JPS5949055B2 - Pump drive device for controlling raw material blending - Google Patents

Pump drive device for controlling raw material blending

Info

Publication number
JPS5949055B2
JPS5949055B2 JP734381A JP734381A JPS5949055B2 JP S5949055 B2 JPS5949055 B2 JP S5949055B2 JP 734381 A JP734381 A JP 734381A JP 734381 A JP734381 A JP 734381A JP S5949055 B2 JPS5949055 B2 JP S5949055B2
Authority
JP
Japan
Prior art keywords
raw material
pump
blending
flow rate
pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP734381A
Other languages
Japanese (ja)
Other versions
JPS57122179A (en
Inventor
康雄 永谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP734381A priority Critical patent/JPS5949055B2/en
Publication of JPS57122179A publication Critical patent/JPS57122179A/en
Publication of JPS5949055B2 publication Critical patent/JPS5949055B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Accessories For Mixers (AREA)
  • Paper (AREA)

Description

【発明の詳細な説明】 本発明は、製紙プロセスにおける原料配合制御に係り、
省電力、省力化を実現した原料ポンプ駆動装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to raw material blend control in a paper manufacturing process,
This article relates to a raw material pump drive device that achieves power and labor savings.

紙の製造プロセスは、原料配合、調整工程と抄紙工程と
に大別される。
The paper manufacturing process is broadly divided into raw material blending, adjustment process, and paper making process.

原料配合、調整工程とは、原料チエストから送出される
原料パルプをリフアイナにより叩解し、それらに填料(
クレー)、染料、その他の薬品を一定量ずつ添加し、多
量の水で稀釈して、そして最終的には、紙の原料として
マシンチエストを通過させ、抄紙工程に送り出す工程を
いう。第1図は4種類のパルプ原料を配合する原料配合
、調整工程の系統図を示す。
The raw material blending and adjustment process involves beating the raw material pulp sent from the raw material CHEST using a refiner, and adding filler (
The process involves adding certain amounts of clay, dyes, and other chemicals, diluting the paper with a large amount of water, and finally passing it through a machine chest as a raw material for paper and sending it to the papermaking process. FIG. 1 shows a system diagram of the raw material blending and adjustment process for blending four types of pulp raw materials.

パルプ原料は原料チエスト1から、電動機4にて駆動さ
れるポンプ3により送出され、原料を叩解するリフアイ
ナ12を通過して配合チエスト13に貯蔵される。原料
チエスト1とリフアイナ12間の管路にはパルプ原料濃
度を検出するセンサー6とパルプ原料流量を検出するセ
ンサー8が設置されている。センサー6の出力は濃度調
節計5に入り、稀釈水供給装置2からの稀釈水量をバル
ブ7により調節してパルプ原料濃度を設定値に制御して
いる。そして各パルプ原料流量調節計9が、管路に設置
されたバルブ11を制御して、パルプ流量を調節し設定
値に制御している。配合チエスト13には上記パルプ原
料の他添加物送出装置14から填料(クレー)、染料、
薬品等の添加物が送り込まれ、パルプ原料と混合され、
均一化される。
Pulp raw material is sent out from a raw material chest 1 by a pump 3 driven by an electric motor 4, passes through a refiner 12 that beats the raw material, and is stored in a blending chest 13. A sensor 6 for detecting the pulp raw material concentration and a sensor 8 for detecting the pulp raw material flow rate are installed in the pipeline between the raw material chest 1 and the refiner 12. The output of the sensor 6 is input to a concentration controller 5, and the amount of dilution water from the dilution water supply device 2 is adjusted by a valve 7 to control the pulp raw material concentration to a set value. Each pulp raw material flow rate controller 9 controls a valve 11 installed in the pipeline to adjust the pulp flow rate to a set value. In addition to the above-mentioned pulp raw materials, the blending chest 13 receives filler (clay), dye,
Additives such as chemicals are sent and mixed with pulp raw materials,
Equalized.

次いで配合チエスト13内で均一化された紙料は電動機
4aにより駆動されるポンプ3aによりマシンチエスト
ヘ送出され、更に抄紙工程へ移送される。抄紙工程にお
いて製造される紙の種類には上質紙、中質紙、クラフト
紙、新聞紙、テイシユペーパー等種々の種類がある。
Next, the paper stock homogenized in the blending chest 13 is sent to a machine chest by a pump 3a driven by an electric motor 4a, and further transferred to a paper making process. There are various types of paper manufactured in the papermaking process, such as high-quality paper, medium-quality paper, kraft paper, newspaper, and tissue paper.

同じ種類にあつても坪量(紙のlm・当りの重量)、水
分(紙に含まれる水分百分率)、紙質等紙の特性を決定
する要素をフそれぞれ異にする多数の銘柄にわけられる
。このような多数の銘柄の中から、ある銘柄が決定され
ると、原料配合、調整工程における各パルプ原料の配合
率は一義的に定まる。従来、銘柄が決定されると、マシ
ンオペレータ7は原料配合、調整工程における各パルプ
原料の配合比率が決められた値となるように、各パルプ
流量調節計9の設定値を調節して管路に設定されたバル
ブ11の開度を制御し、各パルプ原料の流量を設定値に
制御していた。
Even within the same type, there are many brands that differ in factors that determine the characteristics of the paper, such as basis weight (weight per lm of paper), moisture content (percentage of water contained in paper), and paper quality. When a certain brand is determined from such a large number of brands, the blending ratio of each pulp raw material in the raw material blending and adjustment process is uniquely determined. Conventionally, once the brand has been determined, the machine operator 7 adjusts the setting values of each pulp flow rate controller 9 so that the blending ratio of each pulp raw material in the raw material blending and adjustment process becomes the determined value. The opening degree of the valve 11 was controlled to control the flow rate of each pulp raw material to the set value.

このため、マシンオペレータの操作箇所、監視箇所が非
常に多く、マシンオペレータの経験と勘により操業を行
つていたので操業効率も低かつた。
For this reason, there were a large number of operating and monitoring points for the machine operator, and the machine operator operated based on his experience and intuition, resulting in low operational efficiency.

又この装置では、各パルプ原料の流量は各パルプ流量調
節計9により制御され、各パルプ原料の濃度は各パルプ
濃度調節計5により制御される。従つて流量と濃度は独
立して別々に制御されるため、濃度が変動したとき流量
補正を行うことができず、各パルプ原料の配合比率が変
動し、品質上からも好ましくない。更に、各パルプ原料
は一定速のかご形誘導電動機4にて駆動されるポンプ3
にて送出され、各パルプ流量は管路に設置されたバルブ
11により調節されるため、電力損失が大きいという欠
点があつた。
Further, in this device, the flow rate of each pulp raw material is controlled by each pulp flow rate controller 9, and the concentration of each pulp raw material is controlled by each pulp concentration controller 5. Therefore, since the flow rate and concentration are controlled independently and separately, it is not possible to correct the flow rate when the concentration fluctuates, and the blending ratio of each pulp raw material fluctuates, which is undesirable from a quality standpoint. Furthermore, each pulp raw material is pumped by a pump 3 driven by a squirrel cage induction motor 4 at a constant speed.
Since the flow rate of each pulp is regulated by a valve 11 installed in the pipeline, there is a drawback that power loss is large.

本発明は上記に鑑み、原料配合、調整工程のパルプ原料
送りポンプを可変速電動機で駆動することにより、前記
欠点のない配合制御を実現するこ5とを目的とする。
In view of the above, an object of the present invention is to realize blending control that does not have the above-mentioned drawbacks by driving a pulp feed pump in the blending and adjustment process with a variable speed electric motor.

以下本発明の一実施例を図面により説明する。An embodiment of the present invention will be described below with reference to the drawings.

第2図は、本発明に係る装置の系統図である。本装置は
、原料送りポンプ3の駆動用電動機4として可変速電動
機を使用しており、駆動用電動機4;のシヤフト軸には
速度検出用としてパルス発信器18が直結され、電動機
駆動制御装置2]へ帰還する構成である。又、電動機駆
動制御装置21は配合制御装置31に接続され、配合制
御装置31には濃度信号検j出器15の信号と配合比率
設定器16の信号及び配合総量設定器17の信号が入力
される。
FIG. 2 is a system diagram of the device according to the invention. This device uses a variable speed motor as the drive motor 4 of the raw material feed pump 3. A pulse transmitter 18 is directly connected to the shaft of the drive motor 4 for speed detection, and the motor drive control device 2 ]. Further, the motor drive control device 21 is connected to a blending control device 31, and a signal from the concentration signal detector 15, a signal from the blending ratio setter 16, and a signal from the blending total amount setting device 17 are input to the blending control device 31. Ru.

尚、本装置ではパルプ流量を検出するセンサー8、パル
プ流量調節計9及びバルブ11が削除されたことが、第
1図の装置と異つている。以下本装置の動作について詳
細に説明するが、4系統ともすべて同一構成であるので
1系統につき説明する。
This apparatus differs from the apparatus shown in FIG. 1 in that the sensor 8 for detecting the pulp flow rate, the pulp flow rate controller 9, and the valve 11 are omitted. The operation of this device will be explained in detail below, but since all four systems have the same configuration, only one system will be explained.

第3図は、配合制御装置3]のプロツク図である。配合
比率設定器16により原料の配合比率(α%)を設定し
、配合総量設定器174によりパルプ原料の配合総量(
4系統のパルプ原料固形分の総量GCTON/DAY〕
を設定すると、これらの設定器の出力は配合量演算器3
4に入力される。配合量演算器34はパルプ原料の配合
量G1〔TON/DAY〕する。
FIG. 3 is a block diagram of the blending control device 3. The mixing ratio setting device 16 sets the mixing ratio (α%) of the raw materials, and the total mixing amount setting device 174 sets the mixing total amount (α%) of the pulp raw materials.
Total amount of pulp raw material solid content of 4 systems GCTON/DAY]
When set, the outputs of these setting devices are
4 is input. The blending amount calculation unit 34 calculates the blending amount G1 [TON/DAY] of the pulp raw material.

を次の(1)式により決定 配合量演算器34の出力G1及び濃度信号検出器15の
出力信号C%は配合流量演算器35に入力され、次の(
2)式により配合流量FsCms/HOUR〕が求まる
is determined by the following equation (1).The output G1 of the blended amount calculator 34 and the output signal C% of the concentration signal detector 15 are input to the blended flow rate calculator 35, and the following (
2) The blended flow rate FsCms/HOUR is determined by the formula.

ここでρはパルプ原料の密度〔g/Af〕である。Here, ρ is the density [g/Af] of the pulp raw material.

配合流量演算器35の出力Fsは、原料送りポンプ3の
駆動用電動機4の速度(周波数)演算回路36の入力と
なる。
The output Fs of the mixing flow rate calculator 35 becomes an input to the speed (frequency) calculation circuit 36 of the drive motor 4 of the raw material feed pump 3.

設定速度(設定周波数)ν8〔R.P.M〕は原料送り
ポンプ3の回転数(駆動用電動機4の回転数)がパルプ
流量に比例すると仮定して、次の(3)式により求まる
。速度(周波数)演算回路36の出力信号ν,は電動機
駆動制御装置21の速度設定回路25に入力され、駆動
機4は設定速度ν8となるように速度制御され、パルプ
原料は当初設定の配合率(α%)に制御される。
Set speed (set frequency) ν8 [R. P. M] is determined by the following equation (3), assuming that the number of revolutions of the raw material feed pump 3 (the number of revolutions of the drive electric motor 4) is proportional to the pulp flow rate. The output signal ν of the speed (frequency) calculation circuit 36 is input to the speed setting circuit 25 of the motor drive control device 21, and the speed of the drive machine 4 is controlled so as to reach the set speed ν8, and the pulp raw material is kept at the initially set blending ratio. (α%).

上記のように制御すれば、各パルプ原料は、決められた
配合比率になるように厳密に制御されることになり、紙
の品質が大幅に向上する。
If controlled as described above, each pulp raw material will be strictly controlled to have a predetermined blending ratio, and the quality of the paper will be significantly improved.

第4図は、電動機駆動制御装置21のブロツク図であり
、4系統ともすべて同一であるので1系統につき説明す
る。
FIG. 4 is a block diagram of the motor drive control device 21. Since all four systems are the same, only one system will be explained.

原料送りポンプ3の駆動用電動機4は可変速電動機を使
用しているが、設置環境、保守性の面からインバータ電
源を使用したかご形誘導電動機を使用するのが一般的で
ある。3相交流電源22はコンバータ部23に入力され
整流される。
Although a variable speed motor is used as the drive motor 4 of the raw material feed pump 3, a squirrel cage induction motor using an inverter power supply is generally used from the viewpoint of installation environment and maintainability. Three-phase AC power source 22 is input to converter section 23 and rectified.

この直流電圧は、インバータ部24で速度設定回路25
によつて設定された速度設定信号に比例した周波数の交
流に変換され、駆動用電動機4に供給される。又、電圧
/周波数制御部27は速度設定信号に比例した周波数の
パルスを発生し電圧/周波数の比が一定となるようにイ
ンバータ部24にパルスか.597s面1一駅輛田W輛
緯A′−1↓2由―榛山国Lしてパルス発信器18が直
結され、その帰還信号は速度制御回路26を介して制御
部27に負帰還され、駆動用電動機4は設定速度ν5に
なるように厳密に制御される。
This DC voltage is applied to the speed setting circuit 25 in the inverter section 24.
It is converted into an alternating current with a frequency proportional to the speed setting signal set by the controller, and is supplied to the drive motor 4. Further, the voltage/frequency control section 27 generates a pulse with a frequency proportional to the speed setting signal, and sends the pulse to the inverter section 24 so that the voltage/frequency ratio is constant. The pulse transmitter 18 is directly connected to the 597s plane 11 station Yamada W latitude A'-1↓2 Y-Haiyama country L, and the feedback signal is negatively fed back to the control unit 27 via the speed control circuit 26. The drive electric motor 4 is strictly controlled to a set speed ν5.

上記のように制御すれば各パルプ流量は決めらjれた配
合比率になるように高精度に制御され、パルプ流量を検
出するセンサー8、パルプ流量調節計9及びバルブ11
が不用となり、しかも高精度な配合制御システムを構成
することができる。
By controlling as described above, the flow rate of each pulp is controlled with high precision so that it becomes a predetermined blending ratio, and the sensor 8 that detects the pulp flow rate, the pulp flow rate controller 9, and the valve 11
This eliminates the need for a high-precision blending control system.

更に駆動用電動機4に可変速電動機を使用してlいるた
め、大幅な省電力が可能となるが、それは下記の理由に
よる。第5図に一般的なポンプの流量Qと吐出圧(揚程
)Hの関係を示す。
Furthermore, since a variable speed motor is used as the drive motor 4, significant power savings can be achieved for the following reasons. FIG. 5 shows the relationship between the flow rate Q and the discharge pressure (head) H of a typical pump.

実線H(n1),H(N2)はポンプの回転数Nl,n
2におけるポンプ特性曲線でノあり、破線R(1),R
(11)は流体が流れる管路の抵抗と吸水口と吐出口の
水位差によつて決まる管路抵抗曲線である。今、ポンプ
3の駆動用として、一定速のかご形誘導電動機4を使用
した従来システムの場合はパ,ルプ流量QAはバルブ1
1の開度調整により設定され(この時ポンプの回転数は
n1とする)R(1)とH(n1)の交点Aが運転ポイ
ントとなる。
The solid lines H(n1) and H(N2) are the pump rotational speeds Nl and n
2, and the dashed lines R(1), R
(11) is a pipe resistance curve determined by the resistance of the pipe through which fluid flows and the water level difference between the water intake port and the discharge port. Now, in the case of a conventional system using a constant speed squirrel cage induction motor 4 to drive the pump 3, the pump flow rate QA is
The intersection point A of R(1) and H(n1) is set by adjusting the opening degree in step 1 (the rotational speed of the pump is n1 at this time) and becomes the operating point.

今パルプ原料の配合比率を変更しパルプ流量をQAから
QBに減少する場合はバルブ11の開度が絞られ、管路
抵抗曲線はR(11)となり、R(11)とH(n1)
の交点が運転ポイントとなる。この時吐出圧はHAから
HBに上昇し、その分だけ電力を余分に消費する。次に
、ポンプ3の駆動用として可変速電動機4を使用した本
発明の場合はパルプ流量QAはポンプの回転数がn1で
あれば一義的に決まり、パルプ流量をQAからQBに減
少する場合はポンプの回転数(即ち可変速動電機4の回
転数)をn1からN2に減少させることにより可能とな
る。
If the blending ratio of pulp raw materials is changed and the pulp flow rate is reduced from QA to QB, the opening degree of valve 11 will be narrowed down and the pipe resistance curve will become R(11), and R(11) and H(n1)
The intersection is the driving point. At this time, the discharge pressure increases from HA to HB, which consumes extra power. Next, in the case of the present invention in which the variable speed electric motor 4 is used to drive the pump 3, the pulp flow rate QA is uniquely determined if the pump rotation speed is n1, and when the pulp flow rate is decreased from QA to QB, This becomes possible by reducing the rotation speed of the pump (that is, the rotation speed of the variable speed electric machine 4) from n1 to N2.

この時はポンプ特性曲線がH(n1)からH(N2)に
変化し、管路抵抗曲線はR(1)で、変化しないことか
らC点が運転ポイントとなる。この時吐出圧はHAから
Hcに下降し、その分だけ電力は少なくて済む。以上の
説明からパルプ流量をQAからQBに減少させる場合バ
ルブ11の開度を絞つた場合は駆動用電動機4の回転数
を変える場合に比較して吐出圧がHv(HB−Hc)だ
け余分に必要となり電力を多く消費することとなる。
At this time, the pump characteristic curve changes from H(n1) to H(N2), and the pipe resistance curve remains unchanged at R(1), so point C becomes the operating point. At this time, the discharge pressure decreases from HA to Hc, and the electric power can be reduced accordingly. From the above explanation, when reducing the pulp flow rate from QA to QB, when the opening degree of the valve 11 is throttled, the discharge pressure increases by Hv (HB-Hc) compared to when changing the rotation speed of the drive motor 4. This is necessary and consumes a lot of power.

尚、以上の説明は1系統についてのみ説明したが、残り
の3系統についても全く同様であり全体的な電力の節減
は非常に大きい。
Note that although the above explanation has been made for only one system, the same applies to the remaining three systems, and the overall power saving is extremely large.

以上述べたように、本発明によれば、原料配合、調整工
程の各パルプ流量はパルプ流量を検出するセンサー、パ
ルプ流量調節計及び流量調節用バルブを使用せずに、決
められた配合比率になるように高精度制御することが可
能となる。
As described above, according to the present invention, each pulp flow rate in the raw material blending and adjustment process is adjusted to a predetermined blending ratio without using a sensor for detecting the pulp flow rate, a pulp flow rate controller, or a flow rate control valve. It becomes possible to perform highly accurate control so that the

しかもポンプ駆動用電力も大幅に節減できる。従つて従
来のような熟練したオペレータが不要となり、操業の自
動化、省力化は勿論のこと駆動設備の省電力化等、大幅
に性能を向上させた効果的なポンプ駆動装置を提供でき
る。
Furthermore, the power required to drive the pump can be significantly reduced. Therefore, a skilled operator as in the past is not required, and it is possible to provide an effective pump drive device with significantly improved performance, which not only automates operation and saves labor, but also saves power in the drive equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原料配合、調整工程の系統図、第2図は本発明
の一実施例を示す系統図、第3図は配合制御装置のプロ
ツク図、第4図は電動機駆動制御装置のプロツク図、第
5図はポンプの流量一吐出圧特性図である。 1・・・・・・原料チエスト、2・・・・・・稀釈水供
給装置、3,3a・・・・・・ポンプ、4,4a・・・
・・・電動機、5・・・・・・濃度調節計、6・・・・
・・濃度検出器、7・・・・・・弁、8・・・・・・流
量検出器、9・・・・・・流量調節計、11・・・・・
・流量調節弁、12・・・・・・リフアイナ一、13・
・・・・・配合チエスト、14・・・・・・添加物送出
装置、15・・・・・・濃度信号検出器、16・・・・
・・配合比率設定器、]7・・・・・・配合総量設定器
、18・・・・・・パルス発信器、21・・・・・・電
動機駆動制御装置、22・・・・・・3相交流電・源、
23・・・・・・コンバータ部、24・・・・・・イン
バータ部、25・・・・・・速度設定回路、26・・・
・・・速度制御回路、27・・・・・・電圧/周波数制
御部、31・・・・・・配合制御装置、34・・・・・
・配合量演算器、35・・・・・・配合流量演算器、3
6・・・・・・速度演算回路。
Fig. 1 is a system diagram of the raw material blending and adjustment process, Fig. 2 is a system diagram showing an embodiment of the present invention, Fig. 3 is a block diagram of the blending control device, and Fig. 4 is a block diagram of the motor drive control device. , FIG. 5 is a flow rate-discharge pressure characteristic diagram of the pump. 1... Raw material chiest, 2... Dilution water supply device, 3, 3a... Pump, 4, 4a...
...Electric motor, 5...Concentration controller, 6...
...Concentration detector, 7...Valve, 8...Flow rate detector, 9...Flow rate controller, 11...
・Flow control valve, 12...Refiner 1, 13.
...Blend Chest, 14...Additive delivery device, 15...Concentration signal detector, 16...
...Blending ratio setting device,]7......Blending total amount setting device, 18...Pulse transmitter, 21...Motor drive control device, 22... 3-phase AC power/source,
23...Converter section, 24...Inverter section, 25...Speed setting circuit, 26...
... Speed control circuit, 27 ... Voltage/frequency control section, 31 ... Mixture control device, 34 ...
・Blend amount calculator, 35...Blend flow rate calculator, 3
6... Speed calculation circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の液状原料を一定比率で配合するために各液状
原料送出管路に設けられたポンプを個々に駆動する可変
速電動機と、前記ポンプから送出される液状原料の濃度
を検出する濃度検出器と、予め設定される各原料の配合
比率および配合総量ならびに前記濃度検出器によつて検
出された原料濃度に基づいて、前記ポンプから送出すべ
き原料の流量を得るのに必要なポンプ回転数を演算する
配合制御装置と、この配合制御装置によつて算出された
ポンプ回転数が達成されるように前記可変速電動機を速
度制御する電動機駆動制御装置とを設けたことを特徴と
する原料配合制御用ポンプ駆動装置。
1. A variable speed electric motor that individually drives a pump installed in each liquid raw material delivery pipe in order to mix a plurality of liquid raw materials at a fixed ratio, and a concentration detector that detects the concentration of the liquid raw material delivered from the pump. Then, the pump rotation speed required to obtain the flow rate of the raw material to be delivered from the pump is calculated based on the preset blending ratio and total blended amount of each raw material and the raw material concentration detected by the concentration detector. A raw material blending control device comprising a blending control device that performs calculations and a motor drive control device that controls the speed of the variable speed motor so that the pump rotation speed calculated by the blending control device is achieved. pump drive device.
JP734381A 1981-01-21 1981-01-21 Pump drive device for controlling raw material blending Expired JPS5949055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP734381A JPS5949055B2 (en) 1981-01-21 1981-01-21 Pump drive device for controlling raw material blending

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP734381A JPS5949055B2 (en) 1981-01-21 1981-01-21 Pump drive device for controlling raw material blending

Publications (2)

Publication Number Publication Date
JPS57122179A JPS57122179A (en) 1982-07-29
JPS5949055B2 true JPS5949055B2 (en) 1984-11-30

Family

ID=11663290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP734381A Expired JPS5949055B2 (en) 1981-01-21 1981-01-21 Pump drive device for controlling raw material blending

Country Status (1)

Country Link
JP (1) JPS5949055B2 (en)

Also Published As

Publication number Publication date
JPS57122179A (en) 1982-07-29

Similar Documents

Publication Publication Date Title
CA2620331A1 (en) Control system for and method of combining materials
WO1999064665A1 (en) Method for regulation of the basis weight of paper or board in a paper or board machine
JPH0698728A (en) Continuous mixer for regulating sugar content
JPS5949055B2 (en) Pump drive device for controlling raw material blending
CN105508320B (en) Two parallel pumps hydraulic pressure converter plant and rubber mixing machine drum driven system
EP0509602A1 (en) Drink dispensing machine
JP3842296B2 (en) Apparatus and method for feeding stock to a paper machine
JP2002517636A (en) Adjustment method of surface level and concentration in the measuring tank for component stock
JP2006249644A (en) Pupler control apparatus
SE523155C2 (en) Procedure for controlling a screw press
US8642105B2 (en) Butter making device
CN100432881C (en) Water pump fan running efficiency controlling method for speeder
US4407698A (en) Apparatus for regulating fiber concentration
JPH11287189A (en) Pump control method
CA2505214C (en) Process and device for blending liquid flows
JPS6027841A (en) Viscosity measuring apparatus using torque sensor
JPH10103252A (en) Pump control system
JPS60241907A (en) Liquid supply device
JPH06185493A (en) Operating method of water supply pump
SU550472A1 (en) Automatic mass flow control system from an air cushion head box
SU1747582A1 (en) Automatic regulation of paper mass overlap from pressure box
JPH11148294A (en) Sludge regulating device
JPS5843107B2 (en) Dialysate diluter
US20090242155A1 (en) Method and apparatus for paper stock mixing
SU1256972A1 (en) Automatic controller of water squeezing out of polymeric materials