電して加熱し熱電子放射をさせ
る。電子衝撃加熱用電源17によってフィラメント12
に対して13がプラス側となるように電位を印加して電
子衝撃熱によって13.すなわら、尖釧、溜め部9も同
時に加熱する。14は制御電極で、陰極15とイオン源
すなわち陽極の間にかける電源19によって印加される
電位によって放射されるイオン放射電流を電源18によ
って制御する。電源17と18は兼ねることも可能であ
る。このようにして堆り出をれたイオンビームは、目的
によって異なるが、イオン光学系によって、収束されて
微小で高輝度なスポットを得ることができる。
FIG. 5 also shows another embodiment. A reservoir 9 is created by melting NiB between a pipe-shaped electrode 13 made of glassy carbon or SiC with an inner diameter of about 0.5 mm and a large needle 10 made of a Ti wire, which is carburized to have a carbide surface. . The heating method is to energize the filament 12 made of W or the like and arranged in a circular shape around the filament 13 using a power source 16 to heat it and emit thermionic electrons. The filament 12 is heated by the power source 17 for electronic impact heating.
A potential is applied so that 13 is on the positive side, and electron impact heat is applied to 13. That is, the tip and the reservoir 9 are also heated at the same time. Reference numeral 14 denotes a control electrode, which controls the ion emission current emitted by the power source 18 based on the potential applied by the power source 19 applied between the cathode 15 and the ion source, that is, the anode. It is also possible for the power supplies 17 and 18 to serve as both power supplies. The ion beam thus ejected can be focused by an ion optical system to obtain a minute, high-intensity spot, although this differs depending on the purpose.

他の実施例は、特に図を用いないが、シリコンの場合の
応用例である。厚さ0.1〜0.2mmのウェハーから
ホト・エツチングによって断面形状が第1図3.4と同
様なフィラメントおよび尖釧(矢引は電解研磨)を一体
で作り、浸炭処理によって炭化する。特にシリコンイオ
ンビームを得る目的でシリコンと他の金属との合金(A
t8 i 。
Another embodiment, although not particularly illustrated, is an application example in the case of silicon. A filament and a point (arrows are electrolytically polished) having a cross-sectional shape similar to that shown in FIG. 1 are made integrally by photo-etching from a wafer having a thickness of 0.1 to 0.2 mm, and then carbonized by carburizing treatment. In particular, alloys of silicon and other metals (A
t8i.

PdSi、 Ni8i  )をイオン材料として用いる
時に有効である。
This is effective when using PdSi, Ni8i) as the ionic material.

上記実施例において、炭化処即前のフィラメント3−お
よび尖釧4の材質については、最も簡学な構造としては
Wのみを用いることであったが、一般的には遷移金属で
あればすべてriJ能であり、3と4が異なった材質で
用いることもで仕る。f択の基準としては、イオン種と
するための゛lt+体金属の融点に1■存し、それらに
而1える材質を1ソr釈すれば良い。また滴れ性は、そ
れらの場合、絹み合せによって少しづつ異なってくる場
合がある。そして訛れ性を一段と向上する手段として、
例えは、Wの代りにWとNiの合金を用いることにより
、多くのイオン種について濡れ性が向上される。その結
果、このイオン源を多くのイオン種についての共通のイ
オン源として用いることができる。とくにWr N ’
* Cre Mn、 Fe、Coが好ましい。
In the above embodiment, as for the material of the filament 3- and the tip 4 immediately before carbonization, the simplest structure was to use only W, but in general, any transition metal can be used with RIJ. It is also possible for 3 and 4 to be made of different materials. As a criterion for selecting f, it is sufficient to consider that the melting point of the metal to be used as the ionic species is 1, and the material to be used is 1 so. In addition, the dripping properties may differ slightly depending on the silk combination. And as a way to further improve your accent,
For example, by using an alloy of W and Ni instead of W, wettability for many ion species is improved. As a result, this ion source can be used as a common ion source for many ion species. Especially Wr N'
*Cre Mn, Fe, and Co are preferred.

また、本実施例における浸炭捷たは表面炭イし処理にお
ける加熱は、フィラメントに)Fi’J ’rl(して
行なっても良いし、炉中で行なっても良い。前者の場合
、炭化層の厚さは通電電流によってモニターすることが
可能であり、通電電流がおよそ2%減衰すれば、平均的
に直径の1710に相当する厚さが炭化したとみなされ
る。
In addition, the heating in the carburizing or surface carbonizing treatment in this example may be performed by applying Fi'J'rl (to the filament) or may be performed in a furnace. The thickness can be monitored by the current applied, and if the current is attenuated by about 2%, it is considered that the thickness corresponding to the average diameter of 1710 mm has been carbonized.

〔発明の効果〕 本発明によれば、以下の点で効果がある。〔Effect of the invention〕 According to the present invention, there are effects in the following points.

(1)従来のwl用いたフィラメントや実計形状のまま
で、すなわら、作製方法、構造が簡単で、加熱電力も大
きくする必要なく、高融点のイオン種材料のイオン源と
して用いられる。
(1) It can be used as an ion source for high-melting-point ionic species materials without changing the filament or actual shape of the conventional wl, that is, the manufacturing method and structure are simple, and there is no need to increase the heating power.

(電カニ構造によるが最小の場合6〜10W、他の手段
では、最小でもIOW以上必要。イオン種材料:i点2
5001r程度まで可能、フィラメント トでの反メも考慮すると他の方法では実現不可)(2)
  どんなイオン種の材料に対しても、濡れ性を良くす
ることが出来、したがってイオン電流を安定にできる。
(Depending on the electric crab structure, the minimum is 6 to 10 W, other means require at least IOW or more. Ionic material: i point 2
Possible up to about 5001r, impossible to achieve with other methods considering the backlash at the filament) (2)
It is possible to improve the wettability of materials of any ionic species, and therefore to stabilize the ionic current.

(3)  フィラメントおよび尖釧のイオン材料との反
応性が小さいため、他の材料の失調を用いたイオン源よ
りも長寿命である(タングステンで数時間の寿命が10
0時間以上となる)。
(3) Because the reactivity of the filament and tip with the ionic material is low, the lifespan is longer than that of ion sources using other materials (tungsten has a lifespan of several hours, but
0 hours or more).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来および本発明の浸炭処理前イオン漣の構
造を示す正面断面図、第2図は、(イ]、(ロ)がフィ
ラメント内r面の浸炭による変化を、ρ1は実計部分に
おける浸炭処理後の1fli面模型図をそれぞれ示す図
、第3図は、(イ)がイオン源に溜め部を作る説明図、
(ロ)がイオン源に溜め部を作った後の正面図、第4図
は、他の実施例で(イ)正面断面図および(ロ)見取り
図、第5図は、他の実施例で、正面断面図と電位印加の
概念図を合せ示した図である。 1・・・ステム、2・・・ベース、3・・・W等のフィ
ラメント、4・・・W等の尖釧、5・・・W等のフィラ
メント断面、6・・・浸炭処理後の炭化物層、3′・・
・浸炭処理後のフィラメント、4′・・・浸炭処理後の
失調、7・・・炭素等で作られた炉、8・・・溶融状態
にあるNiB等のイオン材料%9・・・NrB等のイオ
ン材料溜め部、10・・・浸炭処理した尖釧、11・・
・す国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 08″″七−08,□、工@280@ 地株式会社日立製作所中央研究 所内
Fig. 1 is a front cross-sectional view showing the structure of the ion ripple before carburizing in the conventional and the present invention, and Fig. 2 shows (a) and (b) the changes due to carburization on the r-plane inside the filament, and ρ1 is the actual value. FIG. 3 is an explanatory diagram of creating a reservoir in the ion source;
(B) is a front view after creating a reservoir in the ion source; FIG. 4 is another embodiment; (A) is a front sectional view; (B) is a sketch; FIG. 5 is another embodiment; FIG. 2 is a diagram showing both a front sectional view and a conceptual diagram of potential application. DESCRIPTION OF SYMBOLS 1... Stem, 2... Base, 3... Filament such as W, 4... Pointed hook such as W, 5... Cross section of filament such as W, 6... Carbide after carburizing treatment Layer, 3'...
・Filament after carburizing treatment, 4'... Out of balance after carburizing treatment, 7... Furnace made of carbon etc., 8... Ionic material such as NiB in molten state %9... NrB etc. ionic material reservoir part, 10... carburized pointed skein, 11...
・1-280 Higashikoigakubo, Kokubunji City, Hitachi, Ltd. Central Research Laboratory 08''''7-08, □, Engineering@280@ Hitachi, Ltd. Central Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 1、遷移金属およびシリコンを単独か又は二種以上を組
み合せてできる46合物又は合金によってフィラメント
および尖針の内、少くとも1つが原型を形成し、該原型
を浸炭処理によって該フィラメント及び尖針の少なくと
も1つの表面層を炭化物としてなることを特徴とする高
輝度イオン源。
1. Form a prototype of at least one of the filament and the needle using a composite or alloy made of a transition metal and silicon or a combination of two or more thereof, and carburize the prototype to form the filament and the needle. A high-brightness ion source characterized in that at least one surface layer of the ion source is made of carbide.
JP15812182A 1982-09-13 1982-09-13 Ion source with high intensity Pending JPS5949132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15812182A JPS5949132A (en) 1982-09-13 1982-09-13 Ion source with high intensity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15812182A JPS5949132A (en) 1982-09-13 1982-09-13 Ion source with high intensity

Publications (1)

Publication Number Publication Date
JPS5949132A true JPS5949132A (en) 1984-03-21

Family

ID=15664754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15812182A Pending JPS5949132A (en) 1982-09-13 1982-09-13 Ion source with high intensity

Country Status (1)

Country Link
JP (1) JPS5949132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059623A (en) * 1983-09-10 1985-04-06 Anelva Corp Liquid metal ion source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059623A (en) * 1983-09-10 1985-04-06 Anelva Corp Liquid metal ion source

Similar Documents

Publication Publication Date Title
US4143292A (en) Field emission cathode of glassy carbon and method of preparation
US7470353B2 (en) Method of manufacturing field emitter electrode using self-assembling carbon nanotubes and field emitter electrode manufactured thereby
JP3556331B2 (en) Manufacturing method of electron source
KR20030074605A (en) X-ray generating mechanism using electron field emission cathode
KR20030035918A (en) Carbon Nanotube for Electron Emission Source and Manufacturing Method Therefor
US7828622B1 (en) Sharpening metal carbide emitters
JPH0628969A (en) Field emission cathode
JPS5949132A (en) Ion source with high intensity
JP2005190758A (en) Electron source
JP6804120B2 (en) Emitters, electron guns using them, electronic devices using them, and their manufacturing methods
JP2000223041A (en) Liquid-metal ion source and manufacture thereof
JP2004047365A (en) Cathode and manufacturing method of the same
JPS6059623A (en) Liquid metal ion source
JP4040531B2 (en) Diffusion-supplemented electron source and electronic application device
JPS6013258B2 (en) Manufacturing method of carbide field emitter
JPH0349175B2 (en)
EP3996126A1 (en) Emitter, electron gun using same, electronic device using same, and method for producing same
JP4368501B2 (en) Usage of electron emission cathode
JP3774463B2 (en) Horizontal field emission cold cathode device
JPH11288688A (en) Cathode for discharge tube and arc lamp
JPH0794134A (en) Method and device for stabilizing electron source
US20230215679A1 (en) Electron source, method for manufacturing same, emitter, and device including same
JP4534078B2 (en) Arc discharge cathode and ion source
JP4874758B2 (en) Electron source
KR101961759B1 (en) X­ray source comprising bead structures and cnt yarn and x­ray emitting apparatus using the same